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ABSTRACT
This paper investigates the forecasting performance of the Garch (1, 1) model
when estimated with NINE different error distributions on Standard and Poor’s
500 Index Future returns. By utilizing the theory of realized variance to con-
struct an appropriate ex post measure of volatility from intra-day data it is
shown that allowing for a leptokurtic error distribution leads to significant
improvements in variance forecasts compared to using the normal distribution.
This result holds for daily, weekly as well as monthly forecast horizons. It is
also found that allowing for skewness and time variation in the higher moments
of the distribution does not further improve forecasts. Copyright © 2006 John
Wiley & Sons, Ltd.
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INTRODUCTION

During the last few decades we have seen a multitude of different suggestions for how to model the
second moment, often referred to as volatility, of financial returns. Among the models that have
proven the most successful are the auto-regressive conditional heteroscedasticity (Arch) family of
models introduced by Engle (1982) and the models of stochastic variance (SV) pioneered by Taylor
(1986). During the last couple of years ARFIMA type modeling of high-frequency squared returns
has proved very fruitful.

One of the main purposes of modeling variance is forecasting, which is crucial in many areas of
finance such as option pricing, value at risk applications and portfolio selection. Therefore, the out-
of-sample forecasting ability should be a natural model selection criterion for volatility models. At
least 93 different articles, reviewed by Poon and Granger (2003), have addressed this question. The
results are inconclusive. There are several reason for this; the ranking of models is dependent on, at
least, the choice of sample period, sample frequency, forecast horizon, loss functions used and,
importantly, the proxy used for the ex post variance. The vast majority of variance forecasting arti-
cles has used squared daily returns as the proxy for ex post variance.

This is, as shown by Andersen and Bollerslev (1998), an unbiased but exceedingly noisy 
estimator.
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While the literature that examines competing variance models is abundant,1 very little work 
has been done comparing different distribution assumptions, with the noticeable exceptions of
Hamilton and Susmel (1994), Lopez (2001) as well as Franses and Ghijsels (1999). However, none
of these three papers has explicitly focused on evaluating Garch forecasting using different error 
distributions.

This paper adds to the literature in several important directions. Firstly, a very flexible error dis-
tribution that nests several well-known distributions including the normal, Student’s t and the non-
central Student’s t distribution, is used. Secondly, a much less noisy proxy of the ex post variance
is constructed using high-frequency data from Standard and Poor’s 500 index future to facilitate
meaningful comparison of the forecast results. In addition, the forecast horizon is extended to include
1-, 5- and 20-day forecasts. Furthermore, to gauge whether the forecasting performance of the models
is statistically different Diebold and Mariano’s (1995) test for equal predictive accuracy will be
employed. This test has also been used by Lopez (2001).

In the model estimation, it is shown that allowing for a leptokurtic and skewed return distribution
significantly improves the fit of the model. In terms of out-of-sample forecasting performance, allow-
ing for excess kurtosis leads to significant improvements over the normal distribution, whereas allow-
ing for non-centrality does not further enhance forecasts. Nor are the forecasts improved by allowing
the kurtosis and skewness to be time varying.

The rest of this article is structured as follows. Prior research is covered in the next section and
the methodology for volatility forecasting is discussed in the third section. In the fourth section the
return distribution is presented. The data and model used in the empirical study are exhibited in the
fifth section. The sixth section displays the results and, lastly, the seventh section concludes.

PRIOR RESEARCH

Previous research on the effects of distribution assumptions on the variance forecasting performance
of Garch models is scarce. Articles that do address this question are Hamilton and Susmel (1994),
Lopez (2001) and Franses and Ghijsels (1999).

The main contribution of Hamilton and Susmel is to allow for different variance regimes by using
a Markov switching Garch model, but the authors also allow the error term to be distributed accord-
ing to a normal, Student’s t or generalized error distribution. Weekly stock return data are used for
both in-sample estimation and the construction of ex post variance. Forecasts are made for 1, 4 and
8 weeks. When the mean square error (MSE) loss criterion is used, no improvement is found over
using constant variance.

However, when logarithmic loss (LL) and absolute LL are used, the Garch model with a t-
distribution performs best, followed by the generalized error distribution on the 1-week horizon.
Results are not reported for the 4- and 8-week comparison. The reason for this is probably the focus
on the Markov switching models.

In the article by Lopez (2001) the main focus is on developing loss functions based on probabil-
ity scoring rules but the performance of a GARCH (1, 1) model fitted with the normal, Student’s t
and generalized error distribution on four daily exchange rate series is also evaluated by more tra-
ditional loss functions. The results show that the relative performance of the models in-sample and

1 For a recent review, see Poon and Granger (2003).
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out-of-sample are different. This highlights the importance of out-of-sample results as a model selec-
tion criterion. The forecasting results are mixed; model rankings change depending on data series
and loss function. Ex post variance is not computed from high-frequency returns.

Franses and Ghijsels (1999) estimate three Garch models using weekly European stock market
data. The first model has the effect of additive outliers removed, the second model has t-distributed
errors and the third is a regular Garch model. Interestingly, the performance of the Garch model with
t-distributed errors is worst out-of-sample. Ex post variance is computed from a weekly return 
frequency.

DISCUSSION ON FORECAST EVALUATION

Let r(m),t ≡ pt − pt−1/m, where p is the natural logarithm of the assets’ price, denote the continuously
compounded 1/m period return and let the unit time period equal 1 day. Consider the (demeaned)
return generating process r(m),t = s(m),tz(m),t where s(m),t is the latent standard deviation and z(m),t is dis-
tributed i.i.d. (0, 1). Ideally, forecast variance, denoted by t,,t+q, should be compared to the latent
variance s 2

(m),t,t+q. Since this is not possible r2
(m),t is often used to proxy for s 2

(m),t with the justification
of being an unbiased estimator, since . While
unbiased, Andersen and Bollerslev (1998) show the variance in z(m),t to be several orders of magni-
tude larger than the variance in s(m),t making daily squared returns a noisy estimate of the latent vari-
ance. A central result in Andersen and Bollerslev (1998) is that the latent variance can be closely
approximated by summing up squared returns of a higher frequency than the forecast horizon.2 The
results also show that measurements of the true degree of predictability are crucially dependent on
the proxy for ex post variance. However, not only is it important to use a proxy with low noise to
measure the absolute degree of predictability but also the relative forecasting performance between
models can be affected by the noise in the proxy, as shown in Hansen and Lunde (2006). It is there-
fore strongly suggested to construct an ex post variance that is as noise free as possible also in com-
parative studies.

Loss functions
Ideally, a loss function should be tailored to the individual person and problem at hand, but to get
results that are more general standard statistical loss functions have to be used. There have been a
large number of loss functions used previously in the literature and, since the relative forecasting
performance is not invariant with respect to the used loss function, this unavoidably introduces a
degree of arbitrariness into the results.

Since the variance is being forecast, traditional loss functions such as mean square forecast error
will raise the return innovation to the fourth power and hence make the loss function very sensitive
to outliers. For this reason the more robust mean absolute error is used.

(1)
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2 This method of approximating the latent variance is often called ‘realized’ variance. For a formal treatment of the subject
derived from the theory of quadratic variation see Andersen et al. (2005).
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is the q period realized variance computed with frequency m from time t to

time t + q used to proxy the unobservable ex post variance. t,t+q is the q period model variance fore-
cast from time t to time t + q.

To account for the heteroscedasticity also a heteroscedasticity-adjusted mean-absolute error loss
function is used following Andersen et al. (1999):

(2)

RETURN DISTRIBUTION

The inability of the Garch model estimated with a normal error distribution to account for all the
excess kurtosis in financial returns is well known. Bollerslev (1987) had already addressed the
problem by using a t-distribution and Nelson (1991) by using a generalized error distribution.
Recently the problem has been highlighted by Malmsten and Teräsvirta (2004), who use moment
results to show that the rather low but slowly decaying autocorrelation function of squared (or
absolute) returns together with the high excess kurtosis typically found in financial data are not
attainable using standard Garch models in conjunction with the normal distribution. It is also a well-
known fact (documented by Glosten et al., 1993, among others) that daily stock index returns exhibit
negative skewness.

A probability density function that can account for both time-varying excess kurtosis and skew-
ness is proposed in Hansen (1994). This density function has the additional benefit of having a par-
simonious parameterization of its third and fourth moments. Therefore, this density function,
presented in equation (3), will be the preferred choice in this paper:
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(7)

The parameters h and l are called the shape parameters of the distribution, l controls the asymme-
try of the distribution and h the tail fatness. More specifically the distribution has a single mode at
−l.

The shape parameters need to be restricted with 2 < h < ∞ and −1 < l < 1. Figure 1 shows the
distribution for a few different values on the shape parameters.

The presented density function is very flexible since it allows the shape parameters to vary over
time; actually, every observation is allowed to have its own values on the shape parameters. To isolate
the effects of allowing for excess kurtosis, non-centrality and time variation in the shape parameters,
restrictions are imposed on the specification in equation (3).

The restrictions decide if the shape parameters are to be given a value or if they are to be esti-
mated and, in case they are estimated, whether they are allowed to be time varying or not. These
restrictions result in the nine different specifications (including the unrestricted model) presented in
Table I.

DATA AND ESTIMATION

The data used are intra-daily logarithmic returns from Standard and Poor’s 500 index future from 2
January 1996 to 30 December 2002 obtained from Tickdata. The reason why the index future is pre-
ferred over the cash index is that the constituents of the SP500 index are not all traded at the same
time and some are traded rather infrequently. This induces spurious autocorrelation into the cash
index return, especially at higher frequencies.

The data are divided into a 5-year in-sample period (1996–2000) and a 2-year period (2001–2002)
is reserved for out-of-sample forecasting evaluation. All in-sample estimations are conducted on a
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Figure 1. Density plot. This figure shows three different density distributions given by equation (3) with degrees
of freedom parameter ht equal to 7 and the skewness parameter lt equal to −0.4, 0 and 0.3 respectively
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daily return frequency. The returns are sampled from the futures contract with the highest liquidity,
which resulted in the contracts being rolled over around the eighth of every third month.3

The descriptive statistics in Table II show that the in-sample period has an average yearly stan-
dard deviation of 19.68%, whereas the out-of-sample period has a somewhat higher standard devi-
ation of 25.19%.

Both periods exhibit excess kurtosis and skewness, though the skewness defined as the standard-
ized third central moment is negative in the in-sample period and positive in the out-of-sample 

Table I. Error distributions

Name l h l Time- h Time-
varying varying

1. Normal distribution 0 ∞ No No
2. Skewed normal distribution Est. ∞ No No
3. Student’s t distribution 0 Est. No No
4. Skewed Student’s t distribution Est. Est. No No
5. Normal distribution with time-varying skewness Est. ∞ Yes No
6. Student’s t-distribution with time-varying kurtosis 0 Est. No Yes
7. Student’s t-distribution with time-varying skewness Est. Est. Yes No
8. Skewed Student’s t distribution with time-varying Est. Est. No Yes

kurtosis
9. Skewed Student’s t distribution with time-varying Est. Est. Yes Yes

skewness and kurtosis

Note: This table shows the nine different error distributions obtained by imposing restrictions on the shape parameters of
the density function in equation (3).

3 The future contracts expiry date is the third Friday in the months March, June, September and December.

Table II. Descriptive statistics of the Standard and Poor’s 500 Future
Index daily returns

SP500 Future returns 1996–2000 2001–2002

Number of observations 1262 500
Daily mean 0.060% −0.083%
Yearly standard deviation 19.68% 25.19%
Maximum 5.67% 7.67%
Minimum −7.71% −6.19%
Skewness −0.303 0.134
Skewness robust −0.021 −0.026
Excess kurtosis 3.848 2.045
JB <0.001 <0.001

Note: This table shows the descriptive statistics for the daily Standard and 
Poor’s 500 future returns for the in-sample period 1996–2000 as well as for the 
out-of-sample period 2001–2002. Skewness robust is the skewness measure

, suggested in Kim and White (2004) because of its robustness 

against outliers. JB is the p-value from the Jarque and Bera (1987) test with the null
hypothesis of normally distributed returns.

q q q

q q

3 1 2 2

3 1

+ -
-



Garch Forecasting Performance 567

Copyright © 2006 John Wiley & Sons, Ltd. J. Forecast. 25, 561–578 (2006)
DOI: 10.1002/for

period. When the more robust skewness measure , where q1, q2 and q3 are the

quartiles of the returns, is used as suggested by Kim and White (2004) the skewness is small but
negative in both periods. Normality is overwhelmingly rejected for both periods with p-values from
the Jarque and Bera (1987) test less than 0.001.

The index future is traded on the Chicago Mercantile Exchange from 8:30 a.m. to 3.15 p.m., giving
405 minutes of daily trading time. Theoretically, the realized variance should be constructed from
the highest possible return frequency since this gives the least noisy estimate of the true variance.
However, market microstructure noise will distort this theoretical result.

In the absence of market microstructure effects the realized variance computed at any frequency
will give an unbiased estimate of the variance; this fact can be used to select an appropriate return
frequency to construct the realized variance series. In previous studies, 5-minute returns have often
been used, for example, by Andersen and Bollerslev (1997) for the foreign exchange market and by
Andersen et al. (2001) with stock market returns. Typically for ultra-high-frequency returns, the real-
ized variance measure becomes severely biased. From the variance signature plot in Figure 2 it can
be seen that the realized variance constructed from 1-minute returns is still unbiased.4

The daily realized variance in this study is thus constructed from 405 daily 1-minute returns. The
1-minute returns are constructed by using the tick price occurring closest after each 1-minute inter-
val. The 500 trading days during 2001–2002 have 1,601,416 ticks recorded, which gives an average
of 7.9 ticks per 1-minute interval. Since the S&P 500 Future is not traded 24 hours a day this measure
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Figure 2. Variance signature plot. This figure shows the average yearly percentage standard deviation for the
SP500 Index future during the 2 January 2001 to 30 December 2002 computed at different return frequencies.
The solid line in the middle is the average yearly percentage standard deviation computed from 30-minute
returns. The dashed lines are 95% confidence intervals computed according to Appendix A in Hansen and Lunde
(2004)

4 Of course, even higher frequencies could be examined but the noise reduction from using even higher frequencies is minus-
cule, as shown in Andersen et al. (2004).
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will be downward biased. The reason is that the measure completely ignores the variance in the
overnight return. One way to remedy this is to simply add the variance of the overnight return to
the variance of the daily return.

This would, however, introduce a lot of noise in the measure and hence eliminate much of the
gains from using intra-day data. Instead the scaling estimator presented in Hansen and Lunde (2005b)
will be used. This method assumes the variance of the overnight return to be a constant fraction of
the daily variance and each daily realized variance is simply scaled appropriately to eliminate the
bias.5

The model estimated is the Garch (1, 1) model of Bollerslev (1986) given by the mean equation:

(8)

and the conditional variance equation:

(9)

with b0, b1 and b2 > 0 and b1 + b2 < 1. The mean equation could alternatively be specified as a func-
tion of the conditional variance giving the Garch-M model of Engle et al. (1987) or restricted to
have zero mean as suggested by Figlewski (1997). However, Hansen and Lunde (2005a) show that
these different specifications have virtually no impact on the out-of-sample variance forecasts of the
model.

The restrictions on the density function in Table I are imposed to give nine different distributions
for et. When time varying, the shape parameters h and l are made dependent on lagged residuals
from the mean equation, according to

(10)

and

(11)

Here a to f are parameters to be estimated and a, b and c are not to be confused with the a, b and c
defined in equations (4)–(6). To restrict the shape parameters the logistic transformation

(12)

is used. U and L are the upper and lower bounds for the restricted parameters. In the estimation the
skewness parameter is restricted to ]−0.9, 0.9[/0. By excluding zero the models are formally non-
nested, which makes the asymptotic theory of the Diebold and Mariano (1995) test valid. This addi-
tional restriction is never close to being binding in the estimation. The tail thickness parameter is
restricted to the open interval ]2.1, 30[.
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5 The yearly standard deviation including the overnight return is 25.19% and excluding the overnight return 21.22%. Each
daily realized variance is hence scaled with (0.2519/0.2122)2 = 1.409 to eliminate the bias.
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The mean, variance and shape parameter equations are estimated jointly by numerical maxi-
mization of the log-likelihood function with the BFGS algorithm. Model convergence is not sensi-
tive to the selection of starting values for the parameters. Forecasts are computed for all nine models;
also, a naïve benchmark is introduced that simply uses average variance calculated as squared daily
returns over the last 30 days.

Daily returns are used to facilitate a fair comparison with the Garch models that do not 
utilize intra-day returns. The forecast horizons are q = 1, 5 and 20 days. The first forecasts are made
on t = 31 December 2000 and then additional forecast are made on each consecutive day for the
whole out-of-sample period, resulting in 500 daily forecasts, 496 5-day forecasts and 481 20-day
forecasts. The Garch parameter estimates are held constant during the entire forecasting period in
accordance with Andersen et al. (1999). The q-day-ahead variance forecasts are given by

, which is the unconditional variance. For the first

forecast e 2
t and ht are given by the estimated model and for the consecutive forecasts the prior periods

forecast t replaces ht. The forecasting performance for each model is examined by the loss func-
tions in equations (1) and (2).

As mentioned in Poon and Granger (2003) it is important to assess whether the forecasting per-
formance of competing models is statistically different. This poses some econometric problems since
the forecast errors from two competing models are likely to be both contemporaneously and seri-
ally correlated, making standard tests invalid. Diebold and Mariano (1995) propose a test for equal
predictive ability that allows for serial and contemporaneous correlation, arbitrary loss functions and
non-Gaussian forecast errors. Limitations of the test are that the asymptotic distribution results
derived are not valid when comparing nested models. A further limitation is that models can be com-
pared only pairwise.

Following the recommendations in Diebold and Mariano (1995) a Dirichlet spectral window is
used with a truncation lag equal to one minus the forecast horizon when the test is implemented.

RESULTS

In-sample results
The level of volatility persistence in the models as measured by the sum of 1 and 2 (Table III) is
well below one for all models with model nine, giving the highest persistence of 0.9675. The

unconditional standard deviation given by varies from 19.75% for model seven to

24.92% given by model nine. The lambda parameter that models the skewness of the distribution is
highly significant in all the specifications and the skewness found in the standardized residuals is
around −0.65 for all the models that do not allow for skewness in the distribution. This is in agree-
ment with previous studies. For example, Glosten et al. (1993) find a skewness value of −0.78 in
their standard Garch specification and −0.70 when they allow for asymmetric responses to variance
shocks. It is important to notice that modeling asymmetric responses in variance to return shocks
does not by far account for the skewness in the return distribution.

When model one is estimated with a GJR-Garch specification (estimation results not reported) the
skewness in the residuals changes only marginally to −0.59. In addition, the lambda parameter in
model two, which models the skewness of the distribution, has a value of −0.224, which is 
highly significant. To show that the lambda parameter does not simply compensate for possible 
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misspecification in the variance equation (positive and negative innovations forced to have the same
effect) a GJR-Garch model is also estimated (estimation results unreported) with the distribution of
model two. This results in the lambda parameter changing only slightly, to −0.236, and remaining
highly significant. This clearly shows that the asymmetry in the return distribution and the asym-
metric response of variance to return innovations need to be modeled separately. This points to the
need for an asymmetric error distribution, which is an issue that has previously received only minor
attention in the Garch forecasting literature. However, it has been used for in-sample Garch estima-
tion by, for example, Hansen (1994), Brännäs and Nordman (2003) and Harvey and Siddique (1999).

Furthermore it can be seen from the e and f parameters in models five, seven and nine that the
skewness in one period is positively related to the return and squared return innovation in the pre-
vious period, whereas the relationship is negative for the degrees of freedom parameters, b and c in
models six, eight and nine (with the exception of the c parameter in model nine). Previously Hansen
(1994) found both the degrees of freedom and skewness parameters to be negatively dependent on
lagged return innovations for the weekly dollar/Swiss franc exchange rate.

The model diagnostics in Table IV show that only the full specification of model nine can account
for both the skewness and leptokurtosis in the residuals.6 As usual, the Garch model does a good job

Table III. Results from in-sample estimation

Estimate Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Model 7 Model 8 Model 9

w 0.0814 0.0675 0.1074 0.0733 0.0783 0.1059 0.0772 0.0611 0.0696
(0.0282) (0.02566) (0.0292) (0.0302) (0.0209) (0.0270) (0.0298) (0.0249) (0.0279)

b0 0.0939 0.0730 0.0835 0.0771 0.0739 0.0888 0.0751 0.0830 0.0807
(0.0365) (0.0227) (0.0269) (0.0262) (0.0013) (0.0199) (0.0293) (0.0289) (0.0266)

b1 0.1316 0.1278 0.1131 0.1184 0.1278 0.1446 0.1154 0.1509 0.1560
(0.0229) (0.0271) (0.0274) (0.0256) (0.0015) (0.0031) (0.0293) (0.0306) (0.0068)

b2 0.8115 0.8272 0.8344 0.8328 0.8263 0.8156 0.8365 0.8129 0.8115
(0.0468) (0.0321) (0.0350) (0.0353) (0.0075) (0.0114) (0.0389) (0.0364) (0.0187)

l * −0.2238 * −0.1781 Vector * Vector −0.1929 Vector
(0.0371) (0.0356) (0.0388)

d.f. * * 6.9320 7.9069 * Vector 8.0780 Vector Vector
(1.2810) (1.3844) (1.430)

a * * * * * −1.7565 * −1.4651 −1.3407
(0.3023) (0.3540) (0.4931)

b * * * * * −0.5364 * −0.6631 −1.0508
(0.1607) (0.1670) (0.2301)

c * * * * * −0.0527 * −0.0603 0.0723
(0.0219) (0.0212) (0.0262)

d * * * * −0.5144 * −0.4213 * −0.4811
(0.0721) (0.0784) (0.0905)

e * * * * 0.1633 * 0.0691 * 0.1358
(0.0454) (0.0660) (0.0653)

f * * * * 0.0238 * 0.0153 * 0.0173
(0.0096) (0.0088) (0.0111)

Note: This table shows the quasi maximum likelihood parameter estimates with robust standard errors in parentheses from
the estimation of models one to nine given by equations (8)–(12) and the restrictions from Table I. The models are estimated
on daily SP500 Index future returns from 2 January 1996 to 30 December 2000.

6 The residuals are standardized with the conditional skewness and kurtosis produced by the model using the moment results
in Jondeau and Rockinger (2003).
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at accounting for the dependence in squared returns, and the Q10 statistic shows no significant auto-
correlation in squared residuals for any of the models.

As can be seen in Table IV, the two most drastic improvements in log-likelihood by adding a
single parameter are to allow for skewness and leptokurtosis, respectively. By replacing the normal
distribution with a t-distribution the log-likelihood increases from −1982.62 to −1950.25, which is
significant according to a standard likelihood ratio test with a p-value of less than 0.001.

Allowing for skewness in the distribution, as is done in model two, increases the log likelihood
compared to the normal from −1982.62 to −1957.79, which is a significant increase with a p-value
of less than 0.001. By jointly allowing for both skewness and leptokurtosis the log-likelihood is
further improved to −1940.35. It is also interesting to notice that the skewness parameter, lambda,
increases from −0.224 to −0.178 and that the degrees of freedom parameter increases from 6.93 to
7.91. This shows the apparent importance of allowing for both skewness and leptokurtosis. This can
also be seen from the negative excess kurtosis of the residuals produced by the models that allow
for leptokurtosis but not skewness. The lambda parameter will partly model the empirical excess
kurtosis as skewness, and the degrees of freedom parameter will partly model the empirical skew-
ness as kurtosis, leading to a bias from under-specification.

Model six shows the effect of further allowing the degrees of freedom parameter to be time varying
while the lambda parameter is restricted to zero; the improvement appears to be quite small, with
an increase in likelihood from −1950.25 to −1946.40. This increase is not significant, with a p-value
of 0.146.

The gain by allowing the skewness to be time varying is seen by comparing models two and five,
resulting in an increase in the log-likelihood from −1957.79 to −1955.18, which is also insignificant,
with a p-value of 0.272. Nevertheless, these results indicate that there is persistence in skewness and
kurtosis as seen by the parameters d, e and f in model five that are all significant, and parameters a,
b and c in model six that also show predictable time variation in the degrees of freedom parameter.
In comparing models five and seven, the effect of allowing for a t-distribution when the skewness
is time varying is shown; this increases the log-likelihood from −1955.18 to −1939.39, which is a
significant improvement. By comparing models seven and eight it is seen that allowing for time 

Table IV. Model diagnostics

Model Log-likelihood Kurtosis Skewness Q10

1 −1982.62 1.7792 −0.64145 11.3474
2 −1957.79 1.8980 −0.3334 11.6466
3 −1950.25 −0.3138 −0.6468 12.1653
4 −1940.35 0.1649 −0.1888 11.9576
5 −1955.18 1.8889 −0.3559 11.5838
6 −1946.40 −1.2265 −0.5927 11.2891
7 −1939.39 0.2640 −0.2038 12.1202
8 −1934.00 −1.1728 −0.3448 11.5641
9 −1933.69 0.1258 0.0331 11.6480

Note: This table shows the log-likelihood from the estimation of models one to nine from Table III on the SP500 Index
future returns from 2 January 1996 to 30 December 2000. Kurtosis (in excess of 3) and skewness is for the standardized
residuals from each model and Q10 is the Lagrange multiplier test for autocorrelation in squared residuals. To standardize
the residuals with the conditional skewness and kurtosis produced by the model, the moment results in Jondeau and Rockinger
(2003) are used.
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variation in the degrees of freedom parameter is more important than allowing for time variation in
the skewness, judged by the higher likelihood of model eight.

Model nine, which is the full unrestricted model, shows only a very minor and insignificant
improvement over model eight in terms of log-likelihood, indicating that there is not much gain in
allowing the lambda parameter to be time varying.

Figures 3 and 4 show the time variation in skewness and degrees of freedom produced by model
nine. The skewness is mostly negative but has a few sharp peaks, with the highest reaching 0.55.
The degrees of freedom oscillate around seven, with a few peaks close to 30. The constraints imposed
by the logistic transformation are not close to being binding for the lambda parameter. However,
they are almost binding at 30 for the degrees of freedom parameter on a few occasions, showing
that the conditional distribution is at times close to normal.

Forecast results

Forecasting performance
In terms of mean absolute forecast error, model three performs the best for all three forecast hori-
zons (see Tables V and VI), closely followed by model seven. However, the difference is not sig-
nificant for any of the three horizons, with the lowest p-values being 6.9% from the Diebold–Mariano
(1995) test. Also, when the criterion is heteroscedasticity adjusted, model three performs the best on
the 1-day and 5-day horizon; for the 20-day horizon the ranking is reversed, with model seven having
the lowest error, followed by model three. The difference is not significant here either.
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Figure 3. Conditional skewness over time. This figure shows the logistically transformed skewness parameter
lt given by equations (11) and (12) from model nine during 2 January 1996 to 30 December 2000
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In conclusion, of the six different rankings, model three is preferred five times and model seven
once. The unrestricted model, which is model number nine, clearly performs the worst out-of-sample
on both the MAE and HMAE criteria, suggesting possible over-fitting when both the skewness and
degrees of freedom are allowed to be time varying. All the Garch models convincingly beat the
benchmark model, which uses a 30-day moving average as predictor of variance. This is in 

0

1 84 167 250 333 416 499 582 665 748 914 997 1080 1163 1246831

DF

5

30

35

10

25

15

20

Observation

D
eg

re
es

 o
f 

F
re

ed
o

m

Figure 4. Conditional kurtosis over time. This figure shows the logistically transformed degrees of freedom
parameter ht given by equations (10) and (12) from model nine during 2 January 1996 to 30 December 2000

Table V. Absolute performance: 1-, 5- and 20-day forecast horizons

Criteria 1 2 3 4 5 6 7 8 9 10

1 day
MAE 0.91216 0.91832 0.90567 0.90995 0.91759 0.94782 0.90892 0.9570 0.97009 1.25024
HMAE 0.33252 0.33607 0.32869 0.33045 0.33512 0.36718 0.32946 0.36924 0.37648 0.51643
5 days
MAE 4.35047 4.35833 4.26345 4.29785 4.35602 4.49369 4.28593 4.55555 4.63354 6.19096
HMAE 0.29009 0.29407 0.28346 0.28710 0.29325 0.32339 0.28597 0.32743 0.33650 0.49010
20 days
MAE 18.5813 18.5860 18.4528 18.4774 18.5724 19.7020 18.4649 19.9100 20.4031 28.3153
HMAE 0.30928 0.30969 0.30153 0.30253 0.30818 0.38413 0.30087 0.38833 0.40721 0.55958

Note: This table reports the forecast errors for the nine models from Table III plus the forecast errors from a 30-day 
rolling variance model. Forecasts are made on the SP500 Futures index from 2 January 2001 to 30 December 2002. Best-
performing models are shown in bold.
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agreement with McMillan and Speight (2004), who examine Garch forecasting performance com-
pared to moving average models for 17 exchange rate series.

Significance
As can be seen from Table VII, for the 1-day horizon model three is significantly better, on the 5%
level, than six of its nine competing models when evaluated by the MAE criterion. Model three is
significantly better than seven of the other models for the HMAE criterion. For the 5-day horizon
model three is significantly better than two other models in terms of MAE, and significantly better
than seven of the nine competing models in terms of HMAE. For the 20-day horizon model three
is only significantly better than the 30-day moving average model for the MAE loss function. For
the HMAE criterion model three is significantly better than seven of the competing nine models.

Looking generally at significance, 45 pairwise model comparisons are computed for each loss
function and each forecast horizon. As can be seen from Table VIII, there is a substantial difference
between the MAE and HMAE loss functions if a model comparison can be considered significant
or not. The heteroscedasticity adjusted mean absolute error criterion finds the most significant dif-
ferences: 95.56% of the comparisons are significant at the 1-day forecast horizon, while the corre-
sponding figure for the MAE criterion is 77.78%.

When the forecast horizon is extended to 5 and 20 days the heteroscedasticity-adjusted mean
absolute error has more significant differences, especially on the 20-day horizon, when 73.33% of
the comparisons is significant compared to 13.33% for the MAE. Since the Diebold–Mariano (1995)

Table VI. Relative performance: 1-, 5- and 20-day forecast horizons

Criteria 1 2 3 4 5 6 7 8 9 10

1 day
MAE 0.00649 0.01265 0 0.00428 0.01192 0.04215 0.00325 0.05133 0.06442 0.34457
HMAE 0.00383 0.00738 0 0.00176 0.00643 0.03849 0.00077 0.04055 0.04779 0.18774
5 days
MAE 0.08702 0.09488 0 0.03440 0.09257 0.23024 0.02248 0.29210 0.37009 1.92751
HMAE 0.00663 0.01061 0 0.00364 0.00979 0.03993 0.00251 0.04397 0.05304 0.20664
20 days
MAE 0.1285 0.13316 0 0.02463 0.11957 1.24924 0.01205 1.46715 1.95033 9.86246
HMAE 0.00841 0.00882 0.00066 0.00166 0.00731 0.08326 0 0.08746 0.10634 0.25871

Note: This table shows the relative performance of the models when the loss function from the best model is subtracted
from each model, meaning that zero indicates the best-performing model. Forecasts are made on the SP500 Futures index
from 2 January 2001 to 30 December 2002. Best-performing models are shown in bold.

Table VII. Model significance

Criteria 1 day 5 days 20 days

Best model Sig. better than # Best model Sig. better than # Best model Sig. better than #

MAE 3 6 3 2 3 1
HMAE 3 7 3 7 7 7

Note: This table reports the best-performing models for the different forecast horizons and loss functions. It also shows the
number of models that were significantly worse than the best model.
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test adjusts the standard errors for heteroscedasticity it seems a good idea, in terms of attaining sig-
nificant results for longer forecast horizons, to adjust for the heteroscedasticity in the loss function.
Averaged across the two loss functions the percentage of significant comparisons between models
is 86.67% for 1-day forecasts, 60.00% for the 5-day horizon and drops to 43.33% for the 20-day
horizon.

Properties that improve the forecasts
In order to discover the possible causes for the model performance reported above, the model spec-
ifications will now be looked at in more detail. The three models that allow for time-varying degrees
of freedom are models six, eight and nine. These three models perform poorly on both the MAE and
HMAE loss criteria.

Models three and seven, which had the best forecasting performance, both allow for a t-
distribution with an estimated degrees of freedom parameter. This is in close agreement with the in-
sample results, where the largest increase in log-likelihood came from allowing for fat tails. These
results partly agree with Hansen and Lunde (2005a), who found Garch models estimated with t-
distributions performing on average better for the DM/$ exchange rate but worse than the Gaussian
models on IBM stock return data.

By comparing models one and two we see that there is no gain in forecasting performance by
allowing for skewness in the distribution. In fact, model two performs worse than model one on all
six comparisons. Model five further allows for time-varying skewness, which makes a slight
improvement over model two, but the model is still worse than the regular Garch model estimated
with a normal distribution. Since skewness was found significant in the in-sample estimation, this
is somewhat puzzling. A possible explanation is that a few outliers cause the observed skewness
since it almost disappears when assessed by a skewness measure that is more robust to outliers (see
Table I). These outliers have a large positive effect on the log-likelihood of the models that allow
for skewness.

By comparing models one and three the effect of allowing for a leptokurtic but symmetric distri-
bution is examined. There seems to be substantial improvement over the normal distribution, with
model three outperforming model one on all six measures.

Model six further allows the degrees of freedom to be time varying, which does not lead to an
improvement; on all forecast horizons and for both loss functions the model with time-varying
degrees of freedom is worse than the regular t-distribution.

The joint effect of allowing for non-time-varying skewness and kurtosis is determined by com-
paring models one and four. Model four performs better on all measures, but worse than model three,

Table VIII. Percentage of comparisons significant at 5%

Horizon Criterion

MAE HMAE Average

1 77.78% 95.56% 86.67%
5 33.33% 86.67% 60.00%

20 13.33% 73.33% 43.33%
Average 41.48% 85.19% 63.33%

Note: This table shows the percentage of comparisons significant at the 5% level
when all models are compared pairwise with the Diebold and Mariano (1995) test.
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showing that there is no improvement in also allowing for skewness when excess kurtosis is already
modeled. By further allowing for time variation in the skewness parameter, model seven is obtained.
Model seven outperforms both model one and four on all the measures, showing an improvement
in allowing the skewness to be time varying. By allowing the kurtosis to be time varying and the
skewness to be constant model eight is obtained. Model eight, though, performs worse than both
models one and four on all measures. This shows that the forecasting performance is actually wors-
ened by allowing for time variation in the kurtosis. When both kurtosis and skewness are allowed
to be time varying model nine is obtained; this model is worse than model one in all comparisons.

CONCLUSIONS

Model three, the Garch model estimated with Student’s t distribution, must be considered the best
performing model, since it performs the best on both the MAE and HMAE loss functions for both
the 1- and 5-day forecasts. In addition, model three has the lowest MAE for the 20-day forecasts
and is a close second on the HMAE criterion.

Other models that performed very well are models number seven and four; these two models have
in common with model three that they allow for non-time-varying leptokurtosis. Overall, the Garch
models clearly outperform the moving average forecasts of model 10 on both criteria and for all
forecast horizons.

The above results are in partial agreement with Hamilton and Susmel (1994), who found the Garch
model with a t-distribution to perform the best when the logarithmic loss criterion was used.
However, Hamilton and Susmel also found that the Garch models gave no improvements over a
model with constant variance when using the MSE loss criterion. In contradiction to the results of
this study, Franses and Ghijsels found the out-of-sample performance for the Garch model with a 
t-distribution worse than for a Garch model estimated with the normal distribution. The contradic-
tory results can probably be explained partly by the noisy ex post variance proxy (squared weekly
returns) used by both Hamilton and Susmel as well as Franses and Ghijsels and partly by the MSE
criterion’s sensitivity to large return innovations.

Allowing for non-time-varying kurtosis improves the forecasts; however, also allowing non-time-
varying skewness or time-varying kurtosis does not improve the forecasts further. When the models
were estimated, the two clearest improvements in log-likelihood came from allowing for a skewed
distribution and to allow for excess kurtosis. The out-of-sample results show that only allowing for
excess kurtosis improves forecasts; allowing for skewness does not lead to any improvements over
the normal distribution.

This shows that additional important insights can be gained by using forecasting performance as
a model selection criterion and thus not by solely relying on in-sample estimation results. Allowing
for time variation gives insignificant increases in log-likelihood for the estimated models; this is con-
firmed by the forecasting performance, which shows no increase in forecasting ability for the models
with time-varying skewness and/or kurtosis. Of course, the skewness present in financial returns
cannot be ignored only because including it in the model does not improve the variance forecasts.
The implications of a forecast variance, e.g. for option pricing and risk management, are quite dif-
ferent depending on the degree of skewness present in the distribution. Since the shape parameters
of the distribution were significantly dependent on lagged return innovations, future work on fore-
casting the entire return distribution seems promising, and is currently being investigated by the
author.
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