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‘Pairs Trading’ is an investment strategy used by many Hedge Funds. Consider two similar
stocks which trade at some spread. If the spread widens short the high stock and buy the low
stock. As the spread narrows again to some equilibrium value, a profit results. This paper
provides an analytical framework for such an investment strategy. We propose a mean-
reverting Gaussian Markov chain model for the spread which is observed in Gaussian
noise. Predictions from the calibrated model are then compared with subsequent observations
of the spread to determine appropriate investment decisions. The methodology has potential
applications to generating wealth from any quantities in financial markets which are observed
to be out of equilibrium.
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1. Introduction

Pairs Trading is a trading or investment strategy used to
exploit financial markets that are out of equilibrium.
Litterman (2003) explains the philosophy of Goldman
Sachs Asset Management as one of assuming that while
markets may not be in equilibrium, over time they move
to a rational equilibrium, and the trader has an interest
to take maximum advantage from deviations from
equilibrium. Pairs Trading is a trading strategy consisting
of a long position in one security and a short position
in another security in a predetermined ratio. If the two
securities are stocks from the same financial sector (like
two mining stocks), one may take this ratio to be unity.
This ratio may be selected in such a way that the resulting
portfolio is market neutral, a portfolio with zero beta to
the market portfolio. This portfolio is often called a
spread. We shall model this spread (or the return process
for this spread) as a mean-reverting process which we
calibrate from market observations. This model will
allow us to make predictions for this spread. If observa-
tions are larger (smaller) than the predicted value (by
some threshhold value) we take a long (short) position
in the portfolio and we unwind the position and make
a profit when the spread reverts. A brief history and

discussion of pairs trading can be found in Gatev et al.
(1999) and in two recent books by Vidyamurthy (2004)
and Whistler (2004). Reverre (2001) discusses a classical
study of pairs trading involving Royal Dutch and Shell
stocks. Pairs trading is also regarded as a special form of
Statistical Arbitrage and is sometimes discussed under
this topic. The idea of pairs trading can be applied to
any equilibrium relationship in financial markets, or to
(market neutral) portfolios of securities some held short
and others held long (see Nicholas (2000)).

2. The spread model

2.1. The state process

Consider a state process fxkj k ¼ 0, 1, 2, . . .g where xk
denotes the value of some (real) variable at time tk ¼ k�
for k ¼ 0, 1, 2, . . . . We assume that {xk} is mean reverting:

xkþ1 � xk ¼ ða� bxkÞ� þ �
ffiffiffi
�
p
"kþ1, ð1Þ

where �� 0, b > 0, a 2 R (which we may assume is non-
negative without any loss of generality), and f"kg is iid
Gaussian Nð0, 1Þ. Clearly, we assume that "kþ1 is inde-
pendent of x0, x1, . . . , xk. The process mean reverts to
� ¼ a=b with ‘strength’ b. Clearly,

xk � N ð�k, �
2
kÞ, ð2Þ
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where

�k ¼
a

b
þ �0 �

a

b

h i
ð1� b�Þk, ð3Þ

and

�2k ¼
�2�

1� ð1� b�Þ2
1� ð1� b�Þ2k
h i

þ �20ð1� b�Þ2k: ð4Þ

It is easy to show that

�k !
a

b
as k!1, ð5Þ

and

�2k !
�2�

1� ð1� b�Þ2
as k!1, ð6Þ

provided we have chosen �>0 and small so that
j1� b�j < 1.

We can also write (1) as

xkþ1 ¼ Aþ Bxk þ C"kþ1, ð7Þ

with A ¼ a� � 0, 0 < B ¼ 1� b� < 1 and C ¼ �
ffiffiffi
�
p

. We
could also regard xk ffi Xðk�Þ where fXðtÞ j t � 0g satisfies
the stochastic differential equation

dXðtÞ ¼ ða� b XðtÞÞdtþ � dWðtÞ, ð8Þ

where fWðtÞ j t � 0g is a standard Brownian motion (on
some probability space).

2.2. The observation process

We assume that we have an observation process {yk} of
{xk} in Gaussian noise:

yk ¼ xk þD!k, ð9Þ

where f!kg are iid Gaussian Nð0, 1Þ and independent of
the f"kg in (1) and D > 0. We may assume that
0 � C < D, which should be the case for small values of �.

We set Yk ¼ �fy0, y1, . . . , ykg which represents the
information from observing y0, y1, . . . , yk. We will wish
to compute the conditional expectation (filter):

x̂xk ¼ E ½xkj Yk�, ð10Þ

which are ‘best’ estimates of the hidden state process
through the observed process. In order to make the
estimate (10), we will need to estimate ðA,B,C,DÞ or
rather ðA,B,C2,D2

Þ from the observed data. We shall
present various results for this below.

2.3. The application

We shall regard {yk} as a model for the observed spread
of two securities at time tk. We assume the observed
spread is a noisy observation of some mean-reverting
state process {xk}. The {yk} could also model the returns
of the spread portfolio as is often done in practice.

If yk > x̂xkjk�1 ¼ E ½xkjYk�1� the spread is regarded as
too large, and so the trader could take a long position
in the spread portfolio and profit when a correction

occurs. An alternative would be to initiate a long trade
only when yk exceeds x̂xkjk�1 by some threshold value. A
corresponding short trade could be entered when
yk < x̂xkjk�1.

Various decisions have to be made by the trader. What
is a suitable pair of securities for pair trading? If our
estimates for B reveal 0 < B < 1, then this is consistent
with the mean-reverting model we have described.
Comparing yk and x̂xkjk�1 may or may not lead to a
trade if thresholds must be met. How are thresholds set?
See Vidyamurthy (2004) for some possibilities. When is
the pairs trade unwound? There are various possibilities:
the next trading time (see Reverre (2001) example) or
when the spread corrects sufficiently. The price applica-
tion and data bases used are often proprietary in industry
applications. The machinery we present then provides
some useful tools appropriate for pairs trading.

Another explicit strategy could make use of First-
Passage Times results (see Finch (2004) and references
cited therein) for the (standardized) Ornstein–Uhlenbeck
process

dZðtÞ ¼ �ZðtÞ dtþ
ffiffiffi
2
p

dWðtÞ: ð11Þ

Let

T0,c ¼ infft � 0, ZðtÞ ¼ 0 jZð0Þ ¼ cg, ð12Þ

which has a probability density function f0,c. It is known
explicitly that

f0,cðtÞ ¼

ffiffiffi
2

p

r
jcj e�t

ð1� e�2tÞ3=2
exp �

c2 e�2t

2ð1� e�2tÞ

 !
ð13Þ

for t>0. Now f0,c has a maximum value at t̂t given by

t̂t ¼
1

2
ln 1þ

1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðc2 � 3Þ2 þ 4c2

q
þ c2 � 3

� �� �
: ð14Þ

We can also write (8) in the form

dXðtÞ ¼ ��ðXðtÞ � �Þ dtþ � dWðtÞ, ð15Þ

where � ¼ b and � ¼ a=b. When

Xð0Þ ¼ �þ c
�ffiffiffiffiffiffi
2�
p , ð16Þ

the most likely time T at which XðT Þ ¼ � is given by

T ¼
1

�
t̂t, ð17Þ

where t̂t is given by (14). Use the Ornstein–Uhlenbeck
process as an approximation to (7) with a ¼ A=�,
b ¼ ð1� BÞ=� and � ¼ C=

ffiffiffi
�
p

with the calibrated values
A,B,C. Choose a value of c>0. Enter a pair trade
when yk � �þ cð�=

ffiffiffiffiffiffi
2�
p
Þ and unwind the trade at time

T later. A corresponding pair trade would be performed
when yk � �� cð�=

ffiffiffiffiffiffi
2�
p
Þ and unwound at time T later.

Other methods based on up- and down-crossing results
for AR(1) processes could also be considered. Corre-
sponding results like those for the Ornstein–Uhlenbeck
processes are not known.
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3. Filtering and estimation results

We assume some underlying probability space ð�,F ,PÞ
whose details need not concern the trader, except that P
represents the real world probability.

3.1. Kalman filtering

We have a state equation

xkþ1 ¼ Aþ Bxk þ C"kþ1, ð18Þ

and the observation equation

yk ¼ xk þD!k, ð19Þ

for k ¼ 0, 1, 2, . . . .
Given ðA,B,C,DÞ we can compute

�k ¼ x̂xk � x̂xkjk ¼ E ½xkjYk� ð20Þ

using the Kalman Filter (see Elliott et al. (1995) for a
reference probability style proof ). Let

Rk ¼ �kjk � E ðxk � x̂xkÞ
2
��Yk

� �
: ð21Þ

Then ðx̂xk,RkÞ are determine recursively as follows:

x̂xkþ1jk ¼ Aþ B�k ¼ Aþ Bx̂xkjk, ð22Þ

�kþ1jk ¼ B2�kjk þ C2, ð23Þ

Kkþ1 ¼ �kþ1jk=ð�kþ1jk þD2
Þ, ð24Þ

x̂xkþ1 ¼ x̂xkþ1jkþ1 ¼ x̂xkþ1jk þKkþ1½ ykþ1 � x̂xkþ1jk�, ð25Þ

Rkþ1 ¼ �kþ1jkþ1 ¼ D2
Kkþ1 ¼ �kþ1jk �Kkþ1�kþ1jk: ð26Þ

For initialization we could take x̂x0 ¼ y0 and R0 ¼ D2.

Remark: As k!1, Rk converges (monotonically) to
the positive root R of B2R2

þ ðC2
þD2

� B2D2
ÞR�

C2D2
¼ 0 provided B2

6¼ 0, C2D2
6¼ 0. We cannot say

very much about limiting values of x̂xk except it is
exponentially forgetting of x̂x0. However, these comments
are not very important as we will only assume the
model (18) holds over a short time horizon for a given
set of values on ðA,B,C,DÞ.

3.2. Estimation of model

We now provide estimates for # � ðA,B,C2,D2
Þ based on

observations y0, y1, . . . , yN . We use the EM-Algorithm to
find #̂# by an iteration that provides a stationary value of
the likelihood function based on the observations. In fact,
let (see Elliott et al. (1995))

LNð#Þ ¼ E0

dP#
dP0

���YN

� �
ð27Þ

be the likelihood function for #2�. The maximum
likelihood estimate solves

#̂# ¼ argmax
#2�
LNð#Þ: ð28Þ

The EM-Algorithm is an iterative method to compute #̂#.
If #̂#0 is an initial estimate, the EM-Algorithm provides

#̂#j, j ¼ 1, 2, . . . , as a sequence of estimates.

Step 1 (the E-step): Compute (with ~## ¼ #̂#j)

Qð#, ~##Þ ¼ E ~## log
dP#
dP ~##

����YN

� �
: ð29Þ

Step 2 (the M-step): Find

#jþ1 2 argmax
#2�

Qð#, #̂#jÞ: ð30Þ

In the literature there are basically two procedures to
implement the EM-Algorithm.

3.2.1. Shumway and Stoffer (1982) smoother

approach. This method is described by Shumway and
Stoffer (1982, 2000) and is an off-line calculation and
makes use of smoother estimators for the Kalman Filter.

We define smoothers (for k � N ):

x̂xkjN ¼ E ½xkjYN �, ð31Þ

�kjN ¼ E ðxk � x̂xkjNÞ
2
��YN

� �
¼ E ðxk � x̂xkjNÞ

2
� �

, ð32Þ

�k�1, kjN ¼ E ðxk � x̂xkjNÞðxk�1 � x̂xk�1jNÞ
� �

: ð33Þ

These smoothers can be computed by

J k ¼
B�kjk

�kþ1jk

, ð34Þ

x̂xkjN ¼ x̂xkjk þ J k x̂xkþ1jN � ðAþ Bx̂xkjkÞ
� �

, ð35Þ

�kjN ¼ �kjk þ J
2
k �kþ1jN ��kþ1jk

� �
, ð36Þ

�k�1, kjN ¼ J k�1�kjk þ J kJ k�1 �k, kþ1jN � B�kjk

� �
, ð37Þ

�N�1,NjN ¼ Bð1�KNÞ�N�1jN�1, ð38Þ

where initial values for this backward recursion x̂xNjN and
�NjN are obtained from the Kalman Filter along with
other estimates. Given #j ¼ ðA,B,C

2,D2
Þ and initial

values for the Kalman Filter x̂x0 ¼
j�1x̂x0jN and

�0j0 ¼
j�1�0jN which are the smoothers from the

previous step ( j� 1). The updates #jþ1 ¼ ðÂA, B̂B, ĈC
2, D̂D2
Þ

are computed as follows:

ÂA ¼
�� � ��

N�� �2
, ð39Þ

B̂B ¼
N�� ��

N�� �2
, ð40Þ

ĈC2
¼

1

N

XN
k¼1

ðxk � ÂA� B̂Bxk�1Þ
2

����YN

� �
, ð41Þ

D̂D2
¼

1

N þ 1

XN
k¼0

ðyk � xkÞ
2
��YN

� �
, ð42Þ

where

� ¼
XN
k¼1

E x2k�1
��YN

� �
¼
XN
k¼1

�k�1jN þ x̂x2k�1jN

h i
,

� ¼
XN
k¼1

E ½xk�1xkjYN � ¼
XN
k¼1

�k�1, kjN þ x̂xk�1jNx̂xkjN
� �

,

� ¼
XN
k¼1

x̂xkjN ,

� ¼
XN
k¼1

x̂xk�1jN ¼ � � x̂xNjN þ x̂x0jN ,
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and the right-hand sides of (41) and (42) are readily
computed in terms of smoothers:

ĈC2
¼

1

N

XN
k¼1

�
�kjN þ x̂x2kjN þ ÂA2

þ B̂B2�k�1jN þ B̂B2
ðx̂xk�1jNÞ

2

� 2ÂAx̂xkjN þ 2ÂAB̂Bx̂xk�1jN � 2B̂B�k�1,kjN � 2B̂Bx̂xkjNx̂xk�1jN

�
,

D̂D2
¼

1

N þ 1

XN
k¼0

y2k � 2ykx̂xkjN þ�kjN þ x̂x2kjN

h i
:

The disadvantage of this algorithm is that, as new values
of observations are given, the whole algorithm must be
repeated off-line. However, if we have written a code for
this estimation based on Nþ 1 observations y0, y1, . . . , yN ,
then with yNþ1 we simply provide the code with input
y1, y2, . . . , yNþ1. The Shumway and Stoffer algorithm
has been widely tested.

3.2.2. Elliott and Krishnamurthy (1999) filter

approach. This approach to the implementation of the
EM-Algorithm uses filtered quantities and can be
performed on-line. This was based on a new class of
finite-dimensional recursive filters for linear dynamic
systems, which can be adapted to equations (18) and (19).
The important advantages of this filter-based
EM-Algorithm compared with the (standard) smoother
based EM-Algorithm include (i) substantially reduced
memory requirements, and (ii) ease of parallel implemen-
tation on a multiprocessor system (see Elliott and
Krishnamurthy (1997, 1999)). The details of this approach
are discussed in Elliott et al. (in press), where computa-
tional issues and convergence are reported.

As in section 3.2.1, we start with #̂#j ¼ ðA,B,C
2,D2
Þ and

initial values for the Kalman Filter and the next estimate
#̂#jþ1 ¼ ðÂA, B̂B, ĈC

2, D̂D2
Þ.

We introduce various quantities:

H 0
k ¼

Xk
l¼0

x2l ,
dH 0

kH 0
k ¼ E H 0

k

��Yk

� �
,

H 1
k ¼

Xk
l¼1

xlxl�1,
dH 1

kH 1
k ¼ E H 1

k

��Yk

� �
,

H 2
k ¼

Xk
l¼0

x2l�1,
dH 2

kH 2
k ¼ E H 2

k

��Yk

� �
,

Jk ¼
Xk
l¼0

xl yl, bJkJk ¼ E Jk
��Yk

� �
,

I 0
k ¼

Xk
l¼0

xl,
bI 0kI 0k ¼ E I 0

k

��Yk

� �
,

I 1
k ¼

Xk
l¼0

xl�1,
bI 1kI 1k ¼ E I 1

k

��Yk

� �
,

Yk ¼
Xk
l¼0

y2l :

If E ¼ E#̂#j
, which means using #̂#j ¼ ðA,B,C

2,D2
Þ in

the dynamics (18), (19), then #̂#jþ1 ¼ ðÂA, B̂B, ĈC
2, D̂D2
Þ is

given through

ÂA ¼ 1�
ðcI 1NI 1N Þ2dH 2

NH 2
N

" #�1 cI 0NI 0N � dH 1
NH 1
N
cI 1NI 1NdH 2
NH 2
N

" #
, ð43Þ

B̂B ¼
1dH 2
NH 2
N

dH 1
NH 1
N � ÂAcI 1NI 1Nh i

, ð44Þ

ĈC2
¼

1

T
dH 0
NH 0
N þ TÂA2

þ dH 2
NH 2
N B̂B

2
� 2ÂAcI 0NI 0N þ 2ÂAB̂BcI 1NI 1N � 2B̂B dH 1

NH 1
N

h i
,

ð45Þ

D̂D2
¼

1

T þ 1
YN � 2cJNJN þ dH 0

NH 0
N

h i
: ð46Þ

We now provide recurrences for computing the quantities
in (43)–(46). Given #j we use the Kalman Filter calcula-
tions (22)–(26) to determine the values of �k and Rk, from
which we have (M ¼ 0, 1, 2)dHM

kHM
k ¼ aMk þ bMk �k þ dM

k ½Rk þ �
2
k�, ð47ÞbJkJk ¼ �aak þ �bbk�k, ð48ÞbI 0kI 0k ¼ s0k þ t0k�k, ð49ÞbI 1kI 1k ¼ s1k þ t1k�k, ð50Þ

Yk ¼ Yk�1 þ y2k, ð51Þ

where the various coefficients are determined as follows.
Set

	k ¼
1

Rk

þ
B2

C 2
, ð52Þ

�k ¼
1

	k

B2

C 2
, ð53Þ

Sk ¼
1

	k

�k

Rk

�
AB

C 2

� �
, ð54Þ

then

a00 ¼ 0, b00 ¼ 0, d 0
0 ¼ 1,

a0kþ1 ¼ a0k þ b0kSk þ d 0
k½S

2
k þ 	

�1
k �,

b0kþ1 ¼ b0k�k þ Sk þ 2d 0
k�kSk,

d 0
kþ1 ¼ 1þ d 0

k�
2
k, ð55Þ

a10 ¼ 0, b10 ¼ 0, d 1
0 ¼ 0,

a1kþ1 ¼ a1k þ b1kSk þ d1
k ½S

2
k þ 	

�1
k �,

b1kþ1 ¼ b1k�k þ Sk þ 2d 1
k�kSk,

d 1
kþ1 ¼ �k þ d1

k�2
k, ð56Þ

a20 ¼ 0, b20 ¼ 0, d2
0 ¼ 0,

a2kþ1 ¼ a2k þ b2kSk þ ðd
2
k þ 1Þ½S 2

k þ 	
�1
k �,

b2kþ1 ¼ b2k�k þ 2ðd 2
k þ 1Þ�kSk,

d 2
kþ1 ¼ ð1þ d 2

kÞ�
2
k, ð57Þ
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where programmers are warned to distinguish here
between superscript 2 and squared terms

�aa0 ¼ 0, �bb0 ¼ y0,

�aakþ1 ¼ �aak þ �bbkSk,

�bbkþ1 ¼ ykþ1 þ �bbk�k, ð58Þ

s00 ¼ 0, t 00 ¼ 1,

s0kþ1 ¼ s0k þ t0kSk,

t0kþ1 ¼ 1þ t0k�k, ð59Þ

s10 ¼ 0, t10 ¼ 0,

s1kþ1 ¼ s1k þ t1kSk,

t1kþ1 ¼ 1þ t1k�k: ð60Þ

Remarks: (a) Given #̂#j the calculation of #̂#jþ1 is com-
puted by the steps: initialize the Kalman Filter with
�0 ¼ y0 and R0 ¼ D2. If the �k and Rk have been
calculated, the various coefficients may now be calculated
using (52)–(54) and then (55)–(60). Find �kþ1 and Rkþ1

from the Kalman Filter equations. Continue until k¼N.
Then compute the quantities in (47)–(51) (at k¼N) and
then #̂#jþ1 from (43)–(46). Some initial guess for #̂#0 must
be made, and then iterations are concluded when the
values for #̂#j have converged sufficiently. Call this #̂#(N).
(b) If #̂#ðNÞ ¼ ðÂA, B̂B, ĈC2, D̂D2

Þ, we should check that ÂA > 0
and 0 < B̂B < 1, else the pairs trading algorithm should
not be used with this data. (c) The procedure described
in (a) could be regarded as an initialization, and need not
be repeated in subsequent steps, where only one iteration
should suffice to update the coefficients in the model.

3.3. Implementation of the EM-Algorithm

We will assume that model (18), (19) holds over N
periods. The values of #̂#(N) and �N are computed based
on the observations y0, y1, . . . , yN and a trade may be
initiated as described in section 2, and possibly unwound
at t ¼ N þ 1 (or according to some other criterion). Based
on #̂#(N), �Nþ1 is computed based on the data
y1, y2, . . . , yNþ1 (the most recent Nþ 1 values with the
Kalman Filter initialized at �1 ¼ y1 and R1 ¼

cD2D2ðNÞ)
and a trade initiated. #̂#ðN þ 1Þ is calculated with one
iteration using section 3.2.1 or 3.2.2 and using the
Kalman Filter based on data y1, y2, . . . , yNþ1. The
procedure is then repeated.

4. Numerical examples

Here we will provide some simulation and calibration
results which demonstrate that the Shumway and
Stoffer algorithm provides a consistent and robust
estimating algorithm for the model. Studies based on
Elliott and Krishnamurthy are given by Elliott et al. (in
press). Some initial experiments have also been performed
with real data with a hedge fund.

To illustrate the typical performance of the Shumway
and Stoffer EM algorithm, adapted to estimation of the
set fA,B,C,Dg, we consider a simulation with parameter
values A ¼ 0:20, B ¼ 0:85, C ¼ 0:60 and D ¼ 0:80. Our
observation set contained 100 points. To initialize the EM
algorithm, the following values were used: A ¼ 1:20,
B ¼ 0:50, C ¼ 0:30 and D ¼ 0:70, with x̂x0j0 ¼ 0 and
�0j0 ¼ 0:1. The EM algorithm was iterated 150 times.
Figures 1 and 2 show convergence of the maximum
likelihood estimates of all parameters.
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