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Abstract 

 

Students in business and other areas who are new to Statistics have a hard time making 

the connection between variance and risk.  To convey the connection, we developed a 

classroom simulation.  In the simulation, groups of students roll three colored dice that 

determine the success of three “investments”.  The simulated investments behave quite 

differently.  The value of one remains almost constant, another drifts slowly upward, and the 

third climbs to extremes or plummets.  As the simulation proceeds, some groups have great 

success with this last investment – they become the “Warren Buffetts” of the class.  For most 

groups, however, this last investment leads to ruin because of variance in its returns.  The 

marked difference in outcomes shows students how hard it is to separate luck from skill.  The 

simulation also demonstrates how portfolios, weighted combinations of investments, reduce the 

variance.  In the simulation, a mixture of two poor investments is surprisingly good.  Rather 

than use arbitrary properties, we calibrated the returns on two simulated investments to mimic 

returns on US Treasury Bills and stocks.  
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1. Introduction 
The definition of variance as the expected squared deviation from the mean often strikes 

students as capricious.  Why square the deviations from the mean rather than use the absolute 

value?  Why average the values?  Without the machinery of maximum likelihood or concepts of 

asymptotic efficiency, one is left to vague, heuristic explanations.  When dealing with money, 

however, the definition of variance is just right.  Rather than make this connection with 

formulas and theorems, we have found it more useful and memorable to let students experience 

the effects of variance first-hand.  After defining means and variances with some basic 

examples, we use this ‘dice game’ to show the importance of these concepts.  The discussion of 

the simulation requires only basic properties of means and variances, with the most 

sophisticated property being that the variance of a sum of independent quantities is the sum of 

the variances. 

The three investments in this simulation have different characteristics.  One investment 

resembles an old-fashioned savings account whose interest has been adjusted for the effects of 

inflation.  At the other extreme, a second investment matches our intuitive definition of being 

very risky.  A third lies between these extremes. 

We have students simulate the changing value of these investments by rolling three 

differently colored dice.  We label the three investments Red, White, and Green because it is 

easy to find dice in these colors.  Though we have tried to save class time by letting a computer 

roll the dice (it’s easy to program the simulation in Excel, say), we have found that students find 

the results more impressive when they roll the dice themselves.  Although the simulation and 

ensuing discussion consume only an hour and 20-minute class (it also works well divided into 2 

one-hour classes), the lessons of the simulation are among those that students take away from 

our course.  After this simulation, everyone appreciates the importance of variance when 

looking at data. 

The following section describes the dice simulation.  The third section describes the 

origins of the simulated investments and explains how portfolios improve investments by 

reducing variation. This section also introduces the notion of volatility drag to quantify the 

effects of variation.  The concluding section returns to the theme of distinguishing luck from 

skill. 
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2. The Dice Simulation 

2.1 Getting Started 

Before describing the simulation, we break our students into teams and describe the 

three investments.  Teams of 3 or 4 students seem about right. On each team, one person plays 

the role of nature (or the market) and rolls the dice.  Another keeps track of the dice and reads 

off their values.  The third records the outcomes; hopefully every team has a responsible 

member.  Others can help out.  We pass out a sheet like that suggested in Figure 1 to each 

group.  This record-keeping page organizes the results of the simulation in a format useful in 

later steps.  The two unlabeled columns provide space to compute the returns on a portfolio later 

in the exercise. We collect these sheets at the end of the simulation so that we can review the 

results in the next class. 

 

 Multiplier     Value   

Round Green Red White  Green Red White  

Start 1 1 1 1 1000 1000 1000 1000 

1         

2         

3         

Figure 1. First rows of the data collection form used to record the value of the three investments 

simulated by rolling a red die, a white die, and a green die. 

 

Once we have the class divided into teams, we pose the following question.  We’ve 

found it useful to elicit a written preference from each team before starting the simulation.  This 

gets them talking about the simulation and avoids too many “Monday morning quarterbacks” in 

the subsequent discussion.  If a team has chosen an investment before starting the simulation, 

the team members seem more interested in following their choice as the simulation evolves. 

Question 1.  Which of the three investments described in the following table 

seems the most attractive to the members of your group? 
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Investment 
Expected Annual 

Return 
SD of Annual 

Return 

Green 7.5% 20% 

Red 71% 132% 
White 0% 6% 

Table 1. Expected value and standard deviation of the annual return on three investments to be 

simulated in the dice game. 

Table 1 might require more explanation, depending on what has been taught.  For a 

basic class that has not spent much time with random variables, we describe the table in this 

way.  Suppose that you invest $1000 in one of these choices, say Red.  From the table, you can 

expect the value of your investment to be 71% larger at the end of the first year, up to $1,710.  

Students find this sort of calculation quite reasonable, but have little intuition for how to think 

about the standard deviation – other than to know that the presence of a large standard deviation 

means that the results are not guaranteed. 

We describe the table more precisely if students are familiar with discrete random 

variables. Random variables are a natural way to represent the uncertainty of the value of 

investments that, unlike bank accounts, can increase or decrease in value. The random variable 

that is most natural in this context is the return on the investment. For example, if the random 

variable Rj denotes the return on Red in round j, then at the end of the first year, the value of the 

initial $1000 in Red is 

$1000(1 + R1) 

If Red goes up by 10% in the first year, then R1 = 0.10 and the $1000 grows to $1,100.  The 

summary table shows that E(Rj) = 0.71 and SD(Rj) = 1.32.  The table includes the properties of 

two more random variables, namely those that describe the returns on Green and White. At the 

end of one year, if we start with $1000 in each of these, we’d expect to have $1,075 in Green 

and $1,000 in White at the end of the year.  Investing in White resembles putting money into a 

mattress. 

Red is obviously the best choice among these three if we only consider the expected 

values.  Because the expected value of a product of independent random variables is the product 

of expectations, we can easily find the expectations for each investment over a longer horizon. 

Over 20 years, we expect the initial $1000 invested in Red to be worth an astonishing 
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! 

E 1000(1+ R1)(1+ R2)L(1+ R20)( ) =1000E(1+ R1)E(1+ R2)LE(1+ R20)

=1000(1.71)20

= $45,700,000

 

By comparison, the initial investment in Green grows on average to $2,653 and White remains 

at $1,000. 

The standard deviations might lead students to question the wisdom of investing in Red, 

but having compared expectations it is difficult for most to see how to trade off the large 

expected return for the variation. The standard deviation of the return on Red is the largest of 

the three, SD(Rj)=1.32. The annual return on Red is 10 times the return on Green, but its SD is 

also 6.5 times larger. Few students appreciate the bumpy ride promised by Red. 

To help the class appreciate the role of uncertainty, we use this simple example. Suppose 

that a graduate lands a good job that pays $100,000 per year.  In the first year, the company 

does well and her salary grows by 10% to $110,000.  The next year is leaner, and she has to 

take 10% cut in pay, reducing her salary down to $99,000.  The average percentage change in 

her salary is zero, but the net effect is a loss of 1% of the starting salary over the two years.  

Figured at an annual rate, that’s a loss of 0.5% per year.  It turns out that this simple example is 

a special case of a more general property that captures how variance eventually wipes out 

investments in Red. 

2.2 Running the Simulation 

After this introduction, we start the simulation.  We distribute three dice to each team. 

Each roll of all three dice represents a year in the simulated market, and the outcomes of the 

dice determine what happens to the money held in each investment. 

The following table shows how the outcomes of the dice affect the values of the three 

investments. The number in each cell of the table gives the value of $1 invested in each at the 

end of the round.  We find it helpful to project this table on a screen visible to the class as the 

simulation proceeds. 
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Outcome Green Red White 

1 0.8 0.06 0.9 

2 0.9 0.2 1 

3 1.05 1 1 

4 1.1 3 1 

5 1.2 3 1 

6 1.4 3 1.1 

Table 2.  Value multipliers for the amount invested in each of the three simulated investments. 

An example of the calculations clarifies the calculations of the returns from Table 2. 

Each investment begins with an initial value of $1000. As an example, suppose that on the first 

roll the dice show these outcomes: 

   (Green 2)  (Red 5) (White 3)  

Then the three investments after the first year are worth 

   Green:  $1000 × 0.9 = $900 

   Red:  $1000 × 3 =  $3000 

   White:  $1000 × 1 =  $1000 

For the next roll, the values are compounded, starting from the amounts at the end of the first 

year.  If the second roll gives 

   (Green 4) (Red 2) (White 6), 

then the three investments are worth 

   Green:  $900   × 1.1  = $990 

   Red:  $3000 × 0.2  = $600 

   White:  $1000 × 1.1  = $1100 

after the second round.  Figure 2 shows the recording sheet after the first two rolls. 
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 Multiplier     Value   

Round Green Red White  Green Red White  

Start 1 1 1 1 1000 1000 1000 1000 

1 0.9 3 1  900 3000 1000  

2 1.1 0.2 1.1  990 600 1100  

Figure 2. Data table recording the outcomes of the first two rounds of the dice simulation of 

three investments. 

 

At this point, we turn the class lose and let the simulation begin.  We generally run the 

simulation for 20 or 25 “years” in order to have the long-term patterns emerge.  If the 

simulation runs much longer, the Red investment becomes less and less likely to do well.  

Stopping after 20 or 25 rounds leaves a good chance that some team will be doing very well 

with Red. 

 

An aside 

Some students might question whether the multipliers in Table 2 really correspond to the 

means and variances shown in Table 1.  When we have had time to develop random variables, 

we use a homework exercise that has students check that the multipliers do indeed match up to 

the prior means and standard deviations. 

Some may not recognize that the multipliers in Table 2 are 1 plus the returns. For 

example, consider Green.  If a roll of the green die gives the value 5, the multiplier 1.2 means 

that every dollar invested in Green grows to $1.20, a 20% increase. All of the values in the table 

of multipliers are just one plus the return on each investment for that roll of the corresponding 

die. 
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Roll Probability Return 

1 1/6 –0.2 

2 1/6 –0.1 

3 1/6 0.05 

4 1/6 0.10 

5 1/6 0.20 

6 1/6 0.40 

Table 3.  Probabilities for the returns on the Green investment. 

Table 3 gives the distribution of the discrete random variable G, the return on Green.  To 

recover the mean shown in Table 1,   

! 

E G( ) =
"0.20 " 0.10 + 0.05 + 0.10 + 0.20 + 0.40

6

= 0.075

 

The rest of Table 1 follows similarly. 

2.3 Pink 

As the class runs the simulation, we browse the room to see how the different teams are 

doing and make sure that they are doing the calculations correctly. Generally, the room gets a 

little noisy, particularly if there’s a group for which Red is working nicely.  Red triples in value 

half of the time, so there’s a good chance that some team will do well with Red if the simulation 

is run 20 rounds. 

After letting the class run the simulation for 20 or 25 rounds, we interrupt the chatter and 

pose another task. This task does not require more rolling of the dice.  For this part, the students 

consider a hybrid investment that mixes the previous results for Red and White.  We call this 

investment Pink. 

To compute the value of Pink, we instruct the students to use the previously recorded 

rolls of the red and white dice.  It’s easiest to describe how to figure out what happens to the 

value of Pink with an example.  Pink also begins the simulation with $1000.  For the first round, 

using the same dice rolls as in the previous example (Red=5 for a multiplier of 3 and White=3 

for a multiplier of 1), the value of the Pink becomes 
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$1,000 × 

! 

3+1

2
= $2,000 

Compounded in the second round (which had values Red=2 for a multiplier 0.2 and White=6 

with multiplier 1.1), the result is 

$2,000 ×

! 

0.2 +1.1

2
 = $1,300 

Figure 3 shows the data recording form with values for Pink added.  It is important that students 

average the multipliers, not the values, for Red and White. 

 

 Multiplier     Value   

Round Green Red White Pink Green Red White Pink 

Start 1 1 1 1 1000 1000 1000 1000 

1 0.9 3 1 2 900 3000 1000 2000 

2 1.1 0.2 1.1 0.65 990 600 1100 1300 

Figure 3. Data recording with the values for the mixture Pink added to the calculations. 

 

Before turning them lose again, we pose some questions to make them think before calculating. 

Because Pink mixes the returns of Red and White, most students expect it to be a mix of bad and 

boring and not do well. 

Question: Before you compute your outcomes, discuss Pink with your team. 

How you expect Pink to turn out?  Do you think it will be better or worse 

than the others? 

We have found it useful to circulate through the class as students figure out the results 

for Pink.  A common mistake is to average the final values for Red and White. This error gives a 

very different answer than obtained by averaging the returns. Often, as they do the calculations, 

teams suspect that they have done something wrong because Pink does so well! 
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Figure 4.  Timeplots of the values of 4 simulated investments in the dice game.  The outcomes in 

(a) are typical whereas those in (b) show what happens when a team becomes the Warren 

Buffetts of the class. 

2.4 Collecting the results 

Once it seems that most have finished the calculations for Pink, we query the teams for 

their results.  To maintain flow of the discussion, we find it simplest to track the outcomes for 

the investments on a transparency that we augment as teams announce results. 

For most, Red becomes nearly worthless as in Figure 4a.  Red looks great at first, drops, 

then recovers before collapsing.  Green rises slowly, but steadily. Pink is more volatile than 

Green, but closes with a larger value.  As we poll the class, most say that Red fell to pennies.  

For a few, however, Red does very well as in Figure 4b. For a simulation with 20 rounds, direct 

calculation shows that the probability that Red is worth $10,000 or more is about 20%, 
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! 

P 1+ R
1( ) 1+ R

2( )L 1+ R
20( ) >10[ ] " 0.19 

Similar calculations show that the chance for becoming a millionaire with Red is a bit larger 

than 5%. It comes as quite a surprise to the rest of the class when a team announces that their 

value in Red is, say, $10,000,000.  We call this team the “Warren Buffetts” of the class.  

Business students generally know the name by reputation.  

As for the other two original investments, White generally drifts downward but remains 

close to the initial $1,000 stake.  Green shows a steady return and is usually the best of the 

original alternatives. 

Pink presents the students with their second surprise.  Across the class – with the 

exception of the Warren Buffetts – Pink usually results in the highest value at the end of the 

simulation as in Figure 4a. Though Pink mixes two investments that are individually poor 

choices, this simple mix of Red and White works very well.  That frequently seems impossible 

to the students, leaving many to question how the average of two poor investments can become 

so valuable. 

3. Discussing the Simulation 

3.1 Why these multipliers? 

We open our discussion of the dice game by linking the simulated investments to real 

investments.  Green, which does the best for most teams until they discover Pink, performs like 

the US stock market when adjusted for inflation. White represents the inflation-adjusted 

performance of US Treasury Bills, the canonical “risk-free” investment. We made up Red.  We 

don’t know of any investment that performs like Red.  If you know of one, please tell us.  

The timeplot in Figure 5 summarizes the history of stocks and Treasury Bills in the US 

from 1926 through the end of 2003.  Both series are monthly. For stocks, this plot tracks the 

value of one dollar invested in January 1926 in a value-weighted portfolio of the US stock 

market.  (A value-weighted portfolio, such as the S&P 500, buys stock in proportion to their 

capitalized value.  Alternatives such as the Dow-Jones Index simply buy one share of each.)  

This plot also shows the value of a $1 investment in 30-day Treasury Bills.  The Y-axis in the 

timeplot uses a log scale.  When plotted on a log scale, geometric growth appears as a straight 

line. 
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Figure 5. Return on a 1926 investment of $1 in the stock market and in Treasury Bills.  (red x = 

$1 in 30-day Treasury Bills, green o = $1 in stocks). 

This plot is a little misleading because it ignores inflation. Although inflation has 

recently been quite low, it exceeded 15% or more annually in the past. To adjust for inflation, 

Figure 6 shows the cumulative values after subtracting the rate of inflation from the growth of 

$1 investments in the stock market and Treasury Bills.  To measure inflation, we used month-

to-month changes in the Consumer Price Index in the US.  Once adjusted for inflation, Treasury 

Bills do not appear so risk-free.  The inflation-adjusted value of the investment in Treasury Bills 

declined for several long periods.  Net of inflation, the $1 invested in Treasury bills ends at 

$1.65.   The $1 invested in the stock market ends up at $150, even allowing for the Great 

Depression and the dot-com bust. 

Returns are the key random variables in the dice simulation.  The third timeplot in 

Figure 5 shows the monthly returns for stocks and Treasury Bills, net of inflation. (Again, we 

subtracted out the rate of change in the Consumer Price Index).  The month-to-month variation 

of the returns on Treasury Bills is so much smaller than the variation in returns on stocks that 

this sequence becomes almost invisible in the plot.  Several familiar events are also apparent.  

On the left, starting in the late 1920s and running through the 1930s, is the Great Depression.  

Returns on the market were incredibly volatile during that period.  In 1933, the market dropped 

almost 30% in one month.  Less well known is that about a year later, the market increased by 

about 40% in each of two months.  Following WW II, the returns on stocks became rather stable 
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– at least in comparison to the volatility during the Depression.  You can also identify other big 

shocks such as the drop in October 1987. 
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Figure 6. Return on a 1926 investment of $1 in the stock market and in Treasury Bills after 

adjusted for inflation by subtracting the rate of change in the Consumer Price Index. 
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Figure 7. Timeplot and histograms of the inflation-adjusted monthly returns for stocks and 

Treasury Bills in the US. 

Both sequences of returns resemble series of independent observations. After converting 

to returns, histograms seem like reasonable summaries of the data, at least if one ignores the 
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bunching of periods of high volatility. While important in modern financial modeling, we avoid 

the complications of conditional volatility when introducing these ideas.  The two histograms 

beside the timeplot in Figure 7 compare the returns on the stock market to the returns on 

Treasury bills, both adjusted for inflation and shown on the common scales from –0.3 to 0.4 

(monthly returns from –30% up to 40%).  The monthly returns on the stock market need that 

range; the monthly returns on Treasury bills never venture far from zero. (We like the 

placement of the histograms beside the timeplot to emphasize that the histograms simply count 

the number of points in different horizontal slices in the time plot.) 

 

 Stocks T-Bills 
Mean 0.0069 0.00055 

Std Dev 0.0552 0.00545 
Variance 0.0031 0.00003 

N 936 936 
Table 4. Means, standard deviations and variances of the monthly inflation adjusted returns on 

US stocks and Treasury Bills. 

The summary statistics in Table 4 show that the excess annual return on investments in 

the stock market above inflation from 1926 through 2003 averaged about 12(.0069) = .0828, 

slightly above 8%.  Returns on Treasury Bills have been essentially flat, just keeping pace with 

inflation. The average net return above inflation for T-bills has been 12(.00055) = .0066, about 

2/3 of one percent.  The two returns obviously have very different variation.  The month-to-

month standard deviation for stock returns is 0.0552.  Assuming independence over time, this 

monthly standard deviation implies an annual standard deviation near √12(0.0552) = 0.192, 

about 19%. 

Comparing these statistics for stocks and Treasury Bills to the summary table associated 

with the dice simulation, we see that Green resembles the market.  In fact, the expected return 

on Green at 0.075 is very close to the excess return of the stock market, the return on the market 

minus the risk-free rate, 0.0828 – 0.0066 = 0.0762.  If you borrow the money that you invest in 

the market (and you can borrow at the same rate of interest as the US government), this is the 

return that you would net after paying the interest on your loan. Similarly, White is the risk-free 

rate after inflation – zero.  We left more variability in White than in the returns on Treasury 

Bills so that it would not remain constant in the simulation. 
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3.2 The Success of Pink: Volatility Drag 

Before looking at the numbers, it is essential that students understand that the value of 

Pink is not a simple average of Red and White.  The returns on Pink average those on Red and 

White, but one does not get this performance by starting with $500 in Red and $500 in White 

and leaving it there.  Pink requires that the portfolio be rebalanced at the end of each period so 

that half of the current value is invested in Red and half in White.  Returning to the illustrative 

calculations, at the end of the first round, the initial $500 invested in Red grows to $1500 and 

the $500 invested in White holds its value.  Before the next round, the portfolio needs to be put 

back into 50-50 balance; that is, we need to move $500 from Red into White, so that each has 

$1000 at the start of the next round.  This “protects” some of the winnings from Red in the prior 

round from subsequent volatility.  When the next roll wipes out 80% of the value of Red, it only 

reduces the $1000 left in Red down to $200. The other $500 produced by Red in the first round 

remains safely in White. 

As a first step in understanding the success of Pink, we need the mean and variance of 

its returns. Because the return on Pink is the average of those on Red and White, students 

willingly accept that the mean return on Pink is (0.71+0)/2 = 0.355.  Finding the variance is a 

little harder and requires that students know two basic manipulations for variances: 

(a) Constants factor out with squares, Var (c X) = c2 Var(X), and  

(b) For independent random variables X and Y, variances of sums are sums of 

 variances, Var(X+Y) = Var(X) + Var(Y). 

Because we simulate the returns in this example using separate dice, it should be clear that the 

returns on Red and White are independent.  (Along with the invention of Red, the independence 

of the returns is a simplifying aspect of the dice simulation that differs from the real world.  

Returns on real investments are usually correlated, complicating the analysis of a portfolio.)  

Using (a) and (b), the variance of returns on Pink are easily found to be (Table 5) 

! 

Var(Pink) =Var
R +W

2

" 

# 
$ 

% 

& 
' 

=
Var R +W( )

4

=
Var(R) +Var(W )

4

=
1.32

2 + 0.062

4
= 0.436
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It is worth mentioning that although Pink sacrifices half of the expected return of Red, it also 

reduces the variance by a factor of 4.  

 

Color Die E Return Variance Avg–Var/2 
Green 0.075 0.22   = 0.04 0.055 
Red 0.71 1.32   = 1.69 –0.135 

White 0 0.062 = 0.0025 –0.002 
Pink 0.355 0.652 = 0.4225 0.144 

Table 5. Mean, variance and volatility adjusted return of the four simulated investments in the 

dice game. 

A simple expression based on the mean and variance of the returns shows how variation 

eats away at the value of an investment. Because it reflects how variation (or volatility) eats 

away at the value of an investment, we refer to this adjusted return as the volatility adjusted 

return.  This is also known as the long-run return on an investment.  The formula for computing 

the volatility adjusted return is simple: 

      Volatility-adjusted return = Long-Run Return  

  =  Expected Annual Return – (Variance of Annual Return)/2 

This penalty for variation is sometimes called the volatility drag. 

Before we take a closer look at this formula, Table 5 shows the calculations for the dice 

game.  The last column in this table shows the volatility adjusted return on Green, Red, White 

and Pink.  Not surprisingly, Pink is most attractive, with almost three times the volatility-

adjusted return of the stock market. Even though Red is a big loser for most teams, mixing it 

with White reduces the variance and produces a huge win.  (As a little follow-up exercise, you 

might want to have students consider the following: What is the optimal mix of Red and White?  

That is, what proportions of Red and White produce the highest volatility-adjusted return?  

When considering investments with independent returns, investors should purchase some of any 

investment known to have positive mean.  It becomes a question of how much.) 

Depending on the level of the class, we spend more or less time describing the origins of 

the formula for the volatility adjusted return.  In an introductory class, we can get this formula 

for the volatility drag from our simple example of volatile changes in salary.  Think of the 

changes in salary as a random variable, with half of the probability on + 0.10 (up 10%) and the 

other half on  –0.10 (down 10%).  The expected value of this random variable is zero. Its 
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variance is the average squared deviation from zero, simply 0.12 = 0.01.  Now look back at the 

example. The salary dropped by 0.5% per year, or 0.005. That’s half of the variance. On 

average, each year of employment reduces the salary by half of the variance of the percentage 

changes.  That is precisely the adjustment provided by the volatility drag.  

For students who are familiar with the weak law of large numbers and Taylor series, we 

use a more rigorous argument for the volatility-adjusted return. Assume that the initial value of 

an investment is W0. We set this to $1000 in the dice game. Label the return during year t as Rt.  

Thus, the value at the end of the first year is the initial value times one plus the return earned in 

the first year, or 

W1 = W0 (1+R1) 

In general, by the end of year T the value is 

WT = W0 (1+R1) (1+R2) … (1+RT) 

Taking logs reduces this product to a sum that is easier to manipulate, 

  

! 

logW
T

= logW0 + log(1+ R1) + log(1+ R2) +L+ log(1+ R
T
)

= logW0 + log(1+ R
t
)

t=1

T

"

= logW0 + T #

log(1+ R
t
)

t=1

T

"

T

$ logW0 + T # E log(1+ R
t
)

 

The last approximation only applies for large T by the weak law of large numbers, so that the 

average of the observed values of the random variable has settled in on the expectation.  The 

expected value E log(1+Rt) is called the expected log return in Finance, yet another name for the 

long-run growth rate. 

To get the expression for the volatility drag, we prefer the approximation  

! 

log(1+ x) " x #
x
2

2
  . 

This allows us to argue that  
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So long as the average returns are small, E Rt
2 is about the same as E(Rt – E Rt)2= Var(Rt).  

Alternatively, one can avoid these approximations by making the strong assumption that returns 

follow a lognormal distribution.  That argument, however, requires an assumption about the 

distribution of the returns that is hard to verify in practice. 

Finally, in a very advanced class, one can use this discussion to motivate the importance 

of the Shannon-Brieman-MacMillan theorem (for example, see Chapter 15, Cover and Thomas 

1991).  But we’ll not do that here! 

4. Conclusion 
What about those Warren Buffetts? 

We developed this simulation to show off the importance of the variance in assessing the 

long-term value of investments.  Pink offers a simple illustration of how one can gain positive 

long-run returns by using a portfolio that sacrifices expected returns to reduce the variation. 

Having used this simulation in undergraduate and MBA classes for several years at 

Wharton, we have come to appreciate the important message conveyed by the Warren Buffetts 

of the class.  These are the few teams that, unlike most others, end the simulation with Red 

reaching an astonishing large value. It comes as quite a surprise to the rest of the class to 

discover, as we collect the final values from the teams, that some of their classmates have had 

huge success with Red.  The differences are not slight either.  For a team whose $1000 in Red 

has shrunk a few pennies, it seems impossible that another team’s investment in Red is worth 

$10,000,000 at the end of the game. We even used to run the simulation longer, hoping that 

volatility would wipe out these lucky winners.  We have, however, come to realize that these 

anomalies allow us to present the students with an important question. 

What makes them believe that the real Warren Buffett was not just lucky?  After all, 

with millions of investors seeking profits from the stock market, could it be that Warren Buffett 

simply “got lucky.”  There is usually considerable resistance from fans of the “Sage of Omaha”, 
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but even they have to concede how difficult it is to separate a knowledgeable strategy from a 

lucky strategy. In the dice simulation, all of the teams use the same “strategy” for Red and 

rolled the dice themselves; nothing is hidden in a mysterious random number generator.  They 

all start with $1000 in Red, but only a lucky few end the game appearing a lot smarter than the 

others.  In the dice game, they can all see that it was simply luck that produced the Warren 

Buffetts. 

We are careful not to say that Warren Buffett became successful by sheer luck.  We 

simply point out the difficulty in separating skill from luck, a problem that bedevils investors in 

hedge funds and requires methods outside the scope of this paper that we plan to describe 

elsewhere. 
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