
What is a realistic aversion to risk for real-world
individual investors?∗

Karel Janeček†
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Abstract

Most frequently used class of utility functions for modelling the investment
policy of individual agents by the constant relative risk aversion (CRRA) utility
functions. The objective of this paper is to try to provide the plausible risk
aversion parameter of individual households under this assumption.

I argue that the risk aversion of an individual investor may be significantly
larger than is usually being considered plausible in economic literature. Specif-
ically, I argue that, for the purposes of mediocre risk taking, an average in-
vestor’s risk aversion parameter is in order of p = 30. Few investors, usually
with enough experience, exhibit aversion to risk below p = 20, while many in-
dividuals with little risk-taking experience and distaste for risk endeavors may
exhibit p > 300. I present empirical evidence for these statements.

The risk aversion coefficients suggested in this paper are an outcome of
a partial equilibrium model, analyzing the behavior of real-world individu-
als. Additionally, we are able to address other issues in financial economics.
Namely, the assumption of higher risk aversion resolves the equity premium
puzzle. It is possible to obtain the low participation in stock market even with
small transaction costs, assuming high risk aversion for some agents. We can
also conclude that the risk free rate is not too low for sufficiently high risk
aversion.

Introduction

It appears plausible that the usage of CRRA utility function could be a reason-
able approximation of the real-world behavior. Unfortunately, it turns out to
be somewhat complicated to find an appropriate relative risk aversion param-
eter. It can be argued that the parameter corresponding to logarithmic utility
function (p = 1) is appealing since log utility maximizes the rate of growth.

∗The author thanks to Philip H. Dybwig for valuable suggestions and comments.
†Department of Mathematics, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
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Soon people started to realize that, in the real world, risk aversion is actually
higher than what logarithmic utility implies. Several authors argued that the
risk aversion parameter could be around 2. More recently, economists started
to consider even higher aversion to risk, finding risk aversion parameter in or-
der of 5 or even 10 to be reasonable. For example, Mehra and Prescott [13]
a priori impose an upper bound of 10 for the relative risk aversion parameter
p. A notable exception to the general approach is the work of Kandel and
Stambaugh [8]. The authors argue that higher risk aversion parameter in the
order of 30 might be plausible. They also discuss separation of risk aversion
and intertemporal substitution in nonexpected-utility framework.

While major improvements in matching data and attitudes towards risk
can be obtained by relaxing the assumption of existence of a utility function,
namely the associativity axiom, in this paper I attempt to show that these
relaxations are not necessary to satisfactory resolve the microeconomic data.
It is possible to make a very restrictive assumption on utility function, while
assuming a sufficiently large risk aversion.

I assume that the agent possesses the CRRA (power) utility function in
order to make the analysis computationally feasible. This assumption may
be arguable and does not hold precisely in reality. However, it is plausible
that the usage of CRRA utility functions could serve well as a first order
approximation for real-world risk taking behavior. In any case, many authors
hold the assumption of CRRA in their models and it is widely accepted.

The assumption of power utility functions can be also understood in the
following sense: While an individual agent may not possess exactly the power
utility function, we are trying to find the constant relative risk-aversion coef-
ficient, which would ”best” approximate the agent’s risk-taking behavior. In
other words, we strive to answer the problem of what risk aversion coefficient
would the agent choose, if one ”forces” her to use the power utility function
for portfolio choice decisions.

We assume the power (CRRA) utility function of the form:

Up(WT ) =

{
W 1−p

T −1
1−p , p > 0, p 6= 1

log WT , p = 1,
(1)

where WT is the investment wealth of agent at time T , as defined in Section 1.
In Section 1 I state the assumptions for portfolio choice or other risk taking

behavior of an agent, and define the appropriate reference wealth. In Section 2
I present some empirical evidence from real-world risk taking behavior. In Sec-
tion 3 I present the implications of the preceding analysis for financial markets,
which helps to resolve several major puzzles in economic theory.
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1 The model setup

In this paper I assume that individuals make investment decisions based on the
level of their personal investment wealth. This assumption is probably close
to reality. It seems plausible that the theoretically ideal approach should be
based on maximizing the utility of lifetime consumption stream, with possible
bequest motive. However, it does not appear plausible that an individual
investor performs a complicated analysis and difficult estimates of her lifetime
consumption. Thus, the assumption of maximizing expected utility of wealth
process1 rather than utility of a consumption stream appears fully compatible
with the objective of partial equilibrium analysis, even though it may not be
ideal for other purposes. In any case, in Appendix A I show that for power
utility there is no difference in agent’s optimal investment policy in the two
approaches, at least under some reasonable assumptions.

1.1 Agent’s investment wealth

A complicated and possibly arguable question is the definition of personal
wealth used for making the portfolio choice decisions (further referred to as
investment wealth). Under the somewhat unrealistic assumptions of frictionless
market (namely unlimited borrowing at risk free rate) and non-stochastic labor
income, it is clear that the present value of labor income (the human wealth)
can be added to the definition of agent’s investment wealth. Even though
these assumptions are not fully realistic, it appears plausible that a significant
portion of, or some form of certainty equivalent of personal wealth can be
considered as part of agent’s investment wealth.2 Alternatively, the reader can
assume that the analysis is done from the point of view of an agent close to
retirement, where most of the human capital is already exhausted.

Note that in this setting, with properly discounted human capital being
considered to be a part of agent’s investment wealth, it may not be necessarily
the case that risk aversion increases with age of the agent. In fact, it could
easily happen that the agent’s risk aversion is constant or theoretically even
decreasing over life time.

I argued that a significant portion of human wealth (or labor income) should
be part of the definition of investment wealth. It appears plausible that for
purposes of calculation of the investment wealth one should subtract the present
value of some minimal required consumption. For example, paying a mortgage
is a necessary consumption, which is paid by labor income.

1A useful property of power utility functions is that the optimal policy is, under mild technical
conditions on the underlying stochastic process, myopic, i.e., it does not depend on the somewhat
arbitrary time horizon. For discrete time gambles it is sufficient to assume independence of the
games. No assumption is needed for logarithmic utility function.

2I abstract from the complicated option-type analysis of very young agents, with possibly large
human wealth, but with no cash-on-hand. While these agents would like to participate in risky
endeavors, they may be forced to temporarily stay out of the market due to borrowing constraints.
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The net result of the suggested approach is that only a certain portion of
human wealth is added to agent’s investment wealth. If the agent pays for
house in cash rather than through mortgage, and thus the currently available
cash-on-hand is significantly smaller, a larger portion of human wealth would
be added to the investment wealth. Consequently, the investment wealth is
approximately the same, regardless of agent’s housing policy.

In this setup, the assumption of CRRA utility function, namely infinite
marginal utility for zero wealth, appears rather plausible compared to other
models. It is important to stress that, in the setup of this paper, losing the
entire investment wealth means more than just bankruptcy. With some ex-
aggeration, one could say that should the agent lose her entire wealth, the
result would be life on social welfare. (Or more precisely, life with minimal
consumption but no more than that.) Thus, it is more than just a possibly
short or mediocre term inconvenience as is in the case of losing monthly or
yearly income. The risk aversion coefficient is related to the entire investment
wealth.

2 Plausible risk taking behavior of human

beings

For the following considerations it is important to keep in mind the setup of the
model: The portfolio choice is taken as a proportion of the current investment
wealth, where the investment wealth includes appropriately discounted, some
kind of certainty equivalent of, labor income. My arguments would not hold if
an agent calculates her investment as a proportion of currently available cash,
while she is reasonably certain of (and ignores for the purposes of investing)
the next years’ substantial income. In such a case, losing 95% of wealth defined
as currently available cash might be no more than temporary inconvenience.

Perhaps even more understandable could be for the reader to assume that
the analysis is done for a reasonably wealthy individual, whose remaining labor
income exhibits very low-risk or who is close to retirement. If the agent is close
to retirement, the investment wealth will be close to the actual wealth level
accumulated by the agent over life time.

A simple analysis of draw-down probabilities (see Appendix B) shows that
the logarithmic utility is extremely risky and utterly implausible In fact, the
draw-down probability (11) suggests that any risk aversion p ≤ 3 is rather
implausible – for example, the probability of psychologically hardly conceivable
draw-down of 50% or more is still non-negligible 3.125% for p = 3.

While the draw-down probability provides a lower bound on the realistic
risk aversion coefficients, it does not provide an upper bound. The psycholog-
ical inconvenience of experiencing losses may be caused by more factors than
just long-term wealth fluctuations. Even though the draw-down probability
may not invalidate the assumption of any risk aversion parameter higher than
5, in the remainder of this section I will argue that, for the purposes of taking
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investment risks, it is reasonable to assume p > 10 even for investors expe-
rienced in risk taking, and significantly larger p in order of 30 or more for
standard households.

In this context it is important to note that the considered risk aversion
coefficients are designed to match the realistic aversion to risk for relatively
small risks and low expected return, with not too skewed distribution of the
results. Taking this kind of risk corresponds to investing in financial markets.
Possibly different (and significantly lower) risk aversion may be observed if a
subject must choose between two bad scenarios – a choice between a certain
loss versus a chance of no loss with (most likely) a little higher loss. This
kind of examples demonstrates the well known Allais paradox [1] to existence
of a utility function. Similarly, different (and significantly lower) risk aversion
would be observed if a proposed gamble includes a loss of relatively large sum
vs. a win of arbitrarily high (infinite) sum. In [10] the author shows examples
of these types of gambles and concludes that people do not behave according
to Savage-type of utility functions.

A related point to stress is that we assume that the agent cannot choose
a random draw out of long-run distribution of wealth (for example, after 10
years), and ’close eyes’. The agent must repeatedly take small risks with small
expected returns, and experience corresponding losses.

2.1 Risk aversion of professional gamblers

Empirical evidence can be found by analyzing the behavior of professional gam-
blers. As a real world example consider the professional or semi-professional
blackjack players. In this casino game a knowledgeable player can reach posi-
tive expected value by the technique of card counting. As a recognized author
of simulation/analysis software, which is used and well-known in the indus-
try (see for example www.sba21.com), I had the opportunity to make a pool
among professional and semi-professional blackjack players, while participating
in a private Internet forum. While the data sample of the pool is not large, I
can make the following conclusion:
In general, long-term professional gamblers exhibit risk aversion p ≥ 40. Many
professional gamblers are in the area of p close to 100.3 It is very exceptional to
find players with risk aversion lower than p = 10. Individual risk aversion lower

3Most professional players use half Kelly to third Kelly betting strategy. Full Kelly, see [9], is
equivalent to logarithmic utility. By using half Kelly the player implies that his bet sizes are half
of what Kelly (logarithmic) utility would suggest, which practically exactly corresponds to CRRA
with p = 2. However, it is important to realize that the reference point is not player’s investment
wealth, rather some artificially defined blackjack bankroll. The bankroll of a professional player is
usually less than 5% of wealth, in which case half Kelly betting corresponds to p ≥ 40. Most players
define the bankroll and afterwards ”flat bet”, i.e., do not scale the bet sizes as a function of current
bankroll level. The appropriate Kelly fraction (usually half Kelly to third Kelly) is chosen so that
the probability of risk-of-ruin is small, which is convenient from psychological point of view. In
case of the unfortunate loss the player would replenish the bankroll, possibly with a little lower bet
sizes.
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than p = 10 could possibly be found amongst rather new gamblers with rela-
tively very little wealth who are forced to exhibit low risk aversion, and suffer
significant fluctuations in their wealth, due to practical constraints (minimal
gaming volume, fixed costs for travelling, etc.) However, even these individu-
als usually increase their aversion to risk over time, as they start accumulating
sufficient wealth.

It is plausible that a professional gambler, used to and having much experi-
ence in risk taking and with sufficient experience, will exhibit low risk aversion
compared to a standard household. Also, it appears plausible to assume that
a professional gambler is no more risk averse compared to an average investor.
The related issue of ambiguity of the size of stock drift, compared to precisely
known odds in a card game, is yet another reason why the equilibrium risk
aversion observed in financial markets should be greater than risk aversion of
professional gamblers.

2.2 Estimating personal risk aversion

The only known attempt to measure a real risk aversion was performed by
Binswanger [3] in rural India. The author offered a positive games to randomly
chosen farmers in India. The farmers could decide between accepting certain
monetary sum, or participating in a gamble with better expected return but
risk. This is a very good experiment measuring the real-world aversion to risk,
as the participants deal with real and significant monetary sums.

Binswanger obtains a reasonable size of relative risk aversion under the
assumption of a utility function with constant partial risk aversion in the
neighborhood of the payoff levels. Except for the smallest game (only 0.50
Rs certain payoff), we get very similar numbers when assuming constant rel-
ative risk aversion. Taking the suggested wealth level of 10,000 as given, the
experiment suggests that the relative risk aversion of individual farmers under
the assumption of power utility is in the range of 10-30.

The obtained relative risk aversion of 10 to 30 is somewhat lower (but not
too much lower) than I suggest in this paper. However, one should consider the
fact that the suggested wealth of 10,000 is probably lower than the investment
wealth as defined in this paper. More importantly, the performed experiment
is psychologically very different in comparison to taking investment risks. The
Allais paradox implies that the risk aversion towards taking investment risks
(and suffering unavoidable losses) will be significantly higher than risk aversion
towards only up-side games. Unfortunately, it appears practically impossible to
conduct an experiment in which the participants would have to pay significant
sums in case of bad luck. A possible way to try to estimate the realistic aversion
for win/loss propositions is to look at the behavior of professional gamblers, as
outlined in the previous section.

The formal definition of bankroll is especially useful for blackjack teams. Members of a blackjack
team form a joint bankroll, decide on Kelly fraction, and then share risk and returns of gaming.
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In order to gain some personal intuition into win/loss risk taking behavior
it may be useful to imagine a sequence of not too large gambles with positive
expected return, and consider a personal attitude towards such gambles. The
absence of ambiguity implies that, for rational investors, one could hardly
expect higher risk aversion in gaming examples compared to the stock market.

For simplicity I will assume discrete-time gambles. The analysis is com-
pletely analogical for continuous time investment and risk-taking behavior.

We define certainty equivalent CE of a random variable (a gamble) X as

CE(X) = U−1
(
EU(W + X)

)
, (2)

where U is the agent’s utility function, and W is agent’s investment wealth
just before the agents makes the decision whether to participate in gamble X
or not. The agent will participate in the gamble if and only if

CE(X) > 1.

This follows immediately by observing that CE(0) = 1.
After substitution we immediately obtain for CRRA utility functions

CEp(X) =

{(
E

[
(W + X)1−p

]) 1
1−p , p > 0, p 6= 1,

exp {E log(W + X) } , p = 1.

An agent with power utility with parameter p will participate in the gamble if
and only if E

[
(W + X)1−p

]
< 1 for p > 1, if and only if E

[
(W + X)1−p

]
> 1

for p < 1, and if and only if E log(W + X) > 0 for p = 1.
For simplicity assume that the agent is close to retirement and her accu-

mulated wealth equals W = $200, 000. This level of wealth is clearly very con-
servative. The average wealth of a person in developed countries will probably
be significantly higher. Assuming higher wealth would make all the arguments
even stronger by implying higher risk aversion of an average person.

Suppose that an agent with investment wealth of $200,000 faces a gamble
of losing $100 with probability 1

2 , and winning $120 with probability 1
2 . The

expected return of this gamble is $10, which is 10% of the risked amount. Will
the agent take part in this gamble?

Now consider the same gamble, this time with 10 times higher bet size —
losing $1,000 versus winning $1,200. Last, we can do the same consideration
for large amounts of $10,000 vs. $12,000.

The question is, what minimum risk aversion is necessary in order to refuse
the gamble. I argue that hardly any moderately wealthy individual would take
the large gamble of $10,000 vs. $12,000. Most people will probably not take the
gamble of $1,000 vs. $1,200 either, although some people used to risk taking
may be willing to go for the 10% expected return and risk $1,000. many people
may take the $100 vs. $120 gamble. Still, I would argue that it is not that
rare to find individuals who would refuse to risk $100 for making extra $10 in
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expected value.4

The corresponding risk aversion parameters for CRRA utility functions are
the following: A person with p ≤ 3.33 would take the large gamble. In other
words, a risk aversion of more than 3.33 is required in order for the agent to
refuse the large gamble. For the medium gamble, the borderline p equals 33.3.
If one were to assume that a plausible risk aversion parameter is less than 10,
one would have to conclude that moderately wealthy person would happily risk
$1000 for a 10% expected profit. (In fact, a a person with p = 10 would gamble
up to $3,300 for the 10% expected return, see Figure 2.2.) Last, in order to
refuse the gamble with $100 (which can realistically happen), the person’s risk
aversion parameter must be larger than 330!

Another interesting question is how large bet size would an individual op-
timally choose. Suppose that an agent can choose the size of the bet, losing
with probability 50% and winning 1.2 times the bet size with probability 50%
as before. It can be shown that the optimal bet size is approximately half of
the borderline bet size, for which certainty equivalent equals 1.5

Finding the optimal bet size is equivalent to maximizing certainty equivalent
(2). Is is easy to show that the optimal bet size bp for this particular game
equals

bp =
1.2

1
p − 1

1.2
1
p + 1.2

W.

(See Figure 2.2.)
For example, if the agent possesses power utility with p = 5, she would like

to bet $3,220 for expected profit of $322. The optimal gamble is still rather
implausible $1,659 for p = 10. For more plausible risk aversion parameters
of p = 20 and p = 30 the optimal bet sizes are $829 and $550 respectively.
Individuals which are highly averse to taking any risks and optimally would
like to bet just $83, exhibit risk aversion with p = 200.

I would argue that the proposed game has quite reasonable parameters, and
is hardly subject to much confusion or misinterpretation or psychological biases.
The probability of win or loss are the same (50%), and the corresponding edge
of 10% is not extremely large nor extremely small.

4Many individuals may be resistant against taking one single gamble, while they would be willing
to take a sequence of identical gambles at once. This kind of behavior is related to the non-existence
of a utility function. Note, however, that a yearly investment in a stock market roughly corresponds
to playing only 14 such games per year, after which the standard deviation of returns is 3 times
larger than the expected value.

5The optimal investment proportion is exactly half of the borderline bet size under the assump-
tion of continuous time and geometric Brownian motion for the risky investment (say stock).
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fig. 1: The optimal (blue) and maximum (red) bet size for $200,000 inv. wealth.

2.3 Investments in financial markets

2.3.1 Sophisticated investors investing in aggressive hedge funds

Various kinds of hedge funds tend to exploit market inefficiencies, usually in
some rather sophisticated ways. Different groups of hedge funds are from a
large part independent in their risk/return profiles. Examples include hedge
funds of type Managed Futures (exploiting trends and other technical analysis),
Macro Discretionary (analyzing macroeconomic trends), Long/Short Equities
(purchasing presumably undervalued stocks and hedging those positions by
shorting other stocks in similar market segments, so that the fund performance
is largely independent of overall stock index returns), hedge funds exploiting the
market price-of-risk (for example, funds speculating on relative appreciation
of currencies with higher interest rate, or funds exploiting the risk premium in
the forward curve.)

While investments in hedge funds require non-trivial information and pre-
sumably rather deep market experience, many wealthy individual investors
indeed seek these types of investments. A hedge fund with Sharpe ratio of 1.2
is probably not an exception. A realistic investment strategy of an aggressive
hedge fund corresponds to power utility with p = 3, no less than p = 2.6 Note

6By ”aggressive hedge fund” I mean a risky endeavors with expected yearly returns of several
tens of percent. This was indeed the standard type of a hedge fund, living out of fees based on
realized returns, until the unfortunate LTCM event. It seems that at present many so-called hedge
funds are rather low-risk investments with little excess returns, living of fixed yearly percentage
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that even an aggressive hedge fund would hardly intentionally use risk aversion
of p < 2. Such a policy would be rather irrational from the fund manager’s
point of view, since for p < 2 the probability of draw-down of 50% of funds eq-
uity would become quite large. (See Theorem 2, although the actual risks will
be even larger than the theorem suggests due to non-normality of log returns
and the existence of ’heavy tails’.) It is usually assumed in the industry that
a draw-down of more than 50% of equity will imply a liquidation of the fund.

Assuming a correctly evaluated (out-of-sample) Sharpe ratio of 1.2 of a
hedge fund with investment strategy corresponding to p = 3, it can be shown
that, under some technical assumptions, the expected yearly excess return of
such hedge fund approximately amounts to 40% p.a. A plausible individual’s
investment in this kind of speculation may be around 10% of personal invest-
ment wealth, corresponding to agent’s risk aversion parameter of p = 30.

Observe that even if an investor has 50% or more of his wealth invested in
risky assets (hedge funds), this does not necessarily imply a low risk aversion
coefficient. It is enough to find 5 different hedge funds with independent re-
turns, and invest 10% of investment wealth in each of them. (For simplicity
assume similar risk/return profile of each fund.) In this case, an investment of
50% in 5 hedge funds, each with investment strategy p = 3, still corresponds
to risk aversion of p = 30 of the investor.7

2.3.2 Investments in standard stock market

I would argue that the direct or indirect investment proportions into standard
”buy-and-hold” stock portfolio hardly exceeds 10% of investment wealth of
most individual agents. More sophisticated investors with higher proportion of
their wealth invested into risky assets are investors with individual investment
opportunities, for example investors investing in various kinds of more or less
independent hedge funds, as discussed in Section 2.3.1.

A standard household without access to rather sophisticated investment
opportunities may have for example 30% of investment wealth invested in var-
ious mutual funds. However, only a small portion of these investments gets
indirectly allocated into standard stock market, while most of the funds are
invested with little risk (and little excess return).

Suppose that a standard portfolio of stocks exhibits instantaneous excess

commissions. These kinds of endeavors tend to approach, in some sense, the style of standard
mutual funds, relatively low risk investments. I do not consider these for purposes of this analysis.

7The optimal investment policy in additional independent investment opportunity is not influ-
enced by other existing or expected investments. This is precisely true in continuous time, with
the possibility of continuous re-balancing of portfolio. If the re-balancing is not done continuously,
rather ”as needed” (as soon as the position is too far from optimum), any difference is negligible. If
re-balancing of portfolio can be done very rarely, say once a year, the optimal investments in each
endeavor will be a little lower. The difference will still be rather negligible if each individual invest-
ment is only a small portion of wealth (say 10% as in our example), and the number of investments
is not too large. The effect of re-balancing would become significant if the total risky investments
shall exceed 100% of agent’s investment wealth.
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return of 6% p.a.8 with instantaneous volatility of 18% p.a. An investment of
10% of wealth into this stock portfolio corresponds to risk aversion parameter
p = 18.52. As argued above, it is reasonable to conclude that few individuals
would allocate whole 10% of wealth into a stock index, just assuming 6% of
excess return with corresponding risk, and performing the simple buy-and-hold
strategy. Larger investment allocations are usually based on more optimistic
(and often unjustifiable) assumptions about the underlying risk/return profile,
overconfidence in personal information, and similar.9

3 Resolution of several economics puzzles

3.1 The equity premium puzzle

In the preceding sections I argued that an investor’s risk aversion is usually
more than p = 30. In particular, it appears that there is no equity premium
puzzle, as defined in [13]. The equity premium puzzle disappears as soon as
one assumes sufficiently high risk-aversion coefficients in the order of p = 30.

3.2 Low participation rate in the stock market

One of the puzzles of modern economics is the observed low participation of
households in the stock market. The standard argument is that with finite
relative risk aversion and positive excess return of a stock market, each house-
hold with positive investment wealth should hold some positive proportion of
wealth in stocks.

The explanation of this puzzle appears not to be too complicated by consid-
ering higher risk aversion coefficients and modest transaction costs for partici-
pation in the stock market. Through the gaming example I argued that many
individuals with little exposure to risk in general, and little understanding of
risky investments, may indeed exhibit very large aversion to risk, corresponding
for example to risk aversion parameter p = 200 or even larger.

I will analyze the certainty equivalent loss of no participation in the stock
market given a risk aversion parameter p. For technical simplicity assume the
geometric Brownian motion for the underlying stock price. The evolution of
agent’s wealth is expressed by (12). We can calculate the certainty equivalent:

CEp = U−1
p

(
E [Up(WT )]

)
=

(
E

[
W 1−p

T

]) 1
1−p = exp

{
1
2p

α2

σ2
T

}
.

In particular, for p = 100 (not that large and arguably not an exceptional
risk aversion), α = 6%, σ = 18%, and T = 1 we obtain CE = 1.000556. Thus,

8The argument also holds when assuming lower excess return.
9It can certainly happen that a misled individual with unrealistic assumptions about a particular

stock allocates an unjustifiably high proportion of his financial wealth into this stock. However,
such an event does not imply low risk aversion coefficient, since the investor erroneously assumes
enormous excess return based on his personal information.
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by ignoring the stock market the agent loses, in certainty equivalent, the yield
of 0.0556% of his investment wealth per year. This loss (equal to $111 per
year for agent with investment wealth of $200,000) is low indeed, and small
transaction costs such as setting up a brokerage account, or even just thinking
and learning about the stock market, imply that it is fully rational for highly
but probably not exceptionally risk averse agent to stay out of the market.

3.3 The low risk free rate is not too low

A general consumption based model (9) implies for the dynamics of risk free
rate rt (see for example [5, pp. 32])

rt dt = β dt− ct
u′′(ct)
u′(ct)

Et

[
dct

ct

]
− 1

2
c2
t

u′′′(ct)
u′(ct)

Et

[
d〈ct〉
c2
t

]
. (3)

Equation (3) gives the shadow price of individual consumer’s risk free in-
terest rate. If the market risk free rate was higher the consumer would adjust
her position by consuming less and investing more in a risk free asset. If the
market risk free rate was lower the consumer would (in a frictionless market)
borrow at risk free rate and consume more.

Assume now the power utility functions Up. For simplicity of exposition,
we further assume a geometric Brownian motion for the consumption process

dct = ct

(
α dt + σ dBt

)
.

Equation (3) for the risk free rate r then simplifies to

r = β + α · p− 1
2
σ2 · p(p + 1). (4)

Formulas (3) and (4) show that consumption growth is high when interest
rates are high. Since higher coefficient of risk aversion p makes interest rates
more sensitive to consumption growth, an argument is often made that higher
risk aversion implies higher interest rate, and that a high risk aversion coeffi-
cient cannot explain the low risk free rate observed in the economy10. People
would often ignore the precautionary savings effect expressed by 1

2σ2 · p(p + 1)
since the observed volatility of consumption is low (say in the order of 3%).
See Kandel and Stambaugh [8] for analysis of the precautionary savings effect.

The size of risk free rate is a quadratic function of p. For sufficiently high p,
the effect of precautionary savings starts to dominate the effect of consumption
growth. We will see that the interest rate puzzle is satisfactory explained
when considering sufficiently high (and plausible) risk aversion coefficients, and

10One of the weak points of this argument is the implicit assumption of frictionless market, where
people can borrow at risk free rate. However, it is true that the same conclusion holds even for high
bid/ask spread for borrowing and lending
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when confronting the model with real world consumption growth and volatility
data.11

In this context it is interesting to note the results in Weil [14]. The author
attempts to resolve the equity premium puzzle and risk free rate puzzle with
a class of more general Kreps-Porteus non-expected utility framework with
independent parametrization of attitudes toward risk and attitudes toward in-
tertemporal substitution. In his model, the intertemporal elasticity of substitu-
tion is not required to be the inverse of the constant coefficient of risk aversion,
as is the case for power utility functions. He concludes that, despite the ex-
tra degree of freedom, the model cannot explain the economics puzzles, and
argues that the existence of heterogeneity and of serious market imperfections
is necessary in order to attempt to explain the economy. The author claims
that ”Under the expected time-additive utility restriction ρ = γ, decreasing the
intertemporal elasticity of substitution [inverse of ρ] amounts to increasing the
coefficient of relative risk aversion [γ], and results in the simultaneous rise of
the risk premium and the risk-free rate.”

I claim that this statement is not correct, as shown by Equation 4. (The
results are practically the same regardless of continuous time or discrete time
modelling.) The interest rate is an increasing function of risk aversion for
p ≤ α/σ2 − 1

2 , while it is a decreasing function of risk aversion for greater p,
as can be easily seen by taking the derivative of (4). In Table 1 we can see
for different value of expected growth rate α and volatility σ, the threshold
size of p, for which the risk free is already low (equals β). The size of p that
maximizes the risk free rate is exactly one half of the values in the table.

[14] further claims: ”There is no way to fit both the level of the risk-free
rate and the risk premium when the VNM [Von Neumann-Morgenstern utility]
restrictions is imposed.” I show next that this conclusion is not necessarily
correct either, since it is enough to consider high but realistic risk aversion of
agents.12

From Figure 1 we can see that no ”low risk free rate puzzle” is present for
expected consumption growth of 3% and volatility of consumption of 2%, with
high risk aversion coefficient close to p = 150. For example, if the representative
agent’s risk aversion is p = 149, we get r = β. For p = 150 we already have
r = β − 3%. For higher standard deviation of consumption of 2.5%, Table 1
shows that the “borderline” risk aversion is 95, for which r = β. In [13] the
authors use the historical average consumption growth of 1.83% with standard

11The precautionary savings effect is not an artifact of power utility functions. The effect with
the same order exists for, for example, exponential utility with constant absolute risk aversion.
Intuition suggests that any reasonable utility function should exhibit the precautionary savings
behavior (negative third derivative of utility function), as with more volatile consumption people
would tend to save more since they are worried about low consumption states. With extra motivation
for savings the shadow interest rate must decrease.

12In [14] the author argues that a realistic coefficient of relative risk aversion must be in the range
of 1 to 5, probably close to 1. A simple argument of draw-down probabilities from Theorem 2 shows
that ”risk aversion close to 1” is an utterly implausible assumption.
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deviation of 3.57%. In this case, the “borderline” risk aversion is just p = 27.7.
However, modern data indicate that the actual volatility of consumption is
lower.
α\σ 1.50 1.75 2.00 2.25 2.50 2.75 3.00 3.25 3.50 3.75 4.00
1.50 132 97 74 58 47 39 32 27 23 20 18
1.75 155 113 87 68 55 45 38 32 28 24 21
2.00 177 130 99 78 63 52 43 37 32 27 24
2.25 199 146 112 88 71 59 49 42 36 31 27
2.50 221 162 124 98 79 65 55 46 40 35 30
2.75 243 179 137 108 87 72 60 51 44 38 33
3.00 266 195 149 118 95 78 66 56 48 42 37
3.25 288 211 162 127 103 85 71 61 52 45 40
3.50 310 228 174 137 111 92 77 65 56 49 43
3.75 332 244 187 147 119 98 82 70 60 52 46
4.00 355 260 199 157 127 105 88 75 64 56 49

Table 1: Threshold p for which r equals to β, for various % values of α and σ.

To understand why the high risk aversion coefficient for explaining the
consumption data (and consequently the size of risk free rate) is plausible, it
is important to note that the risk aversion related to consumption growth and
volatility of consumption is influenced by each consumer in the economy. Thus,
the risk aversion should be significantly larger than the risk aversion of investors
in financial markets, who are a special selected group. It is plausible that, for
the purposes of risk free rate analysis, the risk aversion of a representative
agent may easily exceed p = 150. (The gaming example shows that the median
risk aversion could well be above p = 300.)

An argument could be made that with high coefficients of risk aversion,
the size of interest rate, as a quadratic function of p, is very sensitive to small
changes in p. Thus, other things being equal, a small change in consumers’
attitude towards risk causes a large change in interest rate. For example, with
α = 3%, σ = 2%, β = 5%, the size of shadow risk free rate for p = 140 is
30.2%, while it is -30.2% for p = 160. Similarly small changes in volatility
would, other things being equal, cause enormous changes in the risk free rate,
which does not move that much in reality.

The problem of this argument is the assumption of other things being
equal. The point is that small changes in attitude towards risk should, at
the first place, cause small changes in the volatility of consumption, possibly
also changes in the size of consumption growth. Similarly, volatility of con-
sumption may be a result of equilibrium, where higher risk aversion implies
lower volatility.
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4 Conclusion

In this paper I have questioned the standard assumption in economics concern-
ing individual agent’s risk aversion coefficient. I first argue that it is plausible
to assume that investment behavior is based on agent’s properly defined per-
sonal investment wealth, rather than on rather complicated analysis of agent’s
lifetime consumption, although both approaches yield similar investment pol-
icy. In this setup I provide empirical evidence that the coefficient of relative
risk aversion for professional gamblers, i.e. group of individuals with presum-
ably one of the lowest aversion to risk amongst human population, is usually
larger than p = 40. By providing a gaming example I attempt to show that a
realistic risk aversion parameter is larger than p = 30, hardly p < 20 for any
standard household. Furthermore, it is probably no exception to find highly
risk averse individuals with corresponding risk aversion coefficient of p = 200
and more.

Assuming high risk aversion of individual households resolves several major
puzzles in economic theory. Namely, the equity premium puzzle is resolved.
Very small transaction costs imply the observed low participation rate in the
stock market. For a highly risk averse agent, the certainty equivalent loss of no
participation in the stock market is less than 0.056% per year. Furthermore, the
low risk free rate is not necessarily a problem, even under frictionless market
assumption.

An interesting question remains why economists in general believe that a
plausible risk aversion parameter should be low, starting historically at utterly
implausible values between 1 and 2, and nowadays still arguing that plausible
risk aversion implies p ≤ 10. Only very few papers argue that a risk aversion
coefficient higher than p = 30 is realistic, see for example [4], [7]. This is
despite the fact that a sufficiently high coefficient of relative risk aversion helps
to better explain the observed economic data.

I conjecture that one of the reasons for the usual assumption of arguably
too low risk aversion of individual investors may be caused by a large sensitivity
of this type of analysis to standard model assumptions. Namely, the standard
Lucas [12] model assumes a complete perishability of the dividend process.
Consequently, the aggregate dividend Dt must equal the aggregate consump-
tion Ct in each period, while storage and ”borrowing” is precluded. This may
be a crucial assumption since it implies that a loss in an ”aggregate gamble”,
say sudden drop in the stock market, forces agents to drop consumption sig-
nificantly. In reality, smoothing consumption is at least partially feasible.

For the purposes of risk aversion analysis a similar consideration as above
should be done for an individual agent. If an agent loses in a gamble it does not
imply that she needs to drop consumption significantly in the current period.
Making this implausible assumption is rather critical as it could easily imply
very low risk aversion coefficients of an average person, just by showing that
individuals are willing to participate in small gambles. In reality, a loss in a
not too large gamble will have rather negligible effect on current consumption
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since the loss will be spread over lifetime consumption. In Section 2.2 I argue
that, for a modestly wealthy individual, the willingness to accept $1,000 gamble
with expected return 10% does not imply low risk aversion, the implication is
just p ≤ 33.3. On the other hand, refusing such a gamble implies risk aversion
p ≥ 33.3. Willingness to participate in a similar gamble with bet size $100
implies nothing more than p ≤ 330.

A Utility of terminal wealth versus optimal

consumption

Following is a well-known result, which I would like to stress for purposes of
this model: For CRRA utility functions and under reasonable assumptions, the
agent’s optimal (instantaneous) investment in risky asset is the same when max-
imizing the utility of terminal wealth and the utility of lifetime consumption
stream.13 This shows that the results and arguments of this paper concerning
realistic risk aversion are robust and do not depend on particular technical
setup of the model, namely maximization of utility of wealth.

In both models below the agent starts with initial wealth W0. In the first
case, the agent maximizes

E [Up(WT )] (5)

for some arbitrary T > 0. In the second case the agent maximizes utility of
lifetime consumption

E
∫ ∞

0
e−βt Up(ct) dt. (6)

Trading and consumption are subject to standard admissibility constraints.

Theorem 1. Assume that the stock price follows a geometric Brownian motion
with excess return α− r, where r is the risk free rate:

dSt = αSt dt + σSt dBt.

Then, when maximizing utility of terminal wealth (5) or utility of lifetime
consumption (6), the agent’s optimal investment policy is instantaneously the
same. Namely, the agent invests the proportion

πt =
1
p

α− r

σ2
, for all t ∈ [0, T ], (7)

of his wealth into the risky asset.

13Similar result was probably first shown by Hakansson in [6] in discrete time setting.
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A.1 Maximization of expected utility of terminal
wealth

The agent’s wealth evolves as

dWt = (α− r)πtWt dt + rWt dt + σπtWt dBt,

where πt is the agent’s proportion of wealth invested into risky asset. πt satisfies
the admissibility constraints: It is a stochastic process predictable with respect
to σ(Bt, t ≥ 0), and it is appropriately restricted to avoid doubling strategies
and similar. After solving the SDE above we can write

WT = W0 exp
{ ∫ T

0

(
(α− r)πt + r − 1

2
σ2π2

t

)
dt + σ

∫ T

0
πt dBt

}
.

We obtain

E

[
W 1−p

T − 1
1− p

]
=

W 1−p
0 exp

{
(1− p)

∫ T
0

(
(α− r)πt + r − 1

2pσ2π2
t

)
dt

}
− 1

1− p
.

(8)
(We can take the expectation since πt satisfies the admissability constraints.)

Maximizing (8) over πt yields Formula (7).

A.2 Maximization of value function in a consump-
tion based model

The agent maximizes the value function

v(W0) = sup
C,Π∈A(W0)

E
∫ ∞

0
e−βt Up(ct) dt (9)

for admissible controls C = {ct, t ≥ 0} (consumption process) and Π = {πt, t ≥
0} (the process of proportion of wealth invested in stock).

The HJB equation corresponding to the value function is

sup
ct,πt

{
Up(ct)− ctv

′(x)− βv(x) +
(
(α− r)πtx + rx

)
v′(x) +

1
2
σ2π2

t x
2v′′(x)

}
= 0.

The optimal controls become

ct = I
(
v′(x)

)
=

(
v′(x)

)− 1
p , πt = −α− r

σ2
· v′(x)
x v′′(x)

.

The solution to the HJB equation is given by

v(x) =
A−p(p) x1−p − β−1

1− p
, where A(p) =

β − r(1− p)
p

− 1
2

(α− r)2

σ2
· 1− p

p2
.

We immediately obtain

ct = A(p) · xt, πt =
1
p

α− r

σ2
, t ∈ [0,∞). (10)

Thus, the proportion π invested in risky asset is also given by (7).
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B Calculating draw-down probability

Theorem 2 (Draw-down probability). Let the stock price follow the ge-
ometric Brownian motion with arbitrary drift α 6= r, and arbitrary positive
variance. Let the investor posses the power utility function Up for some p ≥ 1

2 .
Let Pp(x) denote the probability that the investor’s discounted wealth will ever
fall below fraction x of the initial wealth, 0 ≤ x ≤ 1. (We refer to this situation
as relative draw-down of size 1− x.) Then

Pp(x) = x2p−1 (11)

Corollary. For logarithmic utility agent (p = 1), the probability of experiencing
a draw-down more than 1−x percent of the current investment wealth is P1(1−
x) = 1 − x. More specifically, the agent will be, at some point in the future,
losing more than 50% of her entire initial wealth with probability P1(0.5) =
50%. The probability of ever being down more than 90% of the initial wealth is
p1(0.1) = 10%.

In retrospection, by considering just the draw-down probabilities it is clear
that no real-world individual could exhibit as small risk aversion as implied by
logarithmic utility. The fluctuation of wealth would be enormous, as the agent
would repeatedly experience draw-downs in her entire wealth in the order of
90%, 95%, or even 99%.

Remark 1. Formula (11) is valid for p ≥ 1
2 . For p = 1

2 we can write
Wt = exp { 2α/σ Bt }, so lim supt→∞Wt = +∞, lim inft→∞Wt = 0. (The
agent’s wealth endlessly fluctuates between zero and infinity.) For 0 < p < 1

2

we get Wt
t→∞−−−→ 0 a.s.

Proof Theorem 2 follows in the remainder of this appendix.

Lemma 1. Let α > 0, Mt = α t + Bt, where (Bt, t ≥ 0) is the standard one-
dimensional Brownian motion (and so Mt is a Brownian motion with drift α).
Then − inft>0 Mt is exponentially distributed with parameter 2α, i.e.,

P
[

inf
t>0

Mt ≤ x

]
= exp { 2αx } , x ≤ 0.

Proof. In [11, p. 197] the authors derive the probability P (α, d) that a Brow-
nian motion with drift α > 0 reaches a level b < 0 in finite time: P (α, d) =
exp { 2αb }. The proof of Lemma 1 immediately follows since

P (α, d) = P
[

inf
t>0

Mt ≤ x

]
.
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Proof of Theorem 2. By assumption, the stock price evolves as

dSt = αSt dt + σSt dBt, α 6= r, t ≥ 0, ,

where Bt is the Brownian motion at time t. The discounted investor’s wealth
e−rt Wt evolves as

d e−rt Wt = πt
e−rt Wt

St
dSt,

where πt 6= 0 is the proportion of agent’s wealth Wt invested in stock at time
t. The stochastic process πt satisfies the admissibility constraints.

Without loss of generality assume that W0 ≡ 1 is the investor’s initial
wealth. The optimal proportion πt is constant and is given by (7). Solving the
preceding SDE yields, for any p > 0,

e−rt Wt = exp
{ (

πpα− 1
2
π2

pσ
2
)

t + πpσ Bt

}
= exp

{
1
p

(
1− 1

2p

)α2

σ2
t +

1
p

α

σ
Bt

}
.

(12)
Denote

Mt , p
σ

α
log

(
e−rt Wt

)
= Bt +

(
1− 1

2p

)α

σ
t.

Then Mt is a Brownian motion with strictly positive drift. Using the result of
Lemma 1 it follows

P
[

inf
t≥0

Mt ≤ y

]
= exp

{
2

(
1− 1

2p

) α

σ
· y

}
, y ≤ 0. (13)

Since the function transforming Wt to Mt is strictly increasing, it follows
that

P
[

inf
t≥0

{
e−rt Wt

} ≤ x

]
= P

[
inf
t≥0

Mt ≤ p
σ

α
log x

]
, x ∈ (0, 1]

which yields (11), after substituting y = p · σ/α · log x into (13).
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