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ABSTRACT 

 

 Finance professionals, who are regularly exposed to notions of volatility, seem to confuse 

mean absolute deviation with standard deviation, causing an underestimation of 25% with 

theoretical Gaussian variables. In some “fat tailed” markets the underestimation can be up to 

90%. The mental substitution of the two measures is consequential for decision making and 

the perception of market variability. 

 



INTRODUCTION 

There is no particular normative reason to express or measure volatility in one of several 

possible ways, provided one remains consistent. However, once it is expressed, substituting 

one measure for another will lead to a consequential mistake. Suppose one measures 

“volatility” in root-mean-square deviations from the mean, as used by conventional statistics. 

It would be an error to substitute the definition and consider it mean deviation in the activity 

of decision-making, opinion formation, or verbal descriptions of the property of the process. 

Yet, to preview what we find in a survey of over 87 people trained to know the difference, 

people make this mistake. 

This brief note provides experimental evidence that participants, with varied 

backgrounds in financial markets (whether traders, quantitative analysts, graduate students in 

financial engineering, or portfolio managers) make the mistake of interpreting a physical 

description (in mean absolute returns per day) as a calculated measure (standard deviation). 

We illustrate the confusion experimentally and conclude by discussing implications for 

financial decision making and portfolio risk management.  

EXPERIMENTS 

To investigate common understanding of mean absolute deviation, we asked professionals 

and students of finance the following question: 

A stock (or a fund) has an average return of 0%. It moves on average 1% a day in 
absolute value; the average up move is 1% and the average down move is 1%. It does 
not mean that all up moves are 1%--some are .6%, others 1.45%, etc. Assume that we 
live in the Gaussian world in which the returns (or daily percentage moves) can be 
safely modeled using a Normal Distribution. Assume that a year has 256 business days. 
The following questions concern the standard deviation of returns (i.e., of the 
percentage moves), the “sigma” that is used for volatility in financial applications. 
What is the daily sigma? What is the yearly sigma? 

 



Our suspicion that there would be considerable confusion was fed by years of hearing options 

traders make statements of the kind, “an instrument that has a daily standard deviation of 1% 

should move 1% a day on average”. Not so. In the Gaussian world, where x is a random 

variable, assuming a mean of 0, in expectation, the ratio of standard deviation to mean 

deviation should satisfy the following equality  | x |∑
x2∑ =

2
π

. Since mean absolute deviation 

is about .8 times the standard deviation, in our problem the daily sigma should be 1.25% and 

the yearly sigma should be 20% (which is the daily sigma annualized by multiplying by 16, 

the square root of the number of business days).  

To test the hypothesis that mean absolute deviation is being confused with standard 

deviation, we ran three studies. We first posed this question to 97 portfolio managers, 

assistant portfolio managers, and analysts employed by investment management companies 

who were taking part in a professional seminar. The second group of participants comprised 

13 Ivy League graduate students preparing for a career in financial engineering. The third 

group consisted of 16 investment professionals working for a major bank. The question was 

presented in writing and explained verbally to make sure definitions were clear. All 

respondents in the latter two groups handed in responses, but only 58 did so in the first group. 

One might expect this sort of self-selection to improve accuracy. 



 

Figure 1: Estimates of standard deviation for a stock with a mean absolute deviation of .01. 

The top plot comprises the responses of investment professionals, the middle plot those of 

graduate students in financial engineering (excluding one outlier at .1), and the bottom plot 

those of professional portfolio managers and analysts. The correct answer under the stated 

Gaussian assumptions (.0125) is shaded in gray.  

 

RESULTS 

Figure 1 shows frequency histograms of responses to the daily sigma question, converted to 

decimal notation. Only 3 of the 87 respondents arrived at the correct answer of .0125. The 

modal answer of .01 made up more than half of the responses received. Nine people handed 



in responses of blanks or question marks. Far from symmetrical, the ratio of underestimations 

of volatility to overestimations was 65 to 10.  

Performance for yearly sigmas was even worse, with no one submitting a correct 

response. Here, the modal answer was .16, which appears to be the correct annualization of 

the incorrect daily volatility. Eleven people answered with blanks or question marks. The 

ratio of underestimations to overestimations was 76 to 9. 

CONCLUSION 

The error is more consequential than it seems. The dominant response of 1% shown in Figure 

1 suggests that even financially- and mathematically-savvy decision makers treat mean 

absolute deviation and standard deviation as the same thing. Though a Gaussian random 

variable that has a daily percentage move in absolute terms of 1% has a standard deviation of 

about 1.25%, it can reach up to 1.9% in empirical distributions (emerging market currencies 

and bonds). Mean absolute deviation is by Jensen's inequality lower (or equal) than standard 

deviation1. In a world of fat tails, the bias increases dramatically. Consider the following 

vector of dimension 106, composed of 999,999 elements of 0 and a single one of 106. V= 

{0,0,0,0,...., 106}. There the standard deviation would be 1,000 times the average move. For a 

Student’s t with 3 degrees of freedom (often used to model returns in financial markets in 

Value-at-Risk simulations, see Bouchaud and Potters, 2003, and Glasserman, Heidelberger 

and Shahabuddin, 2002), standard deviation is 1.57 times mean deviation; | x |∑
x2∑ =

2
π

. 

Debriefings with respondents revealed that they rarely had an immediate understanding 

of the error when it was pointed out to them. However when asked to present the equation for 

“standard deviation” they expressed it flawlessly as the root mean square of deviations from 

                                                   

1 More technically, the norm Lp
 = 

1/
1

p
px

n
   ∑ increases with p. 



the mean. Whatever reason there was for their error, it did not result from ignorance of the 

concept. Indeed, most participants would have failed a basic statistics course had they not 

been aware of the mathematical definition. And yet, when given data that is clearly not a 

standard deviation, they treat it as one. Kahneman and Frederick (2002) discuss a similar 

problem of statisticians making basic statistical mistakes outside the classroom, “the 

mathematical psychologists who participated in the survey not only should have known 

better–they did know better...most of them would have computed the correct answers on the 

back of an envelope”. 

Why this is relevant? This sloppiness in translation between mathematics and 

applications can have severe effects, especially when considering that practitioners speak 

with co-workers, customers and the media about “volatility” on a regular basis. There are 

reported instances in the financial media to that effect, in which the journalist, while 

explaining the volatility index VIX to the general public, makes the same mistake.  

Either we have the wrong intuition about the right volatility, or the right intuition and 

the measure of volatility is the wrong one. Two roads lead out of this unfortunate situation. 

Either we can continue defining volatility as we do, and conduct further research to see if the 

error can be made to disappear with training. Or we can do as the Enlightenment probabilists 

did; when the intuitions of hommes éclairés did not align with the valuations of the expected 

value formula, it was the mathematicians who dreamed up something that more intuitive, 

namely, expected utility (Daston, 1988). Perhaps, one day, Finance will adopt a more natural 

metric than standard deviation. Until then, operators should rely on definitions, not intuitions, 

where volatility is concerned. 
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