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1 Are You Ready for R?

1.1 What is R?

R is an implementation of the object-oriented mathematical programming language S. It is developed
by statisticians around the world and is free software, covered by the GNU General Public License.
Syntactically and functionally it is very similar (if not identical) to S+, the popular statistics package.

1.2 How is R Better Than Other Packages?

R is much more more flexible than most software used by econometricians because it is a modern
mathematical programming language, not just a program that does regressions and tests. This
means our analysis need not be restricted to the functions included in the default package. There is
an extensive and constantly expanding collection of libraries online for use in many disciplines. As
researchers develop new algorithms and processes, the corresponding libraries get posted on the R
website. In this sense R is always at the forefront of statistical knowledge. Because of the ease and
flexibility of programming in R it is easy to extend.

The S language is the de facto standard for statistical science. Reading the statistical literature,
we find that examples and even pseudo-code are written in R-compatible syntax. Since most users
have a statistical background, the jargon used by R experts sometimes differs from what an econo-
metrician (especially a beginning econometrician) may expect. A primary purpose of this document
is to eliminate this language barrier and allow the econometrician to tap into the work of these
innovative statisticians.

Code written for R can be run on many computational platforms with or without a graphical
user interface, and R comes standard with some of the most flexible and powerful graphics routines
available anywhere.

And of course, R is completely free for any use.

1.3 Obtaining R

The R installation program can be downloaded free of charge from http://www.r-project.org.
Because R is a programming language and not just an econometrics program, most of the functions
we will be interested in are available through libraries (sometimes called packages) obtained from
the R website. To obtain a library that does not come with the standard installation follow the
CRAN link on the above website. Under contrib you will find is a list of compressed libraries ready
for download. Click on the one you need and save it somewhere you can find it later. If you are
using a gui, start R and click install package from local directory under the package menu. Then
select the file that you downloaded. Now the package will be available for use in the future. If you
are using R under linux, install new libraries by issuing the following command at the command
prompt: “R CMD INSTALL packagename”

Alternately you can download and install packages at once from inside R by issuing a command
like

> install.packages(c("car","systemfit"),repo="http://cran.stat.ucla.edu",dep=TRUE)

which installs the car and systemfit libraries. The repo parameter is usually auto-configured, so
there is normally no need to specify it. The dependencies or dep parameter indicates that R
should download packages that these depend on as well, and is recommended. Note: you must have
administrator (or root) privileges to your computer to install the program and packages.
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Contributed Packages Mentioned in this Paper and Why
(* indicates package is included by default)

car Regression tests and robust standard errors
sem Two stage least squares

MASS Robust regression, ordered logit/probit
lmtest Breusch-Pagan and Breusch-Godfrey tests

sandwich (and zoo) Heteroskedasticity and autocorrelation robust covariance
tseries Garch, ARIMA, and other time series functions
MNP Multinomial probit via MCMC
Hmisc LATEX export
xtable Alternative LATEX export

systemfit SUR and 2SLS on systems of equations
fracdiff Fractionally integrated ARIMA models
survival Tobit and censored regression
nlme Nonlinear fixed and random effects models
nnet Multinomial logit/probit
ts* Time series manipulation functions
nls* Nonlinear least squares

foreign* Loading and saving data from other programs
zoo required in order to have the sandwich package

1.4 Using R Interactively and Writing Scripts

We can interact directly with R through its command prompt. Under windows the prompt and
what we type are in blue and the output it returns is red. Pressing the up arrow will generally cycle
through commands from the history. Notice that R is case sensitive and that every function call has
parentheses at the end. Instead of issuing commands directly we can load script files that we have
previously written, which may include new function definitions.

Script files generally have the extension “.R”. These files contain commands as you would enter
them at the prompt, and they are recommended for any project of more than a few lines. In order
to load a script file named “mcmc.R” we would use the command

> source("mcmc.R")

One way to run R is to have a script file open in an external text editor and run periodically from
the R window. Commands executed from a script file may not print as much output to the screen as
they do when run interactively. If we want interactive-level verbosity, we can use the echo argument

> source("mcmc.R",echo=TRUE)

If no path is specified to the script file, R assumes that the file is located in the current working
directory. The working directory can be viewed or changed via R commands

> getwd()
[1] "/home/gvfarns/r"
> setwd("/home/gvfarns")
> getwd()
[1] "/home/gvfarns"

or under windows by using the menu item change working directory. Also note that under windows
the slashes should be replaced with double backslashes.
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> getwd()
[1] "C:\\Program Files\\R\\rw1051\\bin"
> setwd("C:\\Program Files\\R\\scripts")
> getwd()
[1] "C:\\Program Files\\R\\scripts"

We can also run R in batch (noninteractive) mode under linux by issuing the command:“R CMD
BATCH scriptname.R” The output will be saved in a file named scriptname.Rout. Batch mode is
also available under windows using Rcmd.exe instead of Rgui.exe.

Since every command we will use is a function that is stored in one of the libraries, we will often
have to load libraries before working. Many of the common functions are in the library base, which
is loaded by default. For access to any other function, however, we have to load the appropriate
library.

> library(foreign)

will load the library that contains the functions for reading and writing data that is formatted for
other programs, such as SAS and Stata. Alternately (under windows), we can pull down the package
menu and select library

1.5 Getting Help

There are several methods of obtaining help in R

> ?qt
> help(qt)
> help.start()
> help.search("covariance")

Preceding the command with a question mark or giving it as an argument to help() gives a descrip-
tion of its usage and functionality. The help.start() function brings up a menu of help options and
help.search() searches the help files for the word or phrase given as an argument. Many times,
though, the best help available can be found by a search online. Remember as you search that the
syntax and functionality of R is almost identical to that of the proprietary statistical package S+.

2 Working with Data

2.1 Basic Data Manipulation

R allows you to create many types of data storage objects, such as numbers, vectors, matrices,
strings, and dataframes. The command ls() gives a list of all data objects currently available. The
command rm() removes the data object given it as an argument. Typing the name of the object
typically echos its data to the screen. In fact, a function is just another data member in R. We can
see the function’s code by typing its name without parenthesis.

The command for creating and/or assigning a value to a data object is the less-than sign followed
by the minus sign.

> g <- 7.5

creates a numeric object called g, which contains the value 7.5.

> f <- c(7.5,6,5)
> F <- t(f)
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uses the c() (concatenate) command to create a COLUMN vector with values 7.5, 6, and 5. c()
is a generic function that can be used on multiple types of data. The t() command transposes f
to make a row vector. The two data objects f and F are separate because of the case sensitivity of
R. The command cbind() concatenates the objects given it side by side: into an array if they are
vectors, and into a single dataframe if they are columns of named data.

> dat <- cbind(c(7.5,6,5),c(1,2,3))

Similarly, rbind() concatenates objects by rows (one above the other).
Elements in vectors and similar data types are indexed using square brackets. R uses one-based

indexing.

> f
[1] 7.5 6.0 5.0
> f[2]
[1] 6

Notice that for multidimensional data types, such as matrices and dataframes, leaving an index
blank refers to the whole column or row corresponding to that index. Thus if foo is a 4x5 array of
numbers,

> foo

will print the whole array to the screen,

> foo[1,]

will print the first row,

> foo[,3]

will print the third column, etc. We can get summary statistics on the data in goo using the
summary() and we can determine its dimensionality using the NROW(), and NCOL() commands.
More generally, we can use the dim() command to know the dimensions of an R object.

If we wish to extract or print only certain rows or columns, we can use the concatenation operator.

> oddfoo <- foo[c(1,3,5),]

makes a 4x3 array out of columns 1,3, and 5 of foo and saves it in oddfoo. By prepending the
subtraction operator, we can remove certain rows

> nooddfoo <- foo[-c(1,3,5),]

makes a 4x2 array out of columns 2 and 4 of foo (i.e., it removes columns 1,3, and 5). We can also
use comparison operators to extract certain columns or rows.

> smallfoo <- foo[ foo[,1]<1 ,]

compares each entry in the first column of foo to one and inserts the row corresponding to each
match into smallfoo. We can also reorder data. If wealth is a dataframe with columns year,gdp,
and gnp, we could sort the data by year using order() or extract a period of years using the colon
operator

> wealth <- wealth[ order(wealth$year),]
> firstten <- wealth[1:10,]
> eighty <- wealth[wealth$year==1980,]
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This sorts by year and puts the first ten years of data in firstten. All rows from year 1980 are stored
in eighty (notice the double equals sign).

Using double instead of single brackets for indexing changes the behavior slightly. Basically it
doesn’t allow referencing multiple objects using a vector of indices, as the single bracket case does.
For example,

> w[[1:10]]

does not return a vector of the first ten elements of w, as it would in the single bracket case. Also,
it strips off attributes and types. If the variable is a list, indexing it with single brackets yields a list
containing the data, double brackets return the (vector of) data itself.

Occasionally we have data in the incorrect form (i.e., as a dataframe when we would prefer to
have a matrix). In this case we can use the as. functionality. If all the values in goo are numeric,
we could put them into a matrix named mgoo with the command

> mgoo <- as.matrix(goo)

Other data manipulation operations can be found in the standard R manual and online. There
are a lot of them.

2.2 Important Data Types

2.2.1 Arrays, Matrices

In R, homogeneous (all elements are of the same type) multivariate data may be stored as an array
or a matrix. A matrix is a two-dimensional object, whereas an array may be of many dimensions.
These data types do not have special attributes giving names to columns or rows and can hold only
numeric data. Note that one cannot make a matrix, array, or vector of two different types of data
(numeric and character, for example). Either they will be coerced into the same type or an error
will occur.

2.2.2 Dataframes

Most econometric data will be in the form of a dataframe. A dataframe is a collection of columns
containing data, which need not all be of the same type, but each column must have the same
number of elements. Each column has a title by which the whole column may be addressed. If goo
is a 3x4 data frame with titles age, gender,education, and salary, then we can print the salary
column with the command

> goo$salary

or view the names of the columns in goo

> names(goo)

Most mathematical operations affect multidimensional data elementwise. From the previous
example,

> salarysq <- (goo$salary)^2

creates a dataframe with one column entitled salary with entries equal to the square of the corre-
sponding entries in goo$salary. Most mathematical operations behave as one would expect.

Output from actions can also be saved in the original variable, for example,

> salarysq <- sqrt(salarysq)
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replaces each of the entries in salarysq with its square root.

> goo$lnsalary <- log(salarysq)

adds a column named lnsalary to goo, containing the log of the salary.

2.2.3 Lists

A list is more general than a dataframe. It is essentially a bunch of data objects bound together,
optionally with a name given to each. These data objects may be scalars, strings, dataframes, or
any other type. Functions that return many elements of data (like summary()) generally bind the
returned data together as a list, since functions return only one data object. As with dataframes,
we can see what objects are in a list (by name if they have them) using the names() command.

2.3 Opening a Data File

R is able to read data from many formats. The most common format is a text file with data separated
into columns and with a header above each column describing the data. If blah.dat is a text file of
this type and is located on the windows desktop we could read it using the command

> mydata <- read.table("C:/WINDOWS/Desktop/blah.dat",header=TRUE)

Now mydata is a dataframe with named columns, ready for analysis. Note that R assumes that
there are no labels on the columns, and gives them default values, if you omit the header=TRUE
argument. Now let’s suppose that instead of blah.dat we have blah.dta, a stata file.

> library(foreign)
> mydata <- read.dta("C:/WINDOWS/Desktop/blah.dta")

Stata files automatically have headers.
Another data format we may read is .csv comma-delimited files (such as those exported by

spreadsheets). These files are very similar to those mentioned above, but use punctuation to delimit
columns and rows. instead of read.table(), we use read.csv().

3 Cross Sectional Regression

3.1 Ordinary Least Squares

Let’s consider the simplest case. Suppose we have a data frame called byu containing columns for
age, salary, and exper. We want to regress various forms of age and exper on salary. A simple
linear regression might be

> lm(byu$salary ~ byu$age + byu$exper)

or alternately:

> lm(salary ~ age + exper,data=byu)

as a third alternative, we could “attach” the dataframe, which makes its columns available as regular
variables

> attach(byu)
> lm(salary ~ age + exper)
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Notice the syntax of the model argument (using the tilde). The above command would correspond
to the linear model

salary = β0 + β1age+ β2exper + ε (1)

Using lm() results in an abbreviated summary being sent to the screen, giving only the β
coefficient estimates. For more exhaustive analysis, we can save the results in as a data member or
“fitted model”

> result <- lm(salary ~ age + exper + age*exper,data=byu)
> summary(result)
> myresid <- result$resid
> vcov(result)

The summary() command, run on raw data, such as byu$age, gives statistics, such as the mean
and median (these are also available through their own functions, mean and median). When run on
an ols object, summary gives important statistics about the regression, such as p-values and the R2.

The residuals and several other pieces of data can also be extracted from result, for use in other
computations. The variance-covariance matrix (of the beta coefficients) is accessible through the
vcov() command.

Notice that more complex formulae are allowed, including interaction terms (specified by mul-
tiplying two data members) and functions such as log() and sqrt(). Unfortunately, in order to
include a power term, such as age squared, we must either first compute the values, then run the
regression, or use the I() operator, which forces computation of its argument before evaluation of
the formula

> salary$agesq <- (salary$age)^2
> result <- lm(salary ~ age + agesq + log(exper) + age*log(exper),data=byu)

or

> result <- lm(salary ~ age + I(age^2) + log(exper) + age*log(exper),data=byu)

In order to run a regression without an intercept, we simply specify the intercept explicitly,
traditionally with a zero.

> result <- lm(smokes ~ 0 + male + female ,data=smokerdata)

3.2 Extracting Statistics from the Regression

The most important statistics and parameters of a regression are stored in the lm object or the
summary object. Consider the smoking example above

> output <- summary(result)
> SSR <- deviance(result)
> LL <- logLik(result)
> DegreesOfFreedom <- result$df
> Yhat <- result$fitted.values
> Coef <- result$coefficients
> Resid <- result$residuals
> s <- output$sigma
> RSquared <- output$r.squared
> CovMatrix <- s^2*output$cov
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Where SSR is the residual sum of squares, LL is the log likelihood statistic, Yhat is the vector of
fitted values, Resid is the vector of residuals, s is the estimated standard deviation of the errors
(assuming homoskedasticity), CovMatrix is the variance-covariance matrix of the coefficients (also
available via vcov()), and other statistics are as named.

3.3 Heteroskedasticity and Friends

3.3.1 Breusch-Pagan Test for Heteroskedasticity

In order to test for the presence of heteroskedasticity, we can use the Breusch-Pagan test from the
lmtest package. Alternately we can use the the ncv.test() function from the car package. They
work pretty much the same way. After running the regression, we call the bptest() function with
the fitted regression.

> unrestricted <- lm(z~x)
> bptest(unrestricted)

Breusch-Pagan test

data: unrestricted
BP = 44.5465, df = 1, p-value = 2.484e-11

This performs the “studentized” version of the test. In order to be consistent with some other
software (including ncv.test()) we can specify studentize=FALSE.

3.3.2 Heteroskedasticity (Autocorrelation) Robust Covariance Matrix

In the presence of heteroskedasticity, the ols estimates remain unbiased, but the ols estimates of the
variance of the beta coefficients are no longer correct. In order to compute the heteroskedasticity
consistent covariance matrix1 we use the hccm() function (from the car library) instead of vcov().
The diagonal entries are variances and off diagonals are covariance terms.

This functionality is also available via the vcovHC() command in the sandwich package. Also in
that package is the heteroskedasticity and autocorrelation robust Newey-West estimator, available
in the function vcovHAC() or the function NeweyWest().

3.4 Linear Hypothesis Testing (Wald and F)

The car package provides a function that automatically performs linear hypothesis tests. It does
either an F or a Wald test using either the regular or adjusted covariance matrix, depending on our
specifications. In order to test hypotheses, we must construct a hypothesis matrix and a right hand
side vector. For example, if we have a model with five parameters, including the intercept and we
want to test against

H0 : β0 = 0, β3 + β4 = 1

The hypothesis matrix and right hand side vector would be[
1 0 0 0 0
0 0 1 1 0

]
β =

(
0
1

)
and we could implement this as follows

1obtaining the White standard errors, or rather, their squares.
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> unrestricted <- lm(y~x1+x2+x3+x4)
> rhs <- c(0,1)
> hm <- rbind(c(1,0,0,0,0),c(0,0,1,1,0))
> linear.hypothesis(unrestricted,hm,rhs)

Notice that if unrestricted is an lm object, an F test is performed by default, if it is a glm
object, a Wald χ2 test is done instead. The type of test can be modified through the type argument.

Also, if we want to perform the test using heteroskedasticity or autocorrelation robust standard
errors, we can either specify white.adjust=TRUE to use white standard errors, or we can supply
our own covariance matrix using the vcov parameter. For example, if we had wished to use the
Newey-West corrected covariance matrix above, we could have specified

> linear.hypothesis(unrestricted,hm,rhs,vcov=NeweyWest(unrestricted))

See the section on heteroskedasticity robust covariance matrices for information about the NeweyWest()
function. We should remember that the specification white.adjust=TRUE corrects for heteroskedas-
ticity using an improvement to the white estimator. To use the classic white estimator, we can
specify white.adjust="hc0".

3.5 Weighted and Generalized Least Squares

You can do weighted least squares by passing a vector containing the weights to lm().

> result <- lm(smokes ~ 0 + male + female ,data=smokerdata,weights=myweights)

Generalized least squares is available through the lm.gls() command in the MASS library. It takes
a formula, weighting matrix, and (optionally) a dataframe from which to get the data as arguments.

The glm() command provides access to a plethora of other advanced linear regression methods.
See the help file for more details.

4 Special Regressions

4.1 Models With Factors/Groups

There is a separate datatype for qualitative factors in R. When a variable included in a regression is
of type factor, the requisite dummy variables are automatically created. For example, if we wanted
to regress the adoption of personal computers (pc) on the number of employees in the firm (emple)
and include a dummy for each state (where state is a vector of two letter abbreviations), we could
simply run the regression

> summary(lm(pc~emple+state))

Call:
lm(formula = pc ~ emple + state)

Residuals:
Min 1Q Median 3Q Max

-1.7543 -0.5505 0.3512 0.4272 0.5904

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 5.572e-01 6.769e-02 8.232 <2e-16 ***

12



emple 1.459e-04 1.083e-05 13.475 <2e-16 ***
stateAL -4.774e-03 7.382e-02 -0.065 0.948
stateAR 2.249e-02 8.004e-02 0.281 0.779
stateAZ -7.023e-02 7.580e-02 -0.926 0.354
stateDE 1.521e-01 1.107e-01 1.375 0.169

...

stateFL -4.573e-02 7.136e-02 -0.641 0.522
stateWY 1.200e-01 1.041e-01 1.153 0.249
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.4877 on 9948 degrees of freedom
Multiple R-Squared: 0.02451, Adjusted R-squared: 0.01951
F-statistic: 4.902 on 51 and 9948 DF, p-value: < 2.2e-16

The three dots indicate that some of the coefficients have been removed for the sake of brevity.
In order to convert data (either of type string or numeric) to a factor, simply use the factor()

command. It can even be used inside the regression. For example, if we wanted to do the same
regression, but by a numeric code specifying an area, we could use the command

> myout <- lm(pc~emple+factor(naics6))

which converts naics6 into a factor, generates the appropriate dummies, and runs a standard regres-
sion.

The package nlme contains functions for doing fixed and random effects models in a linear or
nonlinear framework.

4.2 Logit/Probit

There are several ways to do logit and probit regressions in R. The simplest way may be to use the
glm() command with the family option.

> h <- glm(c~y, family=binomial(link="logit"))

or replace logit with probit for a probit regression. The glm() function produces an object similar
to the lm() function, so it can be analyzed using the summary() command. In order to extract the
log likelihood statistic, use the logLik() command.

> logLik(h)
‘log Lik.’ -337.2659 (df=1)

There is also a special package for binary dependent variable regressions called boolean. The
boolean framework generally requires that a boolean data object be prepared using boolprep() and
passed to boolean(). It also includes functions to plot and do tests.

4.2.1 Multinomial Logit

There is a great function for performing a multinomial logit calculation in the nnet library called
multinom(). To use it, simply transform our dependent variable to a vector of factors (including
all cases) and use syntax like a normal regression. If our factors are stored as vectors of dummy
variables, we can use the properties of decimal numbers to create unique factors for all combinations.
Suppose my factors are pc, inetacc, and iapp, then
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> g <- pc*1 + inetacc*10 + iapp*100
> multinom(factor(g)~pc.subsidy+inet.subsidy+iapp.subsidy+emple+msamissing)

and we get a multinomial logit using all combinations of factors.
Multinomial probit is characteristically ill conditioned. A method that uses markov chain monte

carlo simulations, mnp(), is available in the MNP library.

4.2.2 Ordered Logit/Probit

The MASS library has a function to perform ordered logit or probit regressions, called polr(). If
Sat is an ordered factor vector, then

> house.plr <- polr(Sat ~ Infl + Type + Cont, method="probit")

4.3 Tobit and Censored Regression

In order to estimate a model in which the values of some of the data have been censored, we use the
survival library. The function survreg() performs this type of regression, and takes as its dependent
variable a Surv object. The best way to see how to do this type of regression is by example. Suppose
we want to regress y on x and z, but a number of y observations were censored on the left and set
to zero.

result <- survreg(Surv(y,y>0,type=’left’) ~ x + z, dist=’gaussian’)

The second argument to the Surv() function specifies whether each observation has been censored
or not (one indicating that it was observed and zero that it was censored). The third argument
indicates on which side the data was censored. Since it was the lower tail of this distribution that
got censored, we specify left. The dist option passed to the survreg is necessary in order to get a
classical Tobit model.

4.4 Robust Regression - M Estimators

For some datasets, outliers influence the least squares regression line more than we would like them to.
One solution is to use a minimization approach using something besides the sum of squared residuals
(which corresponds to minimizing the L2 norm) as our objective function. Common choices are the
sum of absolute deviations (L1) and the Huber method, which is something of a mix between the L1

and L2 methods. R implements this robust regression functionality through the rlm() command in
the MASS library. The syntax is the same as that of the lm() command except that it allows the
choice of objective function to minimize. That choice is specified by the psi parameter. Possible
implemented choices are psi.huber, psi.hampel, and psi.bisquare.

In order to specify a custom psi function, we write a function that returns ψ(x)/x if deriv=0
and ψ′(x) for deriv=1. This function than then be passed to rlm() using the psi parameter.

4.5 Nonlinear Least Squares

Sometimes the economic model just isn’t linear. R has the capability of solving for the coefficients
a generalized least squares model that can be expressed

Y = F (X;β) + ε (2)
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Notice that the error term must be additive in the functional form. If it is not, transform the model
equation so that it is. The R function for nonlinear least squares is nls() and has a syntax similar
to lm(). Consider the following nonlinear example.

Y =
ε

1 + eβ1X1+β2X2
(3)

log(Y ) = − log(1 + eβ1X1+β2X2) + log(ε) (4)

The second equation is the transformed version that we will use for the estimation. nls() takes
the formula as its first argument and also requires starting estimates for the parameters. The entire
formula should be specified, including the parameters. R looks at the starting values to see which
parameters it will estimate.

> result <- nls(log(Y)~-log(1+exp(a*X1+b*X2)),start=list(a=1,b=1),data=mydata)

stores estimates of a and b in an nls object called result. Estimates can be viewed using the
summary() command. In the most recent versions of R, the nls() command is part of the base
package, but in older versions, we may have to load the nls library.

4.6 Two Stage Least Squares on a Single Structural Equation

For single equation two stage least squares, the easiest function is probably tsls() from the sem
library. If we want to find the effect of education on wage while controlling for marital status but
think educ is endogenous, we could use motheduc and fatheduc as instruments by running

> library(sem)
> outputof2sls <- tsls(lwage~educ+married,~married+motheduc+fatheduc)

The first argument is the structural equation we want to estimate and the second is a tilde followed
by all the instruments and exogenous variables from the structural equation (everything we need for
the Z matrix in the 2sls estimator β̃ = {X ′Z(Z ′Z)−1Z ′X}−1X ′Z(Z ′Z)−1Z ′y).

The resulting output can be analyzed using summary() and other ols analysis functions. Note
that since this command produces a two stage least squares object, the summary statistics, including
standard errors, will be correct. Recall that if we were to do this using an actual two stage approach,
the resulting standard errors would be bogus.

4.7 Systems of Equations

The commands for working with systems of equations (including instrumental variables, two stage
least squares, seemingly unrelated regression and variations) are contained in the systemfit library.
In general these functions take as an argument a list of regression models. Note that in R an
equation model (which must include the tilde) is just another data type. Thus we could create a list
of equation models and a corresponding list of labels using the normal assignment operator

> demand <- q ~ p + d
> supply <- q ~ p + f + a
> system <- list(demand,supply)
> labels <- list("demand","supply")

4.7.1 Seemingly Unrelated Regression

Once we have the system and labels set up, we can use systemfit() with the SUR option to specify
that the system describes a seemingly unrelated regression.

> resultsur <- systemfit("SUR",system,labels)
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4.7.2 Two Stage Least Squares on a System

Instruments can be used as well in order to do a two stage least squares on the above system. We
create a model object (with no left side) to specify the instruments that we will use and specify the
2SLS option

> inst <- ~ d + f + a
> result2sls <- systemfit("2SLS",system,labels,inst)

There are also routines for three stage least squares, weighted two stage least squares, and a host of
others.

5 Time Series Regression

R has a special datatype, ts, for use in time series regressions. Vectors, arrays, and dataframes can
be coerced into this type using the ts() command for use in time series functions.

> datats <- ts(data)

Most time-series related functions automatically coerce the data into ts format, so this command is
often not necessary.

5.1 Differences and Lags

We can compute differences of a time series object using the diff() operator, which takes as optional
arguments which difference to use and how much lag should be used in computing that difference.
For example, to take the first difference with a lag of two, so that wt = vt − vt−3 we would use

> w <- diff(v,lag=2,difference=1)

By default, diff() returns the simple first difference of its argument.
There are two general ways of generating lagged data. If we want to lag the data directly (without

necessarily converting to a time series object), one way to do it is to omit the first few observations
using the minus operator for indices. We can then remove the last few rows of un-lagged data in
order to achieve conformity. The commands

> lagy <- y[-NROW(y)]
> ysmall <- y[-1]

produce a once lagged version of y relative to ysmall. This way of generating lags can get awkward
if we are trying combinations of lags in regressions because for each lagged version of the variable,
conformability requires that we have a corresponding version of the original data that has the first
few observations removed.

Another way to lag data is to convert it to a time series object and use the lag() function. It
is very important to remember that this function does not actually change the data, it changes an
attribute of a time series object that indicates where the series starts. This allows for more flexibility
with time series functions, but it can cause confusion for general functions such as lm() that do
not understand time series attributes. Notice that lag() only works usefully on time series
objects. For example, the code snippet

> d <- a - lag(a,-1)
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creates a vector of zeros named d if a is a normal vector, but returns a ts object with the first
difference of the series if a is a ts object. There is no warning issued if lag() is used on regular data,
so care should be exercised.

In order to use lagged data in a regression, we can use time series functions to generate a
dataframe with various lags of the data and NA characters stuck in the requisite leading and trailing
positions. In order to do this, we use the ts.union() function. Suppose X and Y are vectors of
ordinary data and we want to include a three times lagged version of X in the regression, then

> y <- ts(Y)
> x <- ts(X)
> x3 <- lag(x,-3)
> d <- ts.union(y,x,x3)

converts the vectors to ts data and forms a multivariate time series object with columns yt, xt,
and xt−3. Again, remember that data must be converted to time series format before lagging or
binding together with the union operator in order to get the desired offset. The ts.union() function
automatically decides on a title for each column, must as the data.frame() command does. We
can also do the lagging inside the union and assign our own titles

> y <- ts(Y)
> x <- ts(X)
> d <- ts.union(y,x,x1=lag(xt,-1),x2=lag(xt,-2),x3=lag(xt,-3))

It is critical to note that the lag operator works in the opposite direction of what one
might expect: positive lag values result in leads and negative lag values result in lags.

When the resulting multivariate time series object is converted to a data frame (as it is read by
ls() for example), the offset will be preserved. Then

> lm(y~x3,data=d)

will then regress yt on xt−3.
Also note that by default observations that have a missing value (NA) are omitted. This is

what we want. If the default setting has somehow been changed, we should include the argument
na.action=na.omit in the lm() call. In order to get the right omission behavior, it is generally
necessary to bind all the data we want to use (dependent and independent variables) together in a
single union.

In summary, in order to use time series data, convert all data to type ts, lag it appropriately
(using the strange convention that positive lags are leads), and bind it all together using ts.union().
Then proceed with the regressions and other operations.

5.2 Filters

5.2.1 Canned AR and MA filters

One can pass data through filters constructed by polynomials in the lag operator using the filter()
command. It handles two main types of filters: autoregressive or “recursive” filters and moving
average or “convolution” filters. The first type is of the form

y = (1 + a1L+ a2L
2 + . . .+ apL

p)x

and the second has the same form except that it does not include the implied unit coefficient on the
zero lag. Further, for recursive filters, if we specify sides=2 the filter coefficients will be centered
about zero (including as many leads as lags) unless there is an even number of coefficients, in which
case one more lead than lag is included.

When we use the filter() command, we supply the a vector as follows
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> y <- filter(x,c(.2,-.35,.1),method="recursive")

The data vector x may be a time series object or a normal vector of data, and the output y will be
a ts object.

5.2.2 Manual Filtration

If the filter() command is not flexible enough for our application—a situation easily encountered—
we can manually generate the lags and compute the result. The following imitates the filter command
above

> x <- ts(x)
> y <- x+.2*lag(x,-1)-.35*lag(x,-2)+.1*lag(x,-3)

except that the filter() command by default inserts zeros (or a pre-specified vector) for missing
beginning data, whereas the manual filter omits the observations for which lagged data is unavailable.
Notice that the above command will only work if x is a ts object.

5.2.3 Hodrick Prescott Filter

Data may be passed through the Hodrick-Prescott filter a couple of ways, neither of which require
the data to be a time series vector. First, we can filter manually using the function defined below
(included without prompts so it may be copied and pasted into R)

hpfilter <- function(x,lambda=1600){
eye <- diag(length(x))
result <- solve(eye+lambda*crossprod(diff(eye,lag=1,d=2)),x)
return(result)

}

where lambda is the standard tuning parameter, often set to 1600 for macroeconomic data. Passing
a series to this function will return the smoothed series.

This filter is also a special case of the smooth.spline() function in which the parameter tt
all.knots=TRUE has been passed. Unfortunately, the tuning parameter for the smooth.spline()
function, spar is different from the lambda above and we have not figured out how to convert from
spar to lambda. If we knew the appropriate value of spar to use, the filter would be

> z <- smooth.spline( y , all.knots=TRUE, spar=myspar )

5.2.4 Kalman Filter

R has functions for smoothing, forecasting, or finding a likelihood function using the Kalman filter.
In order to use these routines, we must generate an object of type list that represents the state-space
version of our model. If we have an ARIMA model, the state space representation is returned as
model by default. For example

> mymodel <- arima(x,c(2,1,0))$model

Otherwise we could generate this list manually. Recall that a state space model can be written

y = Z ′a+ η

a = Ta+Re
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Where η and e are normally distributed disturbances, a is the unobserved state vector, and y is the
observed data vector. The elements of the list represent the coefficients here. For more information
on generating a state-space model, see help on KalmanLike.

Once we have the state-space list, we can use KalmanLike, KalmanSmooth, and KalmanPredict
to get estimated likelihoods, state estimates, and predicted values, respectively.

5.3 ARIMA/ARFIMA

The arima() command from the ts() library can fit time series data using an autoregressive inte-
grated moving average model.

∆dyt = µ+ γ1∆dyt−1 + ...+ γp∆dyt−p + εt + θ1εt−1 + ...+ θqεt−q (5)

where
∆yt = yt − yt−1 (6)

The parameters p, d, and q specify the order of the arima model. These values are passed as a
vector c(p,d,q) to arima(). Notice that the model used by R makes no assumption about the sign
of the θ terms, so the sign of the corresponding coefficients may differ from those of other software
packages (such as S+).

> ar1 <- arima(y,order=c(1,0,0))
> ma1 <- arima(y,order=c(0,0,1))

Data-members ar1 and ma1 contain estimated coefficients obtained by fitting y with an AR(1) and
MA(1) model, respectively. They also contain the log likelihood statistic and estimated standard
errors.

If we are modeling a simple autoregressive model, we could also use the ar() command, from the
ts package, which either takes as an argument the order of the model or picks a reasonable default
order.

> ar3 <- ar(y,order.max=3)

fits an AR(3) model, for example.
The function fracdiff(), from the fracdiff library fits a specified ARMA(p,q) model to our data

and finds the optimal fractional value of d for an ARFIMA(p,d,q). Its syntax differs somewhat from
the arima() command.

> library(fracdiff)
> fracdiff(y,nar=2,nma=1)

finds the optimal d value using p=2 and q=1.

5.4 ARCH/GARCH

R can numerically fit data using a generalized autoregressive conditional heteroskedasticity model
GARCH(p,q), written

σ2
t = α0 + δ1σ

2
t−1 + ...+ δpσ

2
t−p + α1ε

2
t + ...+ αqε

2
t−q (7)

setting p = 0 we obtain the ARCH(q) model. The R command garch() comes from the tseries
library. It’s syntax is
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> archoutput <- garch(y,order=c(0,3))
> garchoutput <- garch(y,order=c(2,3))

so that archoutput is the result of modeling an ARCH(3) model and garchoutput is the result
of modeling a GARCH(2,3). Notice that the first value in the order argument is p, the number
of alphas, and the second argument is the number of delta parameters. The resulting coefficient
estimates will be named a0, a1, etc. for the alpha and b1, b2, etc. for the delta parameters.

5.5 Correlograms

It is common practice when analyzing time series data to plot the autocorrelation and partial autocor-
relation functions in order to try to guess the functional form of the data. To plot the autocorrelation
and partial autocorrelation functions, use the ts library functions acf() and pacf(), respectively.
The following commands plot the ACF and PACF on the same graph, one above (not on top of)
the other. See section on plotting for more details.

> par(mfrow=c(2,1))
> acf(y)
> pacf(y)
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5.6 Predicted Values

The predict() command takes as its input an lm, glm, arima, or other regression object and some
options and returns corresponding predicted values. For time series regressions, such as arima()
the argument is the number of periods into the future to predict.

> a <- arima(y,order=c(1,1,2))
> predict(a,5)

returns predictions on five periods following the data in y, along with corresponding standard error
estimates.
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5.7 Time Series Tests

5.7.1 Durbin-Watson Test for Autocorrelation

The Durbin-Watson test for autocorrelation can be administered using the durbin.watson() func-
tion from the car library. It takes as its argument an lm object (the output from an lm() command)
and returns the autocorrelation, DW statistic, and an estimated p-value. The number of lags can
be specified using the max.lag argument. See help file for more details.

> library(car)
> results <- lm(Y ~ x1 + x2)
> durbin.watson(results,max.lag=2)

5.7.2 Box-Pierce and Breusch-Godfrey Tests for Autocorrelation

In order to test the residuals (or some other dataset) for autocorrelation, we can use the Box-Pierce
test from the ts library.

> library(ts)
> a <- arima(y,order=c(1,1,0))
> Box.test(a$resid)

Box-Pierce test

data: a$resid
X-squared = 18.5114, df = 1, p-value = 1.689e-05

would lead us to believe that the model may not be correctly specified, since we soundly re-
ject the Box-Pierce null. If we want to the Ljung-Box test instead, we include the parameter
type="Ljung-Box".

For an appropriate model, this test is asymptotically equivalent to the Breusch-Godfrey test,
which is available in the lmtest() library as bgtest(). It takes a fitted lm object instead of a
vector of data as an argument.

5.7.3 Dickey-Fuller Test for Unit Root

The augmented Dickey-Fuller test checks whether a series has a unit root. The default null hypothesis
is that the series does have a unit root. Use the adf.test() command from the tseries library for
this test.

> library(tseries)
> adf.test(y)

Augmented Dickey-Fuller Test

data: y
Dickey-Fuller = -2.0135, Lag order = 7, p-value = 0.5724
alternative hypothesis: stationary

5.8 Vector Autoregressions (VAR)

There is a package (mAr) especially designed to do multivariate autoregressions and analysis, but
the standard ar() routine can do the estimation part. In order to do a vector autoregression, one
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need only bind the vectors together as a dataframe and give that dataframe as an argument to ar().
Notice that ar() by default uses AIC to determine how many lags to use, so it may be necessary to
specifiy aic=FALSE and/or an order.max parameter. Remember that if aic is TRUE (the default),
the function uses AIC to choose a model using up to the number of lags specified by order.max.

> y <- ts.union(Y1,Y2,Y3)
> var6 <- ar(y,aic=FALSE,order=6)

6 Plotting

One of R’s strongest points is its graphical ability. It provides both high level plotting commands
and the ability to edit even the smallest details of the plots.

The plot() command opens a new window and plots the the series of data given it. By default
a single vector is plotted as a time series line. If two vectors are given to plot(), the values are
plotted in the x-y place using small circles. The type of plot (scatter, lines, histogram, etc.) can be
determined using the type argument. Strings for the main, x, and y labels can also be passed to
plot.

> plot(x,y,type="l", main="X and Y example",ylab="y values",xlab="x values")

plots a line in the x-y plane, for example. Colors, symbols, and many other options can be passed
to plot(). For more detailed information, see the help system entries for plot() and par().

After a plotting window is open, if we wish to superimpose another plot on top of what we
already have, we use the lines() command or the points() command, which draw connected lines
and scatter plots, respectively. Many of the same options that apply to plot() apply to lines()
and a host of other graphical functions.

We can plot a line, given its coefficients, using the abline() command. This is often useful in
visualizing the placement of a regression line after a bivariate regression

> results <- lm(y ~ x)
> plot(x,y)
> abline(results$coef)

6.1 Plotting Empirical Distributions

We typically illustrate the distribution of a vector of data by separating it into bins and plotting
it as a histogram. This functionality is available via the hist() command. Histograms can often
hide true trends in the distribution because they depend heavily on the choice of bin width. A
more reliable way of visualizing univariate data is the use of a kernel density estimator, which gives
an actual empirical estimate of the PDF of the data. The density() function computes a kernel
estimator and can be plotted using the plot() command.

> d <- density(y)
> plot(d,main="Kernel Density Estimate of Y")
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We can also plot the empirical CDF of a set of data using the ecdf() command from the stepfun
library, which is included in the default distribution. We could then plot the estimated CDF using
plot().

> library(stepfun)
> d <- ecdf(y)
> plot(d,main="Empirical CDF of Y")

6.2 Adding Legends and Stuff

After plotting we often wish to add annotations or other graphics that should really be placed
manually. Functions like text() and legend() take as their first two arguments coordinates on the
graph where the resulting objects should be placed. In order to manually determine the location
of a point on the graph, use the locator() function. The location of one or several right clicks on
the graph will be returned by this function after a left click. Those coordinates can then be used to
place text, legends, or other add-ons to the graph.

An example of a time series, with a predicted curve and standard error lines around it

> plot(a.true,type="l",lty=1,ylim=c(11.6,12.5),main="Predicted vs True",xlab="",ylab="")
> lines(a.predict$pred,lty=2,type="l")
> lines(a.predict$pred+a.predict$se,lty=3,type="l")
> lines(a.predict$pred-a.predict$se,lty=3,type="l")
> legend(145,11.95,c("true values","predicted"),lty=c(1,2))
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6.3 Multiple Plots

We can partition the drawing canvas to hold several plots. There are several functions that can be
used to do this, including split.screen(), layout(), and par(). The simplest and most important
is probably par(), so we will examine only it for now. The par() function sets many types of defaults
about the plots, including margins, tick marks, and layout. The simplest way arrange several plots
is by modifying the mfrow attribute. It is a vector whose first entry specifies the number of rows
of figures we will be plotting and the second, the number of columns. Sometimes when plotting
several figures, the default spacing may not be pleasing to the eye. In this case we can modify the
default margin (for each plot) using the mar attribute. This is a four entry vector specifying the
default margins in the form (bottom, left, top, right). The default setting is c(5, 4, 4, 2) + 0.1. For
a top/bottom plot, we may be inclined to decrease the top and bottom margins somewhat. In order
to plot a time series with a seasonally adjusted version of it below, we could use

> op <- par(no.readonly=TRUE)
> par(mfrow=c(2,1),mar=c(3,4,2,2)+.1)
> plot(d[,1],main="Seasonally Adjusted",ylab=NULL)
> plot(d[,2],main="Unadjusted", ylab=NULL)
> par(op)

Notice that we saved the current settings in op before plotting so that we could restore them after
our plotting and that we must set the no.readonly attribute while doing this.

6.4 Saving Plots

In order to save plots to files we change the graphics device via the png(), jpg(), or postscript()
commands, then we plot what we want and close the special graphics device using dev.off(). For
example,

> png("myplot.png")
> plot(x,y,main="A Graph Worth Saving")
> dev.off()
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creates a png file of the plot of x and y. In the case of the postscript file, if we intend to include the
graphics in another file (like in a LATEX document), we could modify the default postscript settings
controlling the paper size and orientation. Notice that when the special paper size is used, the
width and height must be specified. Actually with LATEX we often resize the image explicitly, so the
resizing may not be that important.

> postscript("myplot.eps",paper="special",width=4,height=4,horizontal=FALSE)
> plot(x,y,main="A Graph Worth Including in LaTeX")
> dev.off()

One more thing to notice is that the default paper size is a4, which is the European standard. For
8.5x11 paper, we use paper="letter". When using images that have been generated as a postscript,
then converted to pdf, incorrect paper specifications are a common problem.

There is also a pdf() command that works the same way the postscript command does, except
that by default its paper size is special with a height and width of 6 inches.

7 Statistics

R has extensive statistical functionality. The functions mean(), sd(), min(), max(), and var()
operate on data as we would expect2.

7.1 Working with Common Statistical Distributions

R can also generate and analyze realizations of random variables from the standard distributions.
Commands that generate random realizations begin with the letter ‘r’ and take as their first argument
the number of observations to generate; commands that return the value of the pdf at a particular
observation begin with ‘d’; commands that return the cdf value of a particular observation begin
with ‘p’; commands that return the number corresponding to a cdf value begin with q. Note that
the ‘p’ and ‘q’ functions are inverses of each other.

> rnorm(1,mean=2,sd=3)
[1] 2.418665
> pnorm(2.418665,mean=2,sd=3)
[1] 0.5554942
> dnorm(2.418665,mean=2,sd=3)
[1] 0.1316921
> qnorm(.5554942,mean=2,sd=3)
[1] 2.418665

These functions generate a random number from the N(2,9) distribution, calculate its cdf and pdf
value, and then verify that the cdf value corresponds to the original observation. If we had not
specified the mean and standard deviation, R would have assumed standard normal. Note that we
could replace norm with binom , nbinom , chisq ,t ,f or other distribution names if appropriate.

Command Meaning
rX() Generate random vector from distribution X
dX() Return the value of the PDF of distribution X
pX() Return the value of the CDF of distribution X
qX() Return the number at which the CDF hits input value [0,1]

2note: the functions pmax() and pmin() function like max and min but elementwise on vectors or matrices.
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7.2 P-Values

By way of example, in order to calculate the p-value of 3.6 using an f(4, 43) distribution, we would
use the command

> 1-pf(3.6,4,43)
[1] 0.01284459

and find that we fail to reject at the 1% level, but we would be able to reject at the 5% level.
Remember, if the p-value is smaller than the alpha value, we are able to reject. Also recall that the
p-value should be multiplied by two if it we are doing a two tailed test. For example, the one and
two tailed tests of a t statistic of 2.8 with 21 degrees of freedom would be, respectively

> 1-pt(2.8,21)
[1] 0.005364828
> 2*(1-pt(2.8,21))
[1] 0.01072966

So that we would reject the null hypothesis of insignificance at the 10% level if it were a one tailed
test (remember, small p-value, more evidence in favor of rejection), but we would fail to reject in
the sign-agnostic case.

8 Math in R

8.1 Matrix Operations

8.1.1 Matrix Algebra and Inversion

Most R commands work with multiple types of data. Most standard mathematical functions and
operators (including multiplication, division, and powers) operate on each component of multidi-
mensional objects. Thus the operation A*B, where A and B are matrices, multiplies corresponding
components. In order to do matrix multiplication or inner products, use the %*% operator. Notice
that in the case of matrix-vector multiplication, R will automatically make the vector a row or
column vector, whichever is conformable. Matrix inversion is obtained via the solve() function.
(Note: if solve() is passed a matrix and a vector, it solves the corresponding linear problem) The
t() function transposes its argument. Thus

β = (X ′X)−1X ′Y (8)

would correspond to the command

> beta <- solve(t(X)%*%X)%*%t(X)%*%Y

or more efficiently

> beta <- solve(t(X)%*%X,t(X)%*%Y)

The Kronecker product is also supported and is specified by the the %x% operator.

> bigG <- g%x%h

calculates the Kronecker product of g with h.
The trace of a square matrix is calculated by the function tr().
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8.1.2 Factorizations

R can compute the standard matrix factorizations. The Cholesky factorization of a symmetric
positive definite matrix is available via chol(). It should be noted that chol() does not check for
symmetry in its argument, so the user must be careful.

We can also extract the eigenvalue decomposition of a symmetric matrix using eigen(). By
default this routine checks the input matrix for symmetry, but the parameter symmetric=FALSE
may be specified in order to skip this test if we know the matrix is symmetric by construction.

> J <- cbind(c(20,3),c(3,18))
> j <- eigen(J)
> t(j$vec)%*%diag(j$val)%*%j$vec

[,1] [,2]
[1,] 20 3
[2,] 3 18

If the more general singular value decomposition is desired, we use instead svd().

8.2 Writing Functions

A function can be treated as any other object in R. It is created with the assignment operator and
function(), which is passed an argument list (use the equal sign to denote default arguments; all
other arguments will be required at runtime). The code that will operate on the arguments follows,
surrounded by curly brackets if it comprises more than one line.

If an expression or variable is evaluated within a function, it will not echo to the screen. However,
if it is the last evaluation within the function, it will act as the return value. This means the following
functions are equivalent

> g <- function(x,Alpha=1,B=0) sin(x[1])-sin(x[2]-Alpha)+x[3]^2+B
> f <- function(x,Alpha=1,B=0){
+ out <- sin(x[1])-sin(x[2]-Alpha)+x[3]^2+B
+ return(out)
+ }

Notice that R changes the prompt to a “+” sign to remind us that we are inside brackets.
Because R does not distinguish what kind of data object a variable in the parameter list is, we

should be careful how we write our functions. If x is a vector, the above functions would return a
vector of the same dimension. Also, notice that if an argument has a long name, it can be abbreviated
as long as the abbreviation is unique. Thus the following two statements are equivalent

> f(c(2,4,1),Al=3)
> f(c(2,4,1),Alpha=3)

Variables that are not passed in as arguments are not available within functions and variables
defined within functions are unavailable outside of the function. Changing the value of a passed-in
argument within a function does not change its value outside of the function. In other words, R
passes arguments by value and variable scoping applies.

8.3 Numerical Optimization

R can numerically minimize an arbitrary function using the command nlm(), which takes as its
argument a function and a starting vector at which to evaluate the function. The fist argument
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of the user-defined function should be the parameter(s) over which R will minimize the function,
additional arguments to the function (constants) should be specified by name in the nlm call. In
order to maximize a function, multiply the function by -1 and minimize it.

> g <- function(x,A,B){
+ out <- sin(x[1])-sin(x[2]-A)+x[3]^2+B
+ out
+ }
> results <- nlm(g,c(1,2,3),A=4,B=2)
> results$min
[1] 6.497025e-13
> results$est
[1] -1.570797e+00 -7.123895e-01 -4.990333e-07

This function uses a matrix-secant method that numerically approximates the gradient, but if the
return value of the function contains an attribute called gradient, it will use a quasi-newton method.
The gradient based optimization corresponding to the above would be

> g <- function(x,A,B){
+ out <- sin(x[1])-sin(x[2]-A)+x[3]^2+B
+ grad <- function(x,A){
+ c(cos(x[1]),-cos(x[2]-A),2*x[3])
+ }
+ attr(out,"gradient") <- grad(x,A)
+ return(out)
+ }
> results <- nlm(g,c(1,2,3),A=4,B=2)

Other optimization functions which may be of interest are optimize() for one-dimensional min-
imization, uniroot() for root finding, and deriv() for calculating numerical derivatives.

9 Programming

9.1 Looping

Looping is performed using the for command. It’s syntax is as follows

> for (i in 1:20){
+ cat(i)
> }

Where cat() may be replaced with the block of code we wish to repeat. Instead of 1:20, a vector
or matrix of values can be used. The index variable will take on each value in the vector or matrix
and run the code contained in curly brackets.

If we simply want a loop to run until something happens to stop it, we could use the repeat
loop and a break

> repeat {
+ g <- rnorm(1)
+ if (g > 2.0) break
+ cat(g);cat("\n")
> }
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Notice the second cat command issues a newline character, so the output is not squashed onto one
line. The semicolon acts to let R know where the end of our command is, when we put several
commands on a line. For example, the above is equivalent to

> repeat {g <- rnorm(1);if (g>2.0) break;cat(g);cat("\n");}

9.2 Conditionals

9.2.1 Binary Operators

Conditionals, like the rest of R, are highly vectorized. The comparison

> x < 3

returns a vector of TRUE/FALSE values, if x is a vector. This vector can then be used in compu-
tations. For example. We could set all x values that are less that 3 to zero with one command

> x[x<3] <- 0

The conditional within the brackets evaluates to a TRUE/FALSE vector. Wherever the value is
TRUE, the assignment is made. Of course, the same computation could be done using a for loop
and the if command.

> for (i in 1:NROW(x)){
+ if (x[i] < 3) {
+ x[i] <- 0
+ }
+ }

Because R is highly vectorized, the latter code works much more slowly than the former. It is good
programming practice to avoid loops and if statements whenever possible when writing in any
scripting language.

The Boolean Operators
! x NOT x
x & y x and y elementwise
x && y x and y total object
x | y x or y elementwise
x | | y x or y total object
xor(x, y) x xor y (true if one and only one argument is true)

9.3 The Ternary Operator

Since code segments of the form

> if (x) {
+ y } else {
+ z }

come up very often in programming, R includes a ternary operator that performs this in one line

> ifelse(x,y,z)

If x evaluates to TRUE, then y is returned. Otherwise z is returned. This turns out to be helpful
because of the vectorized nature of R programming. For example, x could be a vector of TRUE/FALSE
values, whereas the long form would have to be in a loop or use a roundabout coding method to
achieve the same result.
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10 Changing Configurations

10.1 Default Options

A number of runtime options relating to R’s behavior are governed by the options() function.
Running this function with no arguments returns a list of the current options. One can change the
value of a single option by passing the option name and a new value. For temporary changes, the
option list may be saved and then reused.

> oldops <- options()
> options(verbose=true)
...
> options(oldops)

10.1.1 Significant Digits

Mathematical operations in R are generally done to full possible precision, but the format in which,
for example, numbers are saved to a file when using a write command depends on the option digits.

> options(digits=10)

increases this from the default 7 to 10.

10.1.2 What to do with NAs

The behavior of most R functions when they run across missing values is governed by the option
na.action. By default it is set to na.omit, meaning that the corresponding observation will be
ignored. Other possibilities are na.fail, na.exclude, and na.pass. The value na.exclude differs
from na.omit only in the type of data it returns, so they can usually be used interchangeably.

10.1.3 How to Handle Errors

When an error occurs in a function or script more information may be needed than the type of error
that occurs. In this case, we can change the default behavior of error handling. This is set via the
error option, which is by default set to NULL or stop. Setting this option to recover we enter
debug mode on error. First R gives a list of “frames” or program locations to start from. After
selecting one, the user can type commands as if in interactive mode there. In the example below,
one of the indices in my loop was beyond the dimension of the matrix it was referencing. First I
check i, then j.

> options(error=recover)
> source("log.R")
Error: subscript out of bounds

Enter a frame number, or 0 to exit

1: source("log.R")
2: eval.with.vis(ei, envir)
3: eval.with.vis(expr, envir, enclos)
4: mypredict(v12, newdata = newdata)

Selection: 4
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Called from: eval(expr, envir, enclos)
Browse[1]> i
[1] 1
Browse[1]> j
[1] 301

Pressing enter while in browse mode takes the user back to the menu. After debugging, we can set
error to NULL again.

10.1.4 Suppressing Warnings

Sometimes non-fatal warnings issued by code annoyingly uglifies output. In order to suppress these
warnings, we use options() to set warn to a negative number. If warn is one, warnings are printed
are printed as they are issued by the code. By default warnings are saved until function completion
warn=0. Higher numbers cause warnings to be treated as errors.

11 Saving Your Work

11.1 Saving the Data

When we choose to exit, R asks whether we would like to save our workspace image. This saves
our variables, history, and environment. You manually can save R’s state at any time using the
command

> save.image()

You can save one or several data objects to a specified file using the save() command.

> save(BYU,x,y,file="BYUINFO.Rdata")

saves the variables BYU, x, and y in the default R format in a file named “BYUINFO.Rdata”. They
can be loaded again using the command

> load("BYUINFO.Rdata")

R can save to a number of other formats as well. Use write.table() to write a data frame as a
space-delimited text file with headers, for example.

11.2 Saving the Session Output

We may also wish to write the output of our commands to a file. This is done using the sink()
command.

> sink("myoutput.txt")
> a
> sink()

The output of executing the command a (that is, echoing whatever a is) is written to “myoutput.txt”.
Using sink() with no arguments starts output echoing to the screen again. Of course, sink() hides
the output from us as we are interacting with R, so many times the easiest way to get a transcript
of our session is to copy and paste using the mouse.

If we are using a script file, a nice way to get a transcript of our work and output is to use sink()
in connection with source().
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> sink("myoutput.txt")
> source("rcode.R",echo=T)
> sink()

R can save plots and graphs as image files as well. Under windows, simply click once on the
graph so that it is in the foreground and then go to file/Save as and save it as jpeg or png. There are
also ways to save as an image or postscript file from the command line, as described in the plotting
section.

11.3 Saving as LATEX

R objects can also be saved as LATEX tables using the latex() command from the Hmisc library.
The most common use we have had for this command is to save a table of the coefficients and
estimates of a regression.

> reg <- lm(educ~exper+south,data=d)
> latex(summary(reg)$coef)

produces a file named “summary.tex” that produces the following when included in a LATEX source
file3

summary Estimate Std. Error t value Pr(¿—t—)
(Intercept) 17.2043926 0.088618337 194.140323 0.00000e+ 00
exper −0.4126387 0.008851445 −46.618227 0.00000e+ 00
south −0.7098870 0.074707431 −9.502228 4.05227e− 21

which we see is pretty much what we want. The table lacks a title and the math symbols in the
p-value column are not contained in $ characters. Fixing these by hand we get

OLS regression of educ on exper and south

summary Estimate Std. Error t value Pr(> |t|)
(Intercept) 17.2043926 0.088618337 194.140323 0.00000e+ 00
exper −0.4126387 0.008851445 −46.618227 0.00000e+ 00
south −0.7098870 0.074707431 −9.502228 4.05227e− 21

Notice that the latex() command takes matrices, summaries, regression output, dataframes,
and many other data types. Another option, which may be more flexible, is the xtable() function
from the xtable library.

12 Conclusion

R provides an effective platform for econometric computation and research. It has built in function-
ality sufficiently advanced for professional research and has a reasonably steep learning curve (if you
put knowledge on the y axis and effort on the x). Because R is a programming language as well as
an econometrics program, it allows for more complex, tailored computations and simulations than
one would get in a prepackaged system. On the other hand, it takes some time to become familiar
with the syntax and reasoning of the language. I hope that this guide eases the burden of learning to
program and do standard data analysis in the finest statistical environment available. Don’t forget
to let me know if you feel like I didn’t do this or have a suggestion about how I could do it better.

3Under linux, at least, the latex() command also pops up a window showing how the output will look.
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13 Appendix: Code Examples

13.1 Monte Carlo Simulation

The following block of code creates a vector of randomly distributed data X with 25 members. It
then creates a y vector that is conditionally distributed as

y = 2 + 3x+ ε. (9)

It then does a regression of x on y and stores the slope coefficient. The generation of y and calculation
of the slope coefficient are repeated 500 times. The mean and sample variance of the slope coefficient
are then calculated. A comparison of the sample variance of the estimated coefficient with the
analytic solution for the variance of the slope coefficient is then possible.

>A <- array(0, dim=c(500,1))
>x <- rnorm(25,mean=2,sd=1)
>for(i in 1:500){
+ y <- rnorm(25, mean=(3*x+2), sd=1)
+ beta <- lm(y~x)
+ A[i] <- beta$coef[2]
+ }
>Abar <- mean(A)
>varA <- var(A)

13.2 The Haar Wavelet

The following code defines a function that returns the value of the Haar wavelet, defined by

ψ(H)(u) =


−1/

√
2 −1 < u ≤ 0

1/
√

2 0 < u ≤ 1
0 otherwise

(10)

of the scalar or vector passed to it. Notice that a better version of this code would use a vectorized
comparison, but this is an example of conditionals, including the else statement. The interested
student could rewrite this function without using a loop.

> haar <- function(x){
+ y <- x*0
+ for(i in 1:NROW(y)){
+ if(x[i]<0 && x[i]>-1){
+ y[i]=-1/sqrt(2)
+ } else if (x[i]>0 && x[i]<1){
+ y[i]=1/sqrt(2)
+ }
+ }
+ y
+ }

Notice also the use of the logical ‘and’ operator, &&, in the if statement. The logical ‘or’ operator is
the double vertical bar, ||. These logical operators compare the entire object before and after them.
For example, two vectors that differ in only one place will return FALSE under the && operator.
For elementwise comparisons, use the single & and | operators.
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13.3 Maximum Likelihood Estimation

Now we consider code to find the likelihood estimator of the coefficients in a nonlinear model. Let
us assume a normal distribution on the additive errors

y = aLbKc + ε (11)

Notice that the best way to solve this problem is a nonlinear least squares regression using nls().
We do the maximum likelihood estimation anyway. First we write a function that returns the log
likelihood value (actually the negative of it, since minimization is more convenient) then we optimize
using nlm(). Notice that Y, L, and K are vectors of data and a, b, and c are the parameters we wish
to estimate.

> mloglik <- function(beta,Y,L,K){
+ n <- length(Y)
+ sum( (log(Y)-beta[1]-beta[2]*log(L)-beta[3]*log(K))^2 )/(2*beta[4]^2) + \
+ n/2*log(2*pi) + n*log(beta[4])
+ }
> mlem <- nlm(mloglik,c(1,.75,.25,.03),Y=Y,L=L,K=K)
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