
Statistics 930: Probability Theory
Homework No. 9 —

Problem 1. Suppose that a⃗ = (a1, a2, ..., ad) is a point chosen at random from the
sphere in d-dimensions with radius one:

Sd = {a⃗ : |⃗a| = 1}.

Show that as d → ∞ the random variable a1
√
d converges in distribution to a

normal with mean zero and variance one.
Hint: You could go nuts trying all sorts of complicated ways of proving this very
easy fact. Keep calm. Don’t jump to the first idea that comes into your head.
Instead, think how you could use d independent random Yj ∼ N(0, 1) to simulate
the random vector a⃗. You may then see that the problem is an almost immediate
consequence of the LLN! No characteristic functions or any other funny business
is needed. Isn’t it curious that we get a non-trivial CLT from the LLN? I find it
lovely.

It’s not part of this problem, but sometime you should ponder that the ball
Bd = {a⃗ : |⃗a| ≤ 1} in high dimensions behaves more like an “annulus” than like a
ball in lower dimension. For example, asymptotically essentially all of the mass of
Bd is in the “annulus” Ad(ϵ) = {a⃗ : 1− ϵ ≤ |⃗a| ≤ 1}. Properly viewed, this is just
a version of the weak law of large numbers; no Gamma function calculations are
required.

Problem 2. Suppose that a random variable X has characteristic function

EeitX = p(eit)

where p is real polynomial of degree n. Note that this implies that the coefficients
of p are nonnegative and that these coefficients sum to 1. Now, suppose that all of
the roots of the polynomial are real.

Show that X is equal in distribution to Y1+Y2+ · · ·+Yn where the random vari-
ables Yj , j = 1, 2, ..., n are independent (but not necessarily identically distributed)
Bernoulli random variables. Hint: Stay calm and write out in symbols what the
hypothesis gives you. Remind yourself what the characteristic function of a general
Bernoulli random variable must look like. Now, fit the pieces of the puzzle together.

Problem 3. Suppose that Xj , j = 1, 2, ... are i.i.d. with the “tent” characteristic
function

ϕ(t) = (1− |t|)+
• Let Sn = X1+X2+· · ·+Xn and prove that Sn/n converges in distribution to
the standard Cauchy distribution. Hints: Note we normalize by n not

√
n.

This problem is super-easy, but you will have to look up the characteristic
function of the Cauchy if you don’t know it.

• What is the median of X1? What is the value of E|X1|? Justify your
answers. Be sure of your logic. It may help to argue by contradiction.

• Show that if Y is any random variable, then

ψ(t) = E({1− |tY |}+)
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is the characteristic function of some random variable Z. What experi-
ment (or simulation) would give us an observation with this characteristic
function?

Problem 4. If (p1, p2, . . . , pM ) describes a probability mass function on the set
S = {1, 2, . . . ,M} then the associated entropy is defined by

H(p1, p2, . . . , pM ) = −
M∑
j=1

pj log pj .

We also know (or you can assume) that for all (p1, p2, . . . , pM ) we have

H(p1, p2, . . . , pM ) ≤ logM

and if H(p1, p2, . . . , pM ) = logM then pj = 1/M for all j = 1, 2, . . . ,M . That is,
the entropy of an S valued random variable is uniquely maximized by the uniform
distribution on S.

If X is an S valued random variable and P (X = j) = pj , then by a natural
abuse of notation we also write H(X) for H(p1, p2, . . . , pM ). Show that if Xn is
a sequence of random variables such that H(Xn) converges to logM , then Xn

converges in distribution to the uniform distribution on S.
You may want to pattern your argument on the proof of Levy’s continuity the-

orem. This is our fourth example of this argument, and we may see two more.

Problem 5. (a) If f and g are monotone increasing functions and X is any random
variable then we have

E[f(X)]E[g(X)] ≤ E[f(X)g(X)]

whenever both sides of the equation make sense.
(b) Suppose f : R → R satisfies |f(x)− f(y)| ≤ |x− y|. Show that

Var[f(X)] ≤ Var[X].

Too Giant Sized Hints: For part (a) introduce another random variable X ′ that
is independent of X and has the same distribution as X. Now consider the random
variable Z = {f(X)− f(X ′)}{g(X)− g(X ′)}. For part (b) use a similar trick after
recalling the relationship between E[(X −X ′)]2 and Var[X].

There are many problems where one benefits by the introduction of “independent
copies” of some random variable. To wax philosophical for a moment, this is one
of the unique features of the “category of probability spaces.”


