
Statistics 930: Probability Theory
Homework No. 10

General Comments: Please continue with your reading of Durrett. We’ve
covered most of the material in the first three chapters. We dipped a toe into
Chapter 4, but we will not dig into it deeply until we have added martingales to
our toolkit. You should give Chapter 4 a cursory read to familiarize yourself with
the topics, but you should start reading Chaper 5 in earnest. It will occupy the
majority of our remaining time.

Problem 1. Quick shots on uniform integrability.

• Let S denote the collection of all random variables such that

E(|X|(1 + log log(X2 + 20)) < 106.

Prove or disprove that this collection is uniformly integrable. Note: You
should refuse to work with this ugly integrand. If you drag along all of
that detail, it will just muddy the water. Instead, you should formulate an
attractive generalization and prove that generalization!

• Suppose that S is a collection of uniformly integrable random variables and
S′ is a collection of uniformly integrable random variables. Consider the
collection S′′ of all sums X +Y with X ∈ S and Y ∈ S′. Prove or disprove
that S′′ is a uniformly integrable collection.

• Suppose that S = {Z1, Z2, ..., Zn, ...} where the Zi are (possibly dependent)
normals with mean µi and variance σ2

i . Suppose all of the µi and variance
σ2
i are bounded between 1 and 15. Let S′ denote the set of all random

variables that can be written as the product of 10 or fewer elements from
S. Prove or disprove that S′ is a uniformly integrable collection.

Problem 2.
Suppose that X1, X2, ... are i.i.d. N(0, 1) and let Zn = Sn/

√
n where as usual

Sn = X1 +X2 + · · ·+Xn. It it is utterly trivial that Zn converges in distribution;
in fact, Zn is N(0, 1) for all n. Show that Zn does not converge in probability!

Now generalize your discovery as far as you can. You might even aspire to
show that for any i.i.d (non-constant) sequence {Xn} the scaled partial sums Zn,
n = 1, 2, ... fail to converge in probability. Take this as far as you like, but be clear
in what you claim (and prove!).

Problem 3. Give an example of random variables X,X ′, Y , and Y ′ with the
following properties

• X and Y are independent of each other and X ′ and Y ′ are independent of
each other

• X and X ′ have the same distribution
• X + Y and X ′ + Y ′ have the same distribution
• Y and Y ′ do NOT have the same distribution.

You may want to remember the advice about translating weird problems into the
language of characteristic functions. You may also want to review what we covered
about random variables with characteristic function of Pólya type.
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Problem 4. Consider a sequence of independent random variables Xk, k = 1, 2, . . .
and assume that they have the symmetric density on R that is given by

f(x) =

{
0 for t ∈ [−1, 1]

|x|−3 for t /∈ [−1, 1].

(a) Familiarization Checks: confrim that this is a density, EXk = 0, and EX2
k = ∞.

(b) Determine a explicit sequence of increasing positive constants An such that

A−1
n Sn ⇒ N(0, 1) where Sn = X1 +X2 + · · ·+Xn.

Here, as usual, “⇒” denotes convergence in distribution.

Hint: There are several ways to proceed, but you might want to consider an artful
truncation of the Xk’s. What you want from the truncation is a triangular array to
which Lindeberg’s theorem can be applied, but you also need to be able to deduce
the original claim from what you have obtained from Lindeberg.

Problem 5.
(a) Suppose that X is a non-negative random variable for which there exist

constants A and B such that

1

t
E[sin(tX)] ≤ A and

1

t
P

(
X ≥ 1

t

)
≤ B for all t > 0.

Show that EX < ∞.

Hint: First show that Fatou’s Lemma implies that it suffices to show that for some
constant c that

(1) E[X1(X ≤ c/t)] is uniformly bounded for all t > 0.

The shape of the sin function on [0, π/2] and our usual methods will let you prove
the bound (1) in a few lines.

Incidentally, if taken alone, neither of the two conditions of the proposition would
suffice to obtain the conclusion. Thus, we have a fine example of the “principle of
combined estimates” or “two estimates used together can be seriously better than
either estimate used alone.”

(b) Suppose that X is a non-negative random variable. Show that

1(X ≥ 2

t
) ≤ 2

t

∫ t

0

(1− cos(uX)) du for all ω ∈ Ω and t > 0.

This is just calculus (or logic), but it gives us a very nice way to think about the
tail of a non-negative random variable. Obviously we are just itching to take the
expectation of both sides.

(c) Assemble the preceding pieces to show that if X is a non-negative random
variable with characteristic function ϕ and if there exist constant C such that

1

t
|ϕ(t)− 1| ≤ C for all t > 0,

then E(X) < ∞.
Just as a point of culture, one should note that the last condition certainly holds

if ϕ′(0) exists, but we do not have to assume quite that much. Also, by a fact
mentioned in class (but not proved), we know that we cannot drop the assumption
that X is non-negative — even if we assume that ϕ′(0) exists.
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Comment: This has been broken into reasonably small steps in order to maximize
the likelihood that you can close the loops. Still, to get maximum value out of
the problem, take a moment to imagine that you were just given the last assertion
without the intermediate steps.

Try to build a story for yourself that would have led to the discovery of the proof.
Naturally, such a story is not completely honest, but it is still a useful fiction of
discovery and learning. Such “creation tales” help to reinforce memory and build
technique.


