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Abstract. In 1964 A. Garsia gave a stunningly brief proof of a useful maximal
inequality of E. Hopf. The proof has become a textbook standard, but the

inequality and its proof are widely regarded as mysterious. Here we suggest a
straightforward first step analysis that may dispel some of the mystery. The
development requires little more than the notion of a random variable, and,

the inequality may be introduced as early as one likes in a graduate probability
course. The benefit is that one gains access to a proof of the strong law of
large numbers that is pleasantly free of technicalities or tricky ideas.

1. Exploration and First Step Analysis

At first, we consider an infinite sequence X,X1, X2, . . . of independent, identi-
cally distributed random variables that we assume to have a finite first moment, so
in symbols E|X| < ∞. According to custom, we let Sk = X1 +X2 + · · ·+Xk; we
think of the index k as time, and we call the sequence {Sk, 1 ≤ k < ∞} a random
walk (starting at S0 = 0). We also introduce the maximal process

(1) Mn
def
= max(0, S1, S2, . . . , Sn) for 1 ≤ n < ∞,

and we emphasize two points: (1) we include zero as a maximand and (2) we do
not take absolute values of the partial sums.

There are many good, non-mysterious reasons for being interested in Mn, but
we leave those reasons aside for the moment. Our first goal is simply to see what
one can say about Mn, if we just take one step at a time. The usual aim of such
an exploration is to find a pleasing recurrence relation.

It would be nice if, after taking our first step, we were to have the identity

(2) Mn(ω) = X1 +max(0, X2, X2 +X3, . . . , X2 +X3 + · · ·+Xn),

but it is easy to find examples that show that this need not be true. Still, one can
ask when it is true, and, if we ponder that possibility for a moment, it may not
take long to guess that it is true for all ω such that Mn(ω) > 0.

This is a reasonable conjecture, and in two steps one can tease out a confirmation.
If Mn(ω) > 0, then random walk has a positive maximum at some time in the
interval 1 ≤ k ≤ n. If this maximum occurs at time k = 1, then Mn = X1, the
second summand of (2) is zero, and the identity holds. Alternatively, if the strictly
positive maximum is attained at some 1 < k ≤ n, then the second summand of
(2) is strictly positive. In this case, we can remove the leading zero from the set of
maximands, and we see that the identity (2) again holds.
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For ω such that Mn(ω) > 0 we do have our recursion (2), and it expresses a
certain symmetry which we can emphasize if we set

M+
n

def
= max(0, X2, X2 +X3, . . . , X2 +X3 + · · ·+Xn+1).

The motivation here — and one cause for the use of the word symmetry — is that
for independent identically distributed sequences (or even for stationary sequences)
we have “distributional invariance under the plus-operation”; specifically, we have
the distributional equality

M+
k

d
= Mk for all 1 ≤ k < ∞.

Now, if we use an indicator function to bundle up our assumption Mn(ω) > 0, then
from our discussion of (2) we have for all ω that

Mn1(Mn > 0) = X11(Mn > 0) +M+
n−11(Mn > 0)

≤ X11(Mn > 0) +M+
n 1(Mn > 0),

where in the second line we usedM+
n−1 ≤ M+

n , which follows just from the definition
of M+

n . Next, we collect terms

(Mn −M+
n )1(Mn > 0) ≤ X11(Mn > 0),

and we also note by the non-negativity of M+
n that we have the trivial bound

(Mn −M+
n )1(Mn ≤ 0) ≤ 0.

Summing the last two equations gives us a key inequality

(3) Mn −M+
n ≤ X11(Mn > 0).

One should note a curious fact of this derivation. So far, we have not used
any properties of the random sequence {X1, X2, ...}, so the inequality (3) holds
without restriction. What we have is simply a statement about real numbers, and,
as far as pure logic goes, the language of random variables was unnecessary here.
Nevertheless, the relation (3) does emerge naturally when one is guided by the
imagery of random walk and the traditional reasoning of first step analysis.

When we take the expectation in (3) we have our main result. It may look special
and modest, but it is general and powerful.

Lemma 1 (Garsia’s L1 Maximal Inequality). If {X1, X2, ..., Xn} are integrable
random variables such that EMn = EM+

n , then we have

(4) 0 ≤ E[X11(Mn > 0)].

The condition EMn = EM+
n certainly holds if the random variables {X1, X2, ...}

are independent and identically distributed, but one does not need so much. Sta-
tionarity of {X1, X2, ...} would be enough.

In fact, the lemma stated here is rather different from the Hopf maximal inequal-
ity that is given in Garsia (1965), but, except for the motivation and exposition, the
logic of the proof is unchanged. It is curious — but perhaps only curious — that
in the present formulation one sees that the exchangeability of {X1, X2, ..., Xn+1}
would suffice for the maximal inequality (4) to hold.
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2. Passage to a More Conventional Form

The inequality (4) does not have the shape of more familiar maximal inequalities
like those of Lévy or Kolmogorov, but it is easy to pass from (4) to an inequality
with a more conventional appearance. If we take a constant λ > 0 and apply (4)
to the random variables X ′

i = Xi − λ, then we have

0 ≤ E

[
(X1 − λ)1[ max

0≤k≤n
{0, S1 − λ, S2 − 2λ, . . . , Sn − nλ} > 0]

]
= E

[
(X1 − λ)1[ max

1≤k≤n
{S1, S2/2, . . . , Sk/k, . . . , Sn/n} > λ]

]
.

By linearity this implies

P [ max
1≤k≤n

{S1, . . . , Sk/k, . . . , Sn/n} > λ] ≤ 1

λ
E(|X1|),

which is a maximal inequality of the classical form; specifically, it is a weak-type
L1 maximal inequality. If we let n → ∞, then we have an even nicer version

(5) P [ max
1≤k<∞

{Sk/k} ≥ λ] ≤ 1

λ
E(|X1|).

3. Proof of the Strong Law of Large Numbers

The SLLN for bounded random variables is something that one can take as
given; it is often proved in the earliest days of a graduate course in probability. It is
most pleasingly obtained as an immediate consequence of Hoeffding’s inequality and
the Borel-Cantelli lemma, but it is more commonly proved by applying Markov’s
inequality to the fourth power of Sn/n.

The SLLN for bounded random variables is a baby theorem, and for a genuine
adult strength SLLN one wants to reduce the moment assumption to the logical
minimum. Here we take {X1, X2, . . .} to be a sequence of independent, identically
distributed random variables such that E(|Xi|) < ∞ and E(Xi) = 0. Our goal is
to show that Sn/n converges to zero with probability one.

The recipe has just three ingredients: truncation, the SLLN for bounded random
variables, and the L1 maximal inequality. We first fix ϵ > 0, and then for a constant
K > 0 we consider the truncation representation

Xi = Xi1(|Xi| ≤ K) +Xi1(|Xi| > K)
def
= X ′

i(K) +X ′′
i (K).

By the SLLN for bounded random variables we have with probability one that

lim sup
n→∞

1

n
Sn = lim sup

n→∞

{
1

n
S′
n(K) +

1

n
S′′
n(K)

}
≤ E[X ′

1(K)] + sup
1≤n<∞

|S′′
n(K)/n|.

Since EX1 = 0, the dominated convergence theorem tells us there is an K0 such
that for all K ≥ K0 we have |EX ′

1(K)| ≤ ϵ. Hence for all K ≥ K0 the L1 maximal
inequality (5) gives us

P (lim sup
n→∞

1

n
Sn > 2ϵ) ≤ 1

ϵ
E[ |X ′′

i (K)| ].

If we let K → ∞, then the upper bound goes to zero, so when we recall that ϵ > 0
is arbitrary, we have

lim sup
n→∞

1

n
Sn ≤ 0 with probability one.
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Finally, by applying the same argument to the sequence {−Xi : 1 ≤ i < ∞}, one
gets a corresponding lower bound on the limit infimum. The two bounds complete
the proof of the strong law of large numbers.

4. Connections and Comments

In comparison to the most often quoted proofs of the SLLN, the proof via an L1

maximal inequality has two notable benefits: (a) one only needs a naive, fixed-level
truncation, and (b) the finish via the maximal inequality needs no further trickery.

Kolmogorov’s proof uses a maximal inequality that is of comparable complex-
ity to (5), but the finish is not nearly so quick. Typically, one uses a “moving
truncation” of the form Xk = Xk1(|Xi| ≤ k) + Xk1(|Xk| > k), a clever moment
calculation, a Borel-Cantelli argument, and, for the coup de grâce, a fact about real
sequences such as Kronecker’s lemma.

The argument introduced by Etemadi (1981) is shorter than Kolmogorov’s, and
it also covers new ground. Still, it has its own subtleties. First, a sagacious re-
striction to non-negative random variables makes it possible to restrict attention to
proving that one has almost sure convergence to the mean when one moves along
subsequences of the form nk = ⌊(1 + δ)k⌋, δ > 0. After introducing an exponential
moving truncation one is then left with “just” a moment calculation and a Borel-
Cantelli argument. Nevertheless, the moment calculation is a clever one which one
could easily miss, or fail to remember.

The adult strength SLLN is a special case of the ergodic theorem, but this is
a lesson that tends to come toward the end of a traditional course in probability
theory, if at all. Here we completely sidestepped the language of ergodic theory
and kept close to the concepts that are already familiar to beginners.

The lemma of Hopf (1954) that motivated Garsia (1965) had it origins in a proof
due to Yosida and Kakutani (1939) of the classical Birkhoff ergodic theorem, for
which there are now many proofs. If one were to deal openly with ergodic theory
when first introducing the SLLN, then one could use the streamlined arguments
of Katznelson and Weiss (1982) or Keane and Petersen (2006) to prove the SLLN.
This is certainly a sensible possibility, but the path would probably be a bit more
slippery for beginners than the path that proceeds through Lemma 1 and the L1

maximal inequality (5).
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