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1. INTRODUCTION. The Central Limit Theorem, one of the most striking and use-
ful results in probability and statistics, explains why the normal distribution appears
in areas as diverse as gambling, measurement error, sampling, and statistical mechan-
ics. In essence, the Central Limit Theorem states that the normal distribution applies
whenever one is approximating probabilities for a quantity which is a sum of many
independent contributions all of which are roughly the same size. It is the Lindeberg-
Feller Theorem [4] which makes this statement precise in providing the sufficient,
and in some sense necessary, Lindeberg condition whose satisfaction accounts for the
ubiquitous appearance of the bell-shaped normal.

Generally the Lindeberg condition is handled using Fourier or analytic methods and
is somewhat hard to interpret. Here we provide a simpler, equivalent, and more easily
interpretable probabilistic formulation of the Lindeberg condition and demonstrate its
sufficiency and partial necessity in the Central Limit Theorem using more elementary
means.

The seeds of the Central Limit Theorem, or CLT, lie in the work of Abraham de
Moivre, who, in 1733, not being able to secure himself an academic appointment, sup-
ported himself consulting on problems of probability and gambling. He approximated
the limiting probabilities of the binomial distribution, the one which governs the be-
havior of the number Sn of successes in an experiment which consists of n independent
trials, each one having the same probability p ∈ (0, 1) of success.

Each individual trial of such an experiment can be modelled by X , a (Bernoulli)
random variable which records one for each success and zero for each failure,

P(X = 1) = p and P(X = 0) = 1 − p,

and has mean E X = p and variance Var(X) = p(1 − p). The record of successes
and failures in n independent trials is then given by an independent sequence X1, X2,

. . . , Xn of these Bernoulli variables, and the total number of successes Sn by their sum

Sn = X1 + · · · + Xn. (1)

Exactly, Sn has the binomial distribution, which specifies that

P(Sn = k) =
(

n

k

)
pk(1 − p)n−k for k = 0, 1, . . . , n.

For even moderate values of n managing the binomial coefficients
(n

k

)
becomes un-

wieldy, to say nothing of computing the sum which yields the cumulative probability

P(Sn ≤ m) =
∑
k≤m

(
n

k

)
pk(1 − p)n−k

that there will be m or fewer successes.
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The great utility of the CLT is in providing an easily computable approximation to
such probabilities that can be quite accurate even for moderate values of n. To state this
result, let Z denote a standard normal variable, that is, one with distribution function
P(Z ≤ x) = �(x) given by

�(x) =
∫ x

−∞
ϕ(u)du where ϕ(u) = 1√

2π
exp

(
−1

2
u2

)
, (2)

and recall that we say a sequence of random variables Yn is said to converge in distri-
bution to Y , written Yn →d Y , if

lim
n→∞ P(Yn ≤ x) = P(Y ≤ x) for all continuity points x of P(Y ≤ x). (3)

Letting Wn = (Sn − np)/
√

np(1 − p), the binomial standardized to have mean zero
and variance one, obtained from Sn by subtracting its mean and dividing by its standard
deviation, the CLT yields

Wn →d Z .

This result allows us to approximate the cumbersome cumulative binomial probability
P(Sn ≤ m) by the simpler �((m − np)/

√
np(1 − p)), noting that �(x) is continuous

for all x , and therefore that the convergence of distribution functions in (3) here holds
everywhere.

It was only for the special case of the binomial that normal approximation was first
considered. Only many years later with the work of Laplace around 1820 did it begin to
be systematically realized that the same normal limit is obtained when the underlying
Bernoulli variables are replaced by any variables with a finite variance. The result was
the classical Central Limit Theorem, which states that Wn converges in distribution to
Z whenever

Wn = (Sn − nμ)/
√

nσ 2

is the standardization of a sum Sn , as in (1), of independent and identically distributed
random variables each with mean μ and variance σ 2. From this generalization it now
becomes somewhat clearer why various distributions observed in nature, which may
not be at all related to the binomial, such as the errors of measurement averages, or the
heights of individuals in a sample, take on the bell-shaped form: each observation is
the result of summing many small independent factors.

A further extension of the classical CLT could yet come. In situations where the
summands do not have identical distributions, can the normal curve still govern? For
an example, consider the symmetric group Sn , the set of all permutations π on the set
{1, 2, . . . , n}. We can represent π ∈ S7, for example, by two-line notation

π =
(

1 2 3 4 5 6 7
4 3 7 6 5 1 2

)

from which one can read that π(1) = 4 and π(4) = 6. This permutation can also be
represented in the cycle notation

π = (1, 4, 6)(2, 3, 7)(5)

with the meaning that π maps 1 to 4, 4 to 6, 6 to 1, and so forth. From the cycle
representation we see that π has two cycles of length 3 and one of length 1, for a total
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of three cycles. In general, let Kn(π) denote the total number of cycles in a permutation
π ∈ Sn. If π is chosen uniformly from all the n! permutations in Sn, does the Central
Limit Theorem imply that Kn(π) is approximately normally distributed for large n?

To answer this question we will employ the Feller coupling [3], which constructs
a random permutation π uniformly from Sn with the help of n independent Bernoulli
variables X1, . . . , Xn with distributions

P(Xi = 0) = 1 − 1

i
and P(Xi = 1) = 1

i
, i = 1, . . . , n. (4)

Begin the first cycle at stage 1 with the element 1. At stage i , i = 1, . . . , n, if Xn−i+1 =
1 close the current cycle and begin a new one starting with the smallest number not yet
in any cycle, and otherwise choose an element uniformly from those yet unused and
place it to the right of the last element in the current cycle. In this way at stage i we
complete a cycle with probability 1/(n − i + 1), upon mapping the last element of the
current cycle to the one which begins it.

As the total number Kn(π) of cycles of π is exactly the number of times an element
closes the loop upon completing its own cycle,

Kn(π) = X1 + · · · + Xn, (5)

a sum of independent, but not identically distributed, random variables. Hence, despite
the similarity of (5) to (1), the hypotheses of the classical Central Limit Theorem do
not hold. Nevertheless, in 1922 Lindeberg [8] provided a general condition which can
be applied in this case to show that Kn(π) is asymptotically normal.

To explore Lindeberg’s condition, first consider the proper standardization of Kn(π)

in our example. As any Bernoulli random variable with success probability p has mean
p and variance p(1 − p), the Bernoulli variable Xi in (4) has mean i−1 and variance
i−1(1 − i−1) for i = 1, . . . , n. Thus,

hn =
n∑

i=1

1

i
and σ 2

n =
n∑

i=1

(
1

i
− 1

i2

)
(6)

are the mean and variance of Kn(π), respectively; the mean hn is known as the nth
harmonic number. In particular, standardizing Kn(π) to have mean zero and variance
1 results in

Wn = Kn(π) − hn

σn
,

which, by absorbing the scaling inside the sum, can be written as

Wn =
n∑

i=1

Xi,n where Xi,n = Xi − i−1

σn
. (7)

In general, it is both more convenient and more encompassing to deal not with a
sequence of variables but rather with a triangular array as in (7) which satisfies the
following condition.

Condition 1.1. For every n = 1, 2, . . . , the random variables making up the collec-
tion Xn = {Xi,n : 1 ≤ i ≤ n} are independent with mean zero and finite variances
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σ 2
i,n = Var(Xi,n), standardized so that

Wn =
n∑

i=1

Xi,n has variance Var(Wn) =
n∑

i=1

σ 2
i,n = 1.

Of course, even under Condition 1.1, some further assumptions must be satisfied by
the summand variables for Wn to converge in distribution to the normal. For instance, if
the first variable accounts for some nonvanishing fraction of the total variability, it will
strongly influence the limiting distribution, possibly resulting in the failure of normal
convergence. Ruling out such situations, the Lindeberg-Feller CLT, see [4], says that
Wn →d Z under the Lindeberg condition

∀ε > 0 lim
n→∞ Ln,ε = 0 where Ln,ε =

n∑
i=1

E{X 2
i,n1(|Xi,n| ≥ ε)}, (8)

where for an event A, the ‘indicator’ random variable 1(A) takes on the value 1 if
A occurs, and the value 0 otherwise. The appearance of the Lindeberg condition is
justified by explanations such as the one given by Feller [4], who roughly says that it
requires the individual variances be due mainly to masses in an interval whose length
is small in comparison to the overall variance. We present a probabilistic condition
which is seemingly simpler, yet equivalent.

Our probabilistic approach to the CLT is through the so-called zero bias transfor-
mation introduced in [6], which was motivated by Stein’s characterization [10] of
N (0, σ 2), the mean zero normal distribution with variance σ 2. In particular, Stein
proves that X has distribution N (0, σ 2) if and only if

σ 2 E[ f ′(X)] = E[X f (X)] (9)

for all absolutely continuous functions f for which these expectations exist.
To motivate the zero bias transformation, let B be a Bernoulli random variable

with success probability p ∈ (0, 1) and let X be the (nonnormal) centered Bernoulli
variable B − p, having variance σ 2 = p(1 − p). Then, computing the right-hand side
in Stein’s identity (9), we find

E[X f (X)] = E[(B − p) f (B − p)]
= p(1 − p) f (1 − p) − (1 − p)p f (−p)

= σ 2[ f (1 − p) − f (−p)]

= σ 2

∫ 1−p

−p
f ′(u)du

= σ 2 E f ′(U),

for U having uniform density over [−p, 1 − p]. Hence, a version of Stein’s identity
holds for this nonnormal variable upon replacing the X appearing on the left-hand side
of (9) by a variable with a distribution different from that of the given X .

This calculation gives one instance of the zero bias transformation: the centered
Bernoulli B − p is transformed to the uniform U over [−p, 1 − p]. With ∗ indicating
the transformation and =d the equality of two random variables in distribution, we
write

(B − p)∗ =d U where U has distribution U [−p, 1 − p]. (10)
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In fact, it turns out [6] that for every X with mean zero and finite, nonzero variance σ 2,
there exists a unique ‘X -zero biased distribution’ on an X ∗ which satisfies

σ 2 E f ′(X ∗) = E[X f (X)] (11)

for all absolutely continuous functions f for which these expectations exist. By Stein’s
characterization, X∗ and X have the same distribution if and only if X has the N (0, σ 2)

distribution, that is, the normal distribution is the zero bias transformation’s unique
fixed point. The Bernoulli example highlights the general fact that the distribution of
X ∗ is always absolutely continuous, regardless of the nature of the distribution of X ,
and that the zero bias transformation moves a nonnormal distribution in some sense
closer to normality.

One way to see the ‘if’ direction of Stein’s characterization, that is, why the zero
bias transformation fixes the normal, is to note that the density function ϕσ 2(x) =
σ−1ϕ(σ−1x) of a N (0, σ 2) variable, with ϕ(x) given by (2), satisfies the differential
equation with a form ‘conjugate’ to (11),

σ 2ϕ′
σ 2(x) = −xϕσ 2(x),

and now (11), with X ∗ = X , follows for a large class of functions f by integration by
parts.

It is the uniqueness of the fixed point of the zero bias transformation, that is, the
fact that X ∗ has the same distribution as X only when X is normal, that provides the
probabilistic reason behind the CLT. This ‘only if’ direction of Stein’s characteriza-
tion suggests that a distribution which gets mapped to one nearby is close to being a
fixed point of the zero bias transformation, and therefore must be close to the transfor-
mation’s only fixed point, the normal. Hence the normal approximation should apply
whenever the distribution of a random variable is close to that of its zero bias transfor-
mation.

Moreover, the zero bias transformation has a special property that immediately
shows why the distribution of a sum Wn of comparably sized independent random
variables is close to that of W ∗

n : a sum of independent terms can be zero biased by
randomly selecting a single summand, with each summand chosen with probability
proportionally to its variance, and replacing it with one of comparable size. Thus, by
differing only in a single summand, the variables Wn and W ∗

n are close, making Wn an
approximate fixed point of the zero bias transformation, and therefore approximately
normal. This explanation, when given precisely, becomes a probabilistic proof of the
Lindeberg-Feller CLT under a condition equivalent to (8) which we call the ‘small zero
bias condition’.

To set the stage for the introduction of the small zero bias condition we first consider
more precisely this special property of the zero bias transformation on independent
sums. Given Xn satisfying Condition 1.1, let X∗

n = {X ∗
i,n : 1 ≤ i ≤ n} be a collection

of random variables so that X ∗
i,n has the Xi,n zero bias distribution and is independent

of Xn . Further, let In be a random index, independent of Xn and X∗
n , with distribution

P(In = i) = σ 2
i,n, (12)

and write the variables X In ,n and X ∗
In ,n which are selected by In, that is, the mixtures,

using indicator functions as

X In ,n =
n∑

i=1

1(In = i)Xi,n and X ∗
In ,n =

n∑
i=1

1(In = i)X ∗
i,n. (13)
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Then, upon replacing in the sum Wn the variable selected by In by the corresponding
variable having its zero biased distribution, we obtain

W ∗
n = Wn − X In ,n + X ∗

In ,n, (14)

a variable which has the Wn zero bias distribution.
The proof of this fact is simple. For all absolutely continuous functions f for which

the following expectations exist,

E[Wn f (Wn)] = E

[
n∑

i=1

Xi,n f (Wn)

]

=
n∑

i=1

E[Xi,n f ((Wn − Xi,n) + Xi,n)]

=
n∑

i=1

E[σ 2
i,n f ′((Wn − Xi,n) + X ∗

i,n)]

= E

[
n∑

i=1

1(In = i) f ′(Wn − Xi,n + X ∗
i,n)

]

= E[ f ′(Wn − X In ,n + X ∗
In ,n)],

where in the third equality we have used the fact that Xn,i and Wn − Xi,n are indepen-
dent, and in the fourth equality that In is independent of Xn and X∗

n . In view of (11),
we now have the equality of the expectations of W ∗

n and Wn − X In ,n + X ∗
In ,n on a large

enough class of functions sufficient to guarantee that these two random variables have
the same distribution.

From (14) we see that the CLT should hold when the random variables X In ,n and
X ∗

In ,n are both small asymptotically, since then the distribution of Wn is close to that
of W ∗

n , making Wn an approximate fixed point of the zero bias transformation. The
following theorem shows that properly formalizing the notion of smallness results in a
condition equivalent to Lindeberg’s. Recall that we say a sequence of random variables
Yn converges in probability to Y , and write Yn →p Y , if

lim
n→∞ P(|Yn − Y | ≥ ε) = 0 for all ε > 0.

Theorem 1.1. If Xn, n = 1, 2, . . . is a collection of random variables satisfying Con-
dition 1.1, then the small zero bias condition

X ∗
In ,n →p 0 (15)

and the Lindeberg condition (8) are equivalent.

Our probabilistic proof of the Lindeberg-Feller Theorem develops by first showing
that the small zero bias condition implies that

X In ,n →p 0,

and hence that

W ∗
n − Wn = X ∗

In ,n − X In ,n →p 0.
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Theorem 1.2 confirms that this convergence in probability to zero, mandating that
Wn have its own zero bias distribution in the limit, is sufficient to guarantee that Wn

converges in distribution to the normal.

Theorem 1.2. If Xn, n = 1, 2, . . . satisfies Condition 1.1 and the small zero bias con-
dition X ∗

In ,n →p 0, then Wn →d Z, a standard normal random variable.

We return now to the number Kn(π) of cycles of a random permutation in Sn, with
mean hn and variance σ 2

n given by (6). Since
∑∞

i=1 1/ i2 < ∞, by upper and lower
bounding the nth harmonic number hn by integrals of 1/x , we have

lim
n→∞

hn

log n
= 1 and therefore lim

n→∞
σ 2

n

log n
= 1. (16)

In view of (7) and (4) we note that in this case Wn = ∑n
i=2 Xi,n, as X1 = 1 identically

makes X1,n = 0 for all n. Now by the linearity relation

(aX)∗ =d aX ∗ for all a �= 0,

which follows directly from (11), by (10) we have

X ∗
i,n =d Ui/σn, where Ui has distribution U [−1/ i, 1 − 1/ i], i = 2, . . . , n.

In particular, |Ui | ≤ 1 with probability one for all i = 2, . . . , n, and therefore

|X ∗
In ,n| ≤ 1/σn → 0 (17)

by (16). Hence the small zero bias condition is satisfied, and Theorem 1.2 may be
invoked to show that the number of cycles of a random permutation is asymptotically
normal.

More generally, the small zero bias condition will hold for an array Xn with
elements Xi,n = Xi/σn whenever the independent mean zero summand variables
X1, X2, . . . satisfy |Xi | ≤ C with probability one for some constant C , and the vari-
ance σ 2

n of their sum Sn tends to infinity. In particular, from (11) one can verify that
|Xi | ≤ C with probability one implies |X ∗

i | ≤ C with probability one, and hence (17)
holds with C replacing 1. In such a case, the Lindeberg condition (8) is also not diffi-
cult to verify: for any ε > 0 one has C/σn < ε for all n sufficiently large, and all terms
in the sum in (8) are identically zero.

Next consider the verification of the Lindeberg and small zero bias conditions
in the identically distributed case, showing that the classical CLT is a special case
of the Lindeberg-Feller theorem. Let X1, X2, . . . be independent with Xi =d X, i =
1, 2, . . . , where X is a random variable with mean μ and variance σ 2. By replacing Xi

by (Xi − μ)/σ , it suffices to consider the case where μ = 0 and σ 2 = 1. Now set

Xi,n = 1√
n

Xi and Wn =
n∑

i=1

Xi,n.

For the verification of the classical Lindeberg condition, first use the fact that the dis-
tributions are identical and the

√
n-scaling to obtain

Ln,ε = nE{X 2
1,n1(|X1,n| ≥ ε)} = E{X 21(|X | ≥ √

nε)}.
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Now note that X 21(|X | ≥ √
nε) tends to zero as n → ∞, and is dominated by the

integrable variable X 2; hence, the dominated convergence theorem may be invoked to
provide the needed convergence of Ln,ε to zero.

Verification that the small zero bias condition is satisfied in this case is more mild.
Again using that (aX)∗ = aX ∗, we have

X ∗
In ,n =d

1√
n

X ∗,

the mixture on the left being of these identical distributions. But now for any ε > 0

lim
n→∞ P(|X ∗

In ,n| ≥ ε) = lim
n→∞ P(|X ∗| ≥ √

nε) = 0,

that is, X ∗
In ,n →p 0.

Though Theorems 1.1 and 1.2 show that the Lindeberg condition is sufficient for
normal convergence, it is easy to see, and well known, that it is not necessary. In
particular, consider the case where for all n the first summand X1,n of Wn has the mean
zero normal distribution σ Z with variance σ 2 ∈ (0, 1), and the Lindeberg condition is
satisfied for the remaining variables, that is, that the limit is zero when taking the sum
in (8) over all i �= 1. Since the sum of independent normal variables is again normal,
Wn will converge in distribution to Z , but (8) does not hold, since for all ε > 0

lim
n→∞ Ln,ε = E{X 2

1,n1(|X1,n| ≥ ε)} = σ 2 E{Z21(σ |Z | ≥ ε)} > 0.

Defining

mn = max
1≤i≤n

σ 2
i,n (18)

to use for excluding such cases, we have the following partial converse to Theorem 1.2
(see also [4, Theorem 2, page 492] proved independently by Feller and Lévy, and also
[7] for interesting CLT history).

Theorem 1.3. If Xn, n = 1, 2, . . . satisfies Condition 1.1 and

lim
n→∞ mn = 0, (19)

then the small zero bias condition is necessary for Wn →d Z.

We prove Theorem 1.3 in Section 5 by showing that Wn →d Z implies that W ∗
n →d Z ,

and that (19) implies X In ,n →p 0. But then Wn + X ∗
In ,n = W ∗

n + X In ,n →d Z also, and
we can then prove that

Wn →d Z and Wn + X ∗
In ,n →d Z imply that X ∗

In ,n →p 0.

This argument formalizes the probabilistic reason that the small zero bias condition,
or Lindeberg condition, is necessary for normal convergence under (19).

Section 2 draws a parallel between the zero bias transformation and the one better
known for size biasing, and there we consider its connection to the differential equation
method of Stein using test functions. In Section 3 we prove the equivalence of the
classical Lindeberg condition and the small zero bias condition, and then, in Sections
4 and 5, we prove its sufficiency and partial necessity for normal convergence.
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Some pains have been taken to keep the treatment as elementary as possible, in
particular by avoiding the use of characteristic functions. Though some technical ar-
gument is needed, only real functions are involved, and the development remains at a
level as basic as the material permits. With the help of two general results in Section 6,
the presentation is self-contained with the exception of the existence of the zero bias
distribution in the generality already specified, and the following two results stated in
Section 2: the bounds (24) to the Stein equation, applied in Theorem 1.2, and the well-
known fact involving convergence in distribution, that (3) implies (21) when C = Cb,
used in Theorem 1.3.

2. BIASING AND THE STEIN EQUATION. Relation (11) characterizing the zero
bias distribution of a mean zero random variable with finite variance is quite similar to
the better known identity which characterizes the size bias distribution of a nonnegative
random variable X with finite mean μ. In particular we say that X s has the X -size
biased distribution if

μE f (X s) = E[X f (X)] (20)

for all functions f for which these expectations exist. For example, if X is a nonnega-
tive integer valued random variable, it is easy to verify that

P(X s = k) = k P(X = k)

μ
for k = 0, 1, . . . ,

that is, the probability that X s takes on the value k is ‘biased’ by the size k of the
value taken. Size biasing can appear unwanted in various sampling contexts, and is
also implicated in generating the waiting time paradox ([4, sec. I.4]).

We note that the size biasing relation (20) is of the same form as the zero biasing
relation (11), but with the mean μ replacing the variance σ 2, and f rather than f ′
evaluated on the biased variable. Hence zero biasing is a kind of analog of size biasing
on the domain of mean zero random variables. In particular, the two transformations
share the property that a sum of independent terms can be biased by replacing a single
summand by one having that summand’s biased distribution; in zero biasing the sum-
mand is selected with probability proportional to its variance, and in size biasing with
probability proportional to its mean.

The biasing relations (11) and (20) are in terms of ‘test functions’, while definition
(3) of convergence in distribution is expressed using distribution functions. The con-
nection between these frameworks (see [1]) is the fact that convergence in distribution
of Yn to Y implies the convergence of expectations of functions of Yn to those of Y ,
precisely, Yn →d Y implies

lim
n→∞ Eh(Yn) = Eh(Y ) for all h ∈ C (21)

when C = Cb, the collection of all bounded, continuous functions. Clearly, (21) hold-
ing with C = Cb implies that it holds with C = C∞

c,0, the set of all functions with com-
pact support which integrate to zero and have derivatives of all orders, since C∞

c,0 ⊂ Cb.
In Section 6 we prove the following result, making all three statements equivalent.

Theorem 2.1. If (21) holds with C = C∞
c,0, then Yn →d Y .

In light of the characterization (9), a strategy first suggested in [9] (see also [11])
for proving Wn →d Z is to choose a class of test functions C, such as C∞

c,0, which is
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rich enough to guarantee convergence in distribution, and then for given h ∈ C to find
a function f which solves the ‘Stein equation’

f ′(w) − w f (w) = h(w) − Eh(Z). (22)

Now demonstrating Eh(Wn) → Eh(Z) can be accomplished by showing

lim
n→∞ E

[
f ′(Wn) − Wn f (Wn)

] = 0.

It is easy to verify that when Eh(Z) exists an explicit solution to (22) is given by

f (w) = ϕ−1(w)

∫ w

−∞
[h(u) − Eh(Z)]ϕ(u)du, (23)

where ϕ(u) is the standard normal density given in (2). Stein [11] showed that when h
is a bounded differentiable function with bounded derivative h′, the solution f is twice
differentiable and satisfies

|| f ′|| ≤ 2||h|| and || f ′′|| ≤ 2||h′||, (24)

where for any function g,

||g|| = sup
−∞<x<∞

|g(x)|.

These bounds will be applied in Section 4.

3. EQUIVALENCE: PROOF OF THEOREM 1.1. Since the random index In is
independent of Xn and X∗

n , taking expectations in (13) and using (12) yields

E f (X In ,n) =
n∑

i=1

σ 2
i,n E f (Xi,n) and E f (X ∗

In ,n) =
n∑

i=1

σ 2
i,n E f (X ∗

i,n). (25)

Let ε > 0 be given and set

f (x) =
⎧⎨
⎩

x + ε if x ≤ −ε,
0 if −ε < x < ε,
x − ε if x ≥ ε.

The function f is absolutely continuous with

f ′(x) = 1(|x | ≥ ε) almost everywhere.

Hence, using the zero bias relation (11) for the second equality,

σ 2
i,n P(|X ∗

i,n| ≥ ε) = σ 2
i,n E f ′(X ∗

i,n)

= E
[(

X 2
i,n − ε|Xi,n|

)
1(|Xi,n| ≥ ε)

]
(26)

≤ E
[(

X 2
i,n + ε|Xi,n|

)
1(|Xi,n| ≥ ε)

]
≤ 2E

(
X 2

i,n1(|Xi,n| ≥ ε)
)
,
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and summing over i = 1, . . . , n and applying identity (25) for the indicator function
1(|x | ≥ ε) we obtain

P(|X∗
In ,n| ≥ ε) =

n∑
i=1

σ 2
i,n P(|X ∗

i,n| ≥ ε) ≤ 2Ln,ε .

Hence the Lindeberg condition (8) implies the small zero bias condition (15).
For the implication in the other direction use that for all x ,

x21(|x | ≥ ε) ≤ 2
(

x2 − ε

2
|x |

)
1

(
|x | ≥ ε

2

)
.

Applying (26) and (25) to obtain the second and third equalities, respectively, we have

Ln,ε =
n∑

i=1

E{X 2
i,n1(|Xi,n| ≥ ε)} ≤ 2

n∑
i=1

E
(

X 2
i,n − ε

2
|Xi,n|

)
1

(
|Xi,n| ≥ ε

2

)

= 2
n∑

i=1

σ 2
i,n P

(
|X ∗

i,n| ≥ ε

2

)

= 2P
(
|X ∗

In ,n| ≥ ε

2

)
,

proving that the small zero bias condition (15) implies the Lindeberg condition (8).

4. SUFFICIENCY: PROOF OF THEOREM 1.2. With the help of two lemmas we
prove Theorem 1.2, the ‘small zero bias’ version of the Lindeberg-Feller theorem.

Lemma 4.1. Let Xn, n = 1, 2, . . . satisfy Condition 1.1 and mn be given by (18). Then

X In ,n →p 0 whenever lim
n→∞ mn = 0.

Proof. From (25) with f (x) = x we find E X In ,n = 0, and hence Var(X In ,n) = E X 2
In ,n .

Now (25) again, with f (x) = x2, yields

Var(X In ,n) =
n∑

i=1

σ 4
i,n.

Since for all i , σ 4
i,n ≤ σ 2

i,n max1≤ j≤n σ 2
j,n = σ 2

i,nmn , for any ε > 0 we have

P(|X In ,n| ≥ ε) ≤ Var(X In ,n)

ε2
= 1

ε2

n∑
i=1

σ 4
i,n ≤ 1

ε2
mn

n∑
i=1

σ 2
i,n = 1

ε2
mn,

the first inequality being Chebyshev’s, and the last equality following from Condition
1.1. As mn → 0 by hypotheses, the proof is complete.

Lemma 4.2. If Xn, n = 1, 2, . . . satisfies Condition 1.1 and the small zero bias con-
dition, then

X In ,n →p 0.
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Proof. For all n, 1 ≤ i ≤ n, and ε > 0,

σ 2
i,n = E(X 2

i,n1(|Xi,n| < ε)) + E(X 2
i,n1(|Xi,n| ≥ ε)) ≤ ε2 + Ln,ε .

Since the upper bound does not depend on i ,

mn ≤ ε2 + Ln,ε,

and now, since Xn satisfies the small zero bias condition, by Theorem 1.1 we have

lim sup
n→∞

mn ≤ ε2

and therefore

lim
n→∞ mn = 0.

The claim now follows by Lemma 4.1.

We are now ready to prove the forward direction of the Lindeberg-Feller CLT.

Proof of Theorem 1.2. Let h ∈ C∞
c,0 and let f be the solution to the Stein equation, for

that h, given by (23). Substituting Wn for w in (22), taking expectation, and using (11)
we obtain

E [h(Wn) − Eh(Z)] = E
[

f ′(Wn) − Wn f (Wn)
] = E

[
f ′(Wn) − f ′(W ∗

n )
]

(27)

with W ∗
n given by (14). Since

W ∗
n − Wn = X ∗

In ,n − X In ,n,

the small zero bias condition and Lemma 4.2 imply

W ∗
n − Wn →p 0. (28)

By (24) f ′ is bounded with a bounded derivative f ′′, hence its global modulus of
continuity

η(δ) = sup
|y−x |≤δ

| f ′(y) − f ′(x)|

is bounded and satisfies limδ→0 η(δ) = 0. Now, by (28),

η(|W ∗
n − Wn|) →p 0, (29)

and by (27) and the triangle inequality

|Eh(Wn) − Eh(Z)| = ∣∣E( f ′(Wn) − f ′(W ∗
n ))

∣∣
≤ E

∣∣ f ′(Wn) − f ′(W ∗
n )

∣∣
≤ Eη(|Wn − W ∗

n |).
Therefore

lim
n→∞ Eh(Wn) = Eh(Z)

by (29) and the bounded convergence theorem. Invoking Theorem 2.1 finishes the
proof.
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5. PARTIAL NECESSITY. In this section we prove Theorem 1.3, showing in what
sense the Lindeberg condition, in its equivalent zero bias form, is necessary. We begin
with Slutsky’s lemma, see [5], which states that

Un →d U and Vn →p 0 implies Un + Vn →d U. (30)

When independence holds, we have the following kind of reverse implication, whose
proof is deferred to Section 6.

Lemma 5.1. Let Un and Vn, n = 1, 2, . . . be two sequences of random variables such
that Un and Vn are independent for every n. Then

Un →d U and Un + Vn →d U implies Vn →p 0.

Next, we show that the zero bias transformation enjoys the following continuity
property.

Lemma 5.2. Let Y and Yn, n = 1, 2, . . . be mean zero random variables with finite,
nonzero variances σ 2 = Var(Y ) and σ 2

n = Var(Yn), respectively. If

Yn →d Y and lim
n→∞ σ 2

n = σ 2,

then

Y ∗
n →d Y ∗.

Proof. Let f ∈ C∞
c,0 and F(y) = ∫ y

−∞ f (t)dt . Since Y and Yn have mean zero and
finite variances, their zero bias distributions exist, so in particular,

σ 2
n E f (Y ∗

n ) = E
[
Yn F(Yn)

]
for all n.

By (21), since yF(y) is in Cb, we obtain

σ 2 lim
n→∞ E f (Y ∗

n ) = lim
n→∞ σ 2

n E f (Y ∗
n ) = lim

n→∞ E[Yn F(Yn)] = E[Y F(Y )] = σ 2 E f (Y ∗).

Hence E f (Y ∗
n ) → E f (Y ∗) for all f ∈ C∞

c,0, so Y ∗
n →d Y ∗ by Theorem 2.1.

We now provide the proof of the partial converse to the Lindeberg-Feller theorem.

Proof of Theorem 1.3. Since Wn →d Z and Var(Wn) → Var(Z), the sequence of vari-
ances and the limit being identically one, Lemma 5.2 implies W ∗

n →d Z∗. But Z is a
fixed point of the zero bias transformation, hence W ∗

n →d Z .
Since mn → 0, Lemma 4.1 yields that X In ,n →p 0, and Slutsky’s lemma (30) now

gives that

Wn + X ∗
In ,n = W ∗

n + X In ,n →d Z .

Hence

Wn →d Z and Wn + X ∗
In ,n →d Z .

Since Wn is a function of Xn , which is independent of In and X∗
n and therefore of X ∗

In ,n ,
invoking Lemma 5.1 yields X ∗

In ,n →p 0.
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6. APPENDIX. Here we provide the proofs that convergence of expectations over
the class of functions C∞

c,0 implies convergence in distribution, and for the converse of
Slutsky’s lemma under an additional independence assumption.

Proof of Theorem 2.1. Let a < b be continuity points of P(Y ≤ x). Billingsely [1]
exhibits an infinitely differentiable function ψ taking values in [0, 1] such that ψ(x) =
1 for x ≤ 0 and ψ(x) = 0 for x ≥ 1. Hence, for all u > 0 the function

ψa,b,u(x) = ψ(u(x − b)) − ψ(u(x − a) + 1)

is infinitely differentiable, has support in [a − 1/u, b + 1/u], equals 1 for x ∈ [a, b],
and takes values in [0, 1] for all x . Furthermore,∫ ∞

−∞
ψa,b,u(x)dx = 1

u
+ (b − a),

so for every ε ∈ (0, 1], letting

d = −1

u
+ ε−1

(
1

u
+ (b − a)

)

the function

ψa,b,u,ε(x) = ψa,b,u(x) − εψb+2/u,b+2/u+d,u(x)

is an element of C∞
c,0. Furthermore, for all u > 0 and ε ∈ (0, 1], ψa,b,u,ε(x) equals 1

on [a, b], lies in [0, 1] for x ∈ [a − 1/u, b + 1/u], and lies in [−ε, 0] for all other x .
Hence

lim sup
n→∞

P(Yn ∈ (a, b]) ≤ lim sup
n→∞

Eψa,b,u,ε(Yn) + ε

= Eψa,b,u,ε(Y ) + ε

≤ P

(
Y ∈

(
a − 1

u
, b + 1

u

])
+ ε.

Letting ε tend to zero and u to infinity, since a and b are continuity points,

lim sup
n→∞

P(Yn ∈ (a, b]) ≤ P(Y ∈ (a, b]).

A similar argument using ψa+1/u,b−1/u,u,ε(x) shows that the reverse inequality holds
with lim inf replacing lim sup, so for all continuity points a and b,

lim
n→∞ P(Yn ∈ (a, b]) = P(Y ∈ (a, b]).

For b any continuity point and ε ∈ (0, 1], there exist continuity points a < b < c with
P(Y �∈ (a, c]) < ε. Since

P(Y ≤ a) ≤ P(Y �∈ (a, c]) < ε,

for all n sufficiently large P(Yn ≤ a) ≤ P(Yn �∈ (a, c]) ≤ ε, and we have

|P(Yn ≤ b) − P(Y ≤ b)| ≤ |P(Yn ∈ (a, b]) − P(Y ∈ (a, b])| + 2ε,
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yielding

lim
n→∞ P(Yn ≤ b) = P(Y ≤ b).

Proof of Lemma 5.1. We first prove Lemma 5.1 for the special case where Un =d U
for all n, that is, we prove that if

U + Vn →d U with U independent of Vn (31)

then Vn →p 0. By adding to U an absolutely continuous random variable A, indepen-
dent of U and Vn , (31) holds with U replaced by the absolutely continuous variable
U + A; we may therefore assume without loss of generality that U possesses a density
function.

If Vn does not tend to zero in probability, there exist positive ε and p such that for
infinitely many n

2p ≤ P(|Vn| ≥ ε) = P(Vn ≥ ε) + P(−Vn ≥ ε),

so either Vn or −Vn is at least ε with probability at least p. Assume that there exists an
infinite subsequence K such that

P(Vn ≥ ε) ≥ p for all n ∈ K, (32)

a similar argument holding in the opposite case.
Since U has a density the function s(x) = P(x ≤ U ≤ x + 1) is continuous, and as

the limits of s(x) at plus and minus infinity are zero, s(x) attains its maximum value,
say s, in a bounded region. In particular,

y = inf{x : s(x) = s}
is finite, and, by definition of y and the continuity of s(x),

sup
x≤y−ε

s(x) = r < s.

Since U and Vn are independent

P(y ≤ U + Vn ≤ y + 1|Vn) = s(y − Vn) for all n. (33)

Therefore, on the one hand we have

P(y ≤ U + Vn ≤ y + 1|Vn ≥ ε) ≤ r for all n ∈ K,

but by conditioning on Vn ≥ ε and its complement, using (33), (32), (31), and the fact
that U is absolutely continuous, we obtain the contradiction

lim inf
n→∞ P(y ≤ U + Vn ≤ y + 1) ≤ r p + s(1 − p)

< s = P(y ≤ U ≤ y + 1)

= lim
n→∞ P(y ≤ U + Vn ≤ y + 1).

To generalize to the situation where Un →d U through a sequence of distributions
which may depend on n, we use Skorohod’s construction (see Theorem 11.7.2 of [2]),
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which implies that whenever Yn →d Y , there exist Y n and Y on the same space with
Y n =d Yn and Y =d Y such that Y n →p Y . In particular, Y n and Y can be taken to
be the inverse distribution functions of Yn and Y , respectively, evaluated on the same
uniform random variable. In this way we may construct U n and U on the same (but
now perhaps enlarged) space as Vn . Then, by the hypotheses and Slutsky’s lemma (30),
we obtain

U + Vn = (U n + Vn) + (U − U n) →d U with U independent of Vn.

Since this is the situation of (31), we conclude Vn →p 0.
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