
4 1 Einstein Gyrogroups

1.2 Einstein Velocity Addition

Let c be any positive constant and let (Rn,+, ·) be the Euclidean n-space, n =
1,2,3, . . . , equipped with the common vector addition, +, and inner product, ·.
Furthermore, let

R
n
c = {

v ∈ R
n : ‖v‖ < c

}
(1.1)

be the c-ball of all relativistically admissible velocities of material particles. It is the
open ball of radius c, centered at the origin of R

n, consisting of all vectors v in R
n

with magnitude ‖v‖ smaller than c.
Einstein velocity addition is a binary operation, ⊕, in the c-ball R

n
c of all relativis-

tically admissible velocities, given by the equation [58], [49, (2.9.2)], [40, p. 55],
[18],

u⊕v = 1

1 + u·v
c2

{
u + 1

γu
v + 1

c2

γu

1 + γu
(u·v)u

}
(1.2)

for all u,v ∈ R
n
c , where γu is the gamma factor given by the equation

γv = 1√
1 − ‖v‖2

c2

= 1√
1 − v2

c2

(1.3)

Here u·v and ‖v‖ are the inner product and the norm in the ball, which the ball R
n
c

inherits from its space R
n, ‖v‖2 = v·v = v2. A nonempty set with a binary operation

is called a groupoid so that, accordingly, the pair (Rn
c ,⊕) is an Einstein groupoid.

In the Newtonian limit of large c, c → ∞, the ball R
n
c expands to the whole of

its space R
n, as we see from (1.1), and Einstein addition ⊕ in R

n
c reduces to the

ordinary vector addition + in R
n, as we see from (1.2) and (1.3).

In physical applications, R
n = R

3 is the Euclidean 3-space, which is the space
of all classical, Newtonian velocities, and R

n
c = R

3
c ⊂ R

3 is the c-ball of R
3 of all

relativistically admissible, Einsteinian velocities. Furthermore, the constant c repre-
sents in physical applications the vacuum speed of light. Since we are interested in
applications to geometry, we allow n to be any positive integer.

Einstein addition (1.2) of relativistically admissible velocities, with n = 3, was
introduced by Einstein in his 1905 paper [12], [13, p. 141] that founded the special
theory of relativity, where the magnitudes of the two sides of Einstein addition (1.2)
are presented. One has to remember here that the Euclidean 3-vector algebra was
not so widely known in 1905 and, consequently, was not used by Einstein. Einstein
calculated in [12] the behavior of the velocity components parallel and orthogonal
to the relative velocity between inertial systems, which is as close as one can get
without vectors to the vectorial version (1.2) of Einstein addition.

We naturally use the abbreviation u�v = u⊕(−v) for Einstein subtraction, so
that, for instance, v�v = 0, �v = 0�v = −v and, in particular,

�(u⊕v) = �u�v (1.4)
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and

�u⊕(u⊕v) = v (1.5)

for all u,v in the ball R
n
c , in full analogy with vector addition and subtraction in R

n.
Identity (1.4) is known as the automorphic inverse property, and Identity (1.5) is
known as the left cancellation law of Einstein addition [63]. We may note that Ein-
stein addition does not obey the naive right counterpart of the left cancellation law
(1.5) since, in general,

(u⊕v)�v 	= u (1.6)

However, this seemingly lack of a right cancellation law of Einstein addition is
repaired in Sect. 1.9, p. 21.

Einstein addition and the gamma factor are related by the gamma identity,

γu⊕v = γu γv

(
1 + u·v

c2

)
(1.7)

which can be equivalently written as

γ�u⊕v = γu γv

(
1 − u·v

c2

)
(1.8)

for all u,v ∈ R
n
c . Here, (1.8) is obtained from (1.7) by replacing u by �u = −u

in (1.7).
A frequently used identity that follows immediately from (1.3) is

v2

c2
= ‖v‖2

c2
= γ 2

v − 1

γ 2
v

(1.9)

and, similarly, a useful identity that follows immediately from (1.8) is

u·v
c2

= 1 − γ�u⊕v

γu γv
(1.10)

It is the gamma identity (1.7) that signaled the emergence of hyperbolic geom-
etry in special relativity when it was first studied by Sommerfeld [51] and Varičak
[66, 67] in terms of rapidities, a term coined by Robb [47]. In fact, the gamma iden-
tity plays a role in hyperbolic geometry, analogous to the law of cosines in Euclidean
geometry, as we will see in Sect. 6.3, p. 132. Historically, it formed the first link be-
tween special relativity and the hyperbolic geometry of Bolyai and Lobachevsky, re-
cently leading to the novel trigonometry in hyperbolic geometry that became known
as gyrotrigonometry, developed in [63, Chap. 12], [64, Chap. 4], [57, 62] and in
Part II of this book.

Einstein addition is noncommutative. Indeed, while Einstein addition is commu-
tative under the norm,

‖u⊕v‖ = ‖v⊕u‖ (1.11)
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we have, in general,

u⊕v 	= v⊕u (1.12)

for u,v ∈ R
n
c . Moreover, Einstein addition is also nonassociative since, in general,

(u⊕v)⊕w 	= u⊕(v⊕w) (1.13)

for u,v,w ∈ R
n
c .

It seems that following the breakdown of commutativity and associativity in Ein-
stein addition some mathematical regularity has been lost in the transition from
Newton’s velocity vector addition in R

n to Einstein’s velocity addition (1.2) in R
n
c .

This is, however, not the case since Thomas gyration comes to the rescue, as we
will see in Sect. 1.4. Owing to the presence of Thomas gyration, the Einstein
groupoid (Rn

c ,⊕) has a grouplike structure [56] that we naturally call the Einstein
gyrogroup [58]. The formal definition of the resulting abstract gyrogroup will be
presented in Definition 1.5, p. 12.

1.3 Einstein Addition With Respect to Cartesian Coordinates

Like any physical law, Einstein velocity addition law (1.2) is coordinate indepen-
dent. Indeed, it is presented in (1.2) in terms of vectors, noting that one of the great
advantages of vectors is their ability to express results independent of any coordinate
system.

However, in order to generate numerical and graphical demonstrations of phys-
ical laws, we need coordinates. Accordingly, we introduce Cartesian coordinates
into the Euclidean n-space R

n and its ball R
n
c , with respect to which we generate

the graphs of this book. Introducing the Cartesian coordinate system Σ into R
n and

R
n
c , each point P ∈ R

n is given by an n-tuple

P = (x1, x2, . . . , xn), x2
1 + x2

2 + · · · + x2
n < ∞ (1.14)

of real numbers, which are the coordinates, or components, of P with respect to Σ .
Similarly, each point P ∈ R

n
c is given by an n-tuple

P = (x1, x2, . . . , xn), x2
1 + x2

2 + · · · + x2
n < c2 (1.15)

of real numbers, which are the coordinates, or components of P with respect to Σ .
Equipped with a Cartesian coordinate system Σ and its standard vector addi-

tion given by component addition, along with its resulting scalar multiplication, R
n

forms the standard Cartesian model of n-dimensional Euclidean geometry. In full
analogy, equipped with a Cartesian coordinate system Σ and its Einstein addition,
along with its resulting scalar multiplication (to be studied in Sect. 2.1), the ball
R

n
c forms in this book the Cartesian–Beltrami–Klein ball model of n-dimensional

hyperbolic geometry.
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As an illustrative example, we present below the Einstein velocity addition law
(1.2) in R

3
c with respect to a Cartesian coordinate system.

Let R
3
c be the c-ball of the Euclidean 3-space, equipped with a Cartesian coordi-

nate system Σ . Accordingly, each point of the ball is represented by its coordinates
(x1, x2, x3)

t (exponent t denotes transposition) with respect to Σ , satisfying the
condition x2

1 + x2
2 + x2

3 < c2.
Furthermore, let u,v,w ∈ R

3
c be three points in R

3
c ⊂ R

3 given by their coordi-
nates with respect to Σ ,

u =
⎛
⎝u1

u2
u3

⎞
⎠ , v =

⎛
⎝v1

v2
v3

⎞
⎠ , w =

⎛
⎝w1

w2
w3

⎞
⎠ (1.16)

where

w = u⊕v (1.17)

The dot product of u and v is given in Σ by the equation

u·v = u1v1 + u2v2 + u3v3 (1.18)

and the squared norm ‖v‖2 = v·v of v is given by the equation

‖v‖2 = v2
1 + v2

2 + v2
3 (1.19)

Hence, it follows from the coordinate independent vector representation (1.2) of
Einstein addition that the coordinate dependent Einstein addition (1.17) with respect
to the Cartesian coordinate system Σ takes the form

⎛
⎝w1

w2
w3

⎞
⎠ = 1

1 + u1v1+u2v2+u3v3
c2

×
⎧⎨
⎩

[
1 + 1

c2

γu

1 + γu
(u1v1 + u2v2 + u3v3)

]⎛
⎝u1

u2
u3

⎞
⎠ + 1

γu

⎛
⎝v1

v2
v3

⎞
⎠

⎫⎬
⎭ (1.20)

where

γu = 1√
1 − u2

1+u2
2+u2

3
c2

(1.21)

The three components of Einstein addition (1.17) are w1, w2 and w3 in (1.20).
For a two-dimensional illustration of Einstein addition (1.20) one may impose the
condition u3 = v3 = 0, implying w3 = 0.
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In the Newtonian–Euclidean limit, c → ∞, the ball R
3
c expands to the Euclidean

3-space R
3, and Einstein addition (1.20) reduces to the common vector addition

in R
3,

⎛
⎝w1

w2
w3

⎞
⎠ =

⎛
⎝u1

u2
u3

⎞
⎠ +

⎛
⎝v1

v2
v3

⎞
⎠ (1.22)

1.4 Einstein Addition vs. Vector Addition

Vector addition, +, in R
n is both commutative and associative, satisfying

u + v = v + u, (Commutative Law)

u + (v + w) = (u + v) + w (Associative Law)
(1.23)

for all u,v,w ∈ R
n. In contrast, Einstein addition, ⊕, in R

n
c is neither commutative

nor associative.
In order to measure the extent to which Einstein addition deviates from as-

sociativity we introduce gyrations, which are maps that are trivial in the spe-
cial cases when the application of ⊕ is associative. For any u,v ∈ R

n
c , the gy-

ration gyr[u,v] is a map of the Einstein groupoid (Rn
c ,⊕) onto itself. Gyrations

gyr[u,v] ∈ Aut(R3
c,⊕), u,v ∈ R

3
c , are defined in terms of Einstein addition by the

equation

gyr[u,v]w = �(u⊕v)⊕{
u⊕(v⊕w)

}
(1.24)

for all u,v,w ∈ R
3
c , and they turn out to be automorphisms of the Einstein groupoid

(R3
c,⊕).
We recall that an automorphism of a groupoid (S,⊕) is a one-to-one map f of S

onto itself that respects the binary operation, that is, f (a⊕b) = f (a)⊕f (b) for all
a, b ∈ S. The set of all automorphisms of a groupoid (S,⊕) forms a group, denoted
Aut(S,⊕). To emphasize that the gyrations of an Einstein gyrogroup (R3

c,⊕) are
automorphisms of the gyrogroup, gyrations are also called gyroautomorphisms.

A gyration gyr[u,v], u,v ∈ R
3
c , is trivial if gyr[u,v]w = w for all w ∈ R

3
c .

Thus, for instance, the gyrations gyr[0,v], gyr[v,v] and gyr[v,�v] are trivial for
all v ∈ R

3
c , as we see from (1.24).

Einstein gyrations, which possess their own rich structure, measure the extent
to which Einstein addition deviates from commutativity and associativity as we see
from the gyrocommutative and the gyroassociative laws of Einstein addition in the
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following identities [58, 60, 63]:

u⊕v = gyr[u,v](v⊕u), (Gyrocommutative Law)

u⊕(v⊕w) = (u⊕v)⊕gyr[u,v]w, (Left Gyroassociative Law)

(u⊕v)⊕w = u⊕(
v⊕gyr[v,u]w)

, (Right Gyroassociative Law)

gyr[u⊕v,v] = gyr[u,v], (Gyration Left Loop Property)

gyr[u,v⊕u] = gyr[u,v], (Gyration Right Loop Property)

gyr[�u,�v] = gyr[u,v], (Gyration Even Property)
(
gyr[u,v])−1 = gyr[v,u], (Gyration Inversion Law)

(1.25)

for all u,v,w ∈ R
n
c .

Einstein addition is thus regulated by gyrations to which it gives rise owing to its
nonassociativity, so that Einstein addition and its gyrations are inextricably linked.
The resulting gyrocommutative gyrogroup structure of Einstein addition was dis-
covered in 1988 [55]. Interestingly, (Thomas) gyrations are the mathematical ab-
straction of the relativistic effect known as Thomas precession [63, Sect. 10.3].

The loop properties in (1.25) present important gyration identities. These two
gyration identities are, however, just the tip of a giant iceberg. Many other useful
gyration identities are studied in [58, 60, 63] and will be studied in the sequel.

1.5 Gyrations

Owing to its nonassociativity, Einstein addition gives rise in (1.24) to gyrations

gyr[u,v] : R
n
c → R

n
c (1.26)

for any u,v ∈ R
n
c in an Einstein groupoid (Rn

c ,⊕). Gyrations, in turn, regulate Ein-
stein addition, endowing it with the rich structure of a gyrocommutative gyrogroup,
as we will see in Sect. 1.6, and a gyrovector space, as we will see in Sect. 2.1.
Clearly, gyrations measure the extent to which Einstein addition is nonassociative,
where associativity corresponds to trivial gyrations.

An explicit presentation of the gyrations of Einstein groupoids (Rn
c ,⊕) is, there-

fore, desirable. Indeed, the gyration equation (1.24) can be manipulated into the
equation

gyr[u,v]w = w + Au + Bv
D

(1.27)



Chapter 2
Einstein Gyrovector Spaces

Abstract Einstein addition admits scalar multiplication between any real number
and any relativistically admissible velocity vector, giving rise to the Einstein gy-
rovector spaces. As an example, Einstein scalar multiplication enables hyperbolic
lines to be calculated with respect to Cartesian coordinates just as Euclidean lines
are calculated with respect to Cartesian coordinates. Along with remarkable analo-
gies that Einstein scalar multiplication shares with the common scalar multiplication
in vector spaces there is a striking disanalogy. Einstein scalar multiplication does
not distribute over Einstein addition. However, a weaker law, called the monodis-
tributive law, remains valid. It is shown in this chapter that Einstein gyrovector
spaces form the setting for the Cartesian–Beltrami–Klein ball model of hyperbolic
geometry just as vector spaces form the setting for the standard Cartesian model of
Euclidean geometry.

2.1 Einstein Scalar Multiplication

The rich structure of Einstein addition is not limited to its gyrocommutative gy-
rogroup structure. Indeed, Einstein addition admits scalar multiplication, giving
rise to the Einstein gyrovector space. Remarkably, the resulting Einstein gyrovector
spaces form the setting for the Cartesian–Beltrami–Klein ball model of hyperbolic
geometry just as vector spaces form the setting for the standard Cartesian model of
Euclidean geometry, as we will see in this book.

Let k⊗v be the Einstein addition of k copies of v ∈ R
n
c , that is k⊗v = v⊕v · · ·⊕v

(k terms). Then,

k⊗v = c
(1 + ‖v‖

c
)k − (1 − ‖v‖

c
)k

(1 + ‖v‖
c

)k + (1 − ‖v‖
c

)k

v
‖v‖ . (2.1)

The definition of scalar multiplication in an Einstein gyrovector space requires
analytically continuing k off the positive integers, thus obtaining the following def-
inition:

A.A. Ungar, Hyperbolic Triangle Centers,
Fundamental Theories of Physics 166,
DOI 10.1007/978-90-481-8637-2_2, © Springer Science+Business Media B.V. 2010
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Definition 2.1 (Einstein Scalar Multiplication; Einstein Gyrovector Spaces) An
Einstein gyrovector space (Rn

s ,⊕,⊗) is an Einstein gyrogroup (Rn
s ,⊕) with scalar

multiplication ⊗ given by

r⊗v = s
(1 + ‖v‖

s
)r − (1 − ‖v‖

s
)r

(1 + ‖v‖
s

)r + (1 − ‖v‖
s

)r

v
‖v‖ = s tanh

(
r tanh−1 ‖v‖

s

)
v

‖v‖ , (2.2)

where r is any real number, r ∈ R, v ∈ R
n
s , v �= 0, and r⊗0 = 0, and with which we

use the notation v⊗r = r⊗v.

Example 2.2 (The Einstein Half) In the special case when r = 1/2, (2.2) reduces
to

1

2
⊗v = γv

1 + γv
v (2.3)

so that

γv

1 + γv
v⊕ γv

1 + γv
v = v. (2.4)

Einstein gyrovector spaces are studied in [63, Sect. 6.18]. Einstein scalar multi-
plication does not distribute with Einstein addition, but it possesses other properties
of vector spaces. For any positive integer k, and for all real numbers r, r1 , r2 ∈ R

and v ∈ R
n
s , we have

k⊗v = v⊕· · ·⊕v, (k terms)

(r1 + r2)⊗v = r1⊗v⊕r2⊗v, (Scalar Distributive Law)

(r1r2)⊗v = r1⊗(r2⊗v) (Scalar Associative Law)

(2.5)

in any Einstein gyrovector space (Rn
s ,⊕,⊗).

Additionally, Einstein gyrovector spaces possess the scaling property

|r|⊗a
‖r⊗a‖ = a

‖a‖ (2.6)

for a ∈ R
n
s , a �= 0, r ∈ R, r �= 0, the gyroautomorphism property

gyr[u,v](r⊗a) = r⊗gyr[u,v]a (2.7)

for a,u,v ∈ R
n
s , r ∈ R, and the identity gyroautomorphism

gyr[r1⊗v, r2⊗v] = I (2.8)

for r1 , r2 ∈ R, v ∈ R
n
s .
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Any Einstein gyrovector space (Rn
s ,⊕,⊗) inherits an inner product and a norm

from its vector space R
n. These turn out to be invariant under gyrations, that is,

gyr[a,b]u·gyr[a,b]v = u·v,∥∥gyr[a,b]v∥∥ = ‖v‖
(2.9)

for all a,b,u,v ∈ R
n
s .

Unlike vector spaces, Einstein gyrovector spaces (Rn
s ,⊕,⊗) do not possess the

distributive law since, in general,

r⊗(u⊕v) �= r⊗u⊕r⊗v (2.10)

for r ∈ R and u,v ∈ R
n
s . However, a weak form of the distributive law does exist, as

we see from the following theorem:

Theorem 2.3 (The Monodistributive Law) Let (Rn
s ,⊕,⊗) be an Einstein gyrovec-

tor space. Then,

r⊗(r1⊗v⊕r2⊗v) = r⊗(r1⊗v)⊕r⊗(r2⊗v) (2.11)

for all r, r1, r2 ∈ R and v ∈ R
n
s .

Proof By the scalar distributive and associative laws, (2.5), we have

r⊗(r1⊗v⊕r2⊗v) = r⊗{
(r1 + r2)⊗v

}
= (

r(r1 + r2)
)⊗v

= (rr1 + rr2)⊗v

= (rr1)⊗v⊕(rr2)⊗v

= r⊗(r1⊗v)⊕r⊗(r2⊗v), (2.12)

as desired. �

Since scalar multiplication in Einstein gyrovector spaces does not distribute with
Einstein addition, the following theorem is interesting.

Theorem 2.4 (The Two-Sum Identity) Let u,v be any two points of an Einstein
gyrovector space (Rn

s ,⊕,⊗). Then

2⊗(u⊕v) = u⊕(2⊗v⊕u). (2.13)

Proof Employing the right gyroassociative law in (1.25), the identity gyr[v,v] = I ,
Theorem 1.8(4), the left gyroassociative law, and the gyrocommutative law in (1.25)
we have the following chain of equations that gives (2.13),
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u⊕(2⊗v⊕u) = u⊕(
(v⊕v)⊕u

)
= u⊕(

v⊕(
v⊕gyr[v,v]u))

= u⊕(
v⊕(v⊕u)

)
= (u⊕v)⊕gyr[u,v](v⊕u)

= (u⊕v)⊕(u⊕v)

= 2⊗(u⊕v). (2.14)

�

As an application of Theorem 2.4, we prove the following theorem:

Theorem 2.5 Let u,v be any two points of an Einstein gyrovector space (Rn
s ,⊕,⊗).

Then

u⊕(�u⊕v)⊗1

2
= 1

2
⊗(u � v). (2.15)

Proof The proof is given by the following chain of equations, which are numbered
for subsequent derivation:

2⊗
{

u⊕(�u⊕v)⊗1

2

} (1)︷︸︸︷=== u⊕{
(�u⊕v)⊕u

}

(2)︷︸︸︷=== {
u⊕(�u⊕v)

}⊕gyr[u,�u⊕v]u
(3)︷︸︸︷=== v⊕gyr[u,�u⊕v]u
(4)︷︸︸︷=== v⊕gyr[v,�u]u
(5)︷︸︸︷=== v � u
(6)︷︸︸︷=== u � v, (2.16)

implying (2.15) by the scalar associative law in (2.5). Derivation of the numbered
equalities in (2.16) follows.

1. Follows from the Two-Sum Identity in Theorem 2.4 and the scalar associative
law in (2.5).

2. Follows from Item 1 by the left gyroassociative law.
3. Follows from Item 2 by a left cancellation.
4. Follows from Item 3 by applying successively the left loop property and the right

loop property.
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5. Follows from Item 4 by Definition 1.7, p. 13, of the gyrogroup cooperation �.
6. Follows from Item 5 by the commutativity of Einstein coaddition � according to

(1.37), p. 13. �

2.2 Linking Einstein Addition to Hyperbolic Geometry

The Einstein distance function, d(u,v), in an Einstein gyrovector space (Rn
c ,⊕,⊗)

is given by the equation

d(u,v) = ‖u�v‖ (2.17)

for u,v ∈ R
n
c . We call it a gyrodistance function in order to emphasize the analogies

it shares with its Euclidean counterpart, the distance function ‖u−v‖ in R
n. Among

these analogies is the gyrotriangle inequality according to which

‖u⊕v‖ ≤ ‖u‖⊕‖v‖ (2.18)

for all u,v ∈ R
n
c . For this and other analogies that distance and gyrodistance func-

tions share, see [60, 63].
In a two dimensional Einstein gyrovector space (R2

c,⊕,⊗), the squared gyrodis-
tance between a point x ∈ R

2
c and an infinitesimally nearby point x + dx ∈ R

2
c ,

dx = (dx1, dx2), is defined by the equation [63, Sect. 7.5], [60, Sect. 7.5]

ds2 = ∥∥(x + dx)�x
∥∥2

= E dx2
1 + 2F dx1 dx2 + Gdx2

2 + · · · , (2.19)

where, if we use the notation r2 = x2
1 + x2

2 , we have

E = c2 c2 − x2
2

(c2 − r2)2
,

F = c2 x1x2

(c2 − r2)2
,

G = c2 c2 − x2
1

(c2 − r2)2
.

(2.20)

The triple (g11, g12, g22) = (E,F,G) along with g21 = g12 is known in differ-
ential geometry as the metric tensor gij [31]. It turns out to be the metric tensor of
the Beltrami–Klein disc model of hyperbolic geometry [37, p. 220]. Hence, ds2 in
(2.19)–(2.20) is the Riemannian line element of the Beltrami–Klein disc model of
hyperbolic geometry, linked to Einstein velocity addition (1.2), p. 4, and to Einstein
gyrodistance function (2.17) [61].

The link between Einstein gyrovector spaces and the Beltrami–Klein ball model
of hyperbolic geometry, already noted by Fock [18, p. 39], has thus been established
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Fig. 2.1 The Euclidean line. The line A + (−A + B)t , t ∈ R, in a Euclidean plane is shown. The
points A and B correspond to t = 0 and t = 1, respectively. The point P is a generic point on the
line through the points A and B lying between these points. The Einstein sum, +, of the distance
from A to P and from P to B equals the distance from A to B . The point m

A,B
is the midpoint of

the points A and B , corresponding to t = 1/2

in (2.17)–(2.20) in two dimensions. The extension of the link to higher dimensions
is presented in [58, Sect. 9, Chap. 3], [63, Sect. 7.5], [60, Sect. 7.5], and [61]. For a
brief account of the history of linking Einstein’s velocity addition law with hyper-
bolic geometry, see [44, p. 943].

2.3 The Euclidean Line

We introduce Cartesian coordinates into R
n in the usual way in order to specify

uniquely each point P of the Euclidean n-space R
n by an n-tuple of real numbers,

called the coordinates, or components, of P . Cartesian coordinates provide a method
of indicating the position of points and rendering graphs on a two-dimensional Eu-
clidean plane R

2 and in a three-dimensional Euclidean space R
3.

As an example, Fig. 2.1 presents a Euclidean plane R
2 equipped with an unseen

Cartesian coordinate system Σ . The position of points A and B and their midpoint
mAB with respect to Σ are shown. The missing Cartesian coordinates in Fig. 2.1 are
shown in Fig. 2.3.

The set of all points

A + (−A + B)t, (2.21)

t ∈ R, forms a Euclidean line. The segment of this line, corresponding to 1 ≤ t ≤ 1,
and a generic point P on the segment, are shown in Fig. 2.1. Being collinear, the
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Fig. 2.2 Gyroline, the hyperbolic line. The gyroline A⊕(�A⊕B)⊗t , t ∈ R, in an Einstein gy-
rovector space (Rn

s ,⊕,⊗) is a geodesic line in the Beltrami–Klein ball model of hyperbolic geom-
etry, fully analogous to the straight line A + (−A + B)t , t ∈ R, in the Euclidean geometry of R

n.
The points A and B correspond to t = 0 and t = 1, respectively. The point P is a generic point on
the gyroline through the points A and B lying between these points. The Einstein sum, ⊕, of the
gyrodistance from A to P and from P to B equals the gyrodistance from A to B . The point m

A,B

is the gyromidpoint of the points A and B , corresponding to t = 1/2. The analogies between lines
and gyrolines, as illustrated in Figs. 2.1 and 2.2, are obvious

points A,P and B obey the triangle equality d(A,P ) + d(P,B) = d(A,B), where
d(A,B) = ‖−A + B‖ is the Euclidean distance function in R

n.
Figure 2.1 demonstrates the use of the standard Cartesian model of Euclidean ge-

ometry for graphical presentations. In a fully analogous way, Fig. 2.2 demonstrates
the use of the Cartesian–Beltrami–Klein model of hyperbolic geometry, as we will
see in Sects. 2.4 and 2.5.

2.4 Gyrolines—the Hyperbolic Lines

In the study of triangles and gyrotriangles, we use extensively the letters a, b, c to
denote triangle side-lengths and gyrotriangle side-gyrolengths. Hence, it is conve-
nient in applications to geometry to replace the notation R

n
c for the c-ball of an

Einstein gyrovector space by the s-ball, R
n
s . Moreover, it is understood in this book

that n ≥ 2 is any integer greater than 2, unless specified otherwise.



52 2 Einstein Gyrovector Spaces

Fig. 2.3 The Cartesian
coordinates for the Euclidean
plane R

2, (x1, x2),
x2

1 + x2
2 < ∞, unseen in

Fig. 2.1, are shown here. The
points A and B are given,
with respect to these
Cartesian coordinates by
A = (−0.60,−0.15) and
B = (0.18,0.80)

Fig. 2.4 The Cartesian
coordinates for the unit disc
in the Euclidean plane R

2,
(x1, x2), x2

1 + x2
2 < 1, unseen

in Fig. 2.2, are shown here.
The points A and B are
given, with respect to these
Cartesian coordinates by
A = (−0.60,−0.15) and
B = (0.18,0.80)

Let A,B ∈ R
n
s be two distinct points of the Einstein gyrovector space (Rn

s ,⊕,⊗),
and let t ∈ R be a real parameter. Then, in full analogy with the Euclidean line
(2.21), the graph of the set of all points, Fig. 2.2,

A⊕(�A⊕B)⊗t (2.22)

for t ∈ R, in the Einstein gyrovector space (Rn
s ,⊕,⊗) is a chord of the ball R

n
s .

As such, it is a geodesic line of the Cartesian–Beltrami–Klein ball model of hyper-
bolic geometry, shown in Fig. 2.2 for n = 2. The geodesic line (2.22) is the unique
geodesic passing through the points A and B . It passes through the point A when
t = 0 and, owing to the left cancellation law, (1.38), it passes through the point B

when t = 1. Furthermore, it passes through the midpoint mA,B of A and B when
t = 1/2. Accordingly, the gyrosegment that joins the points A and B in Fig. 2.2 is
obtained from gyroline (2.22) with 0 ≤ t ≤ 1.

Each point of (2.22) with 0 < t < 1 is said to lie between A and B . Thus, for in-
stance, the point P in Fig. 2.2 lies between the points A and B . As such, the points
A, P and B obey the gyrotriangle equality according to which d(A,P )⊕d(P,B) =
d(A,B), in full analogy with Euclidean geometry. The points in Fig. 2.2 are drawn
with respect to an unseen Cartesian coordinate system. The missing Cartesian coor-
dinates for the hyperbolic disc in Fig. 2.2 are shown in Fig. 2.4.
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Fig. 2.5 Gyroangles share remarkable analogies with angles, allowing the use of the elementary
trigonometric functions cos, sin, etc., in gyrotrigonometry as well. Let A′ and B ′ be points different
from O , lying arbitrarily on the gyrosegments OA and OB , respectively, that emanate from a
common point O in an Einstein gyrovector space (Rn

s ,⊕,⊗) as shown here for n = 2. The measure
of the gyroangle α formed by the two gyrosegments OA and OB or, equivalently, formed by the
two gyrosegments OA′ and OB ′, is given by cosα, as shown here. In full analogy with angles, the
measure of gyroangle α is independent of the choice of A′ and B ′

2.5 The Cartesian Model of Euclidean and Hyperbolic Geometry

The introduction of Cartesian coordinates (x1, x2, . . . , xn), x2
1 +x2

2 +· · ·+x2
n < ∞,

(1.14), p. 6, into the Euclidean n-space R
n, along with the common vector addition

in Cartesian coordinates, results in the Cartesian model of Euclidean geometry. The
latter, in turn, enables Euclidean geometry to be studied analytically.

In full analogy, the introduction of Cartesian coordinates (x1, x2, . . . , xn), x2
1 +

x2
2 + · · · + x2

n < s2, (1.15), p. 6, into the s-ball R
n
s of the Euclidean n-space R

n,
along with the common Einstein addition in Cartesian coordinates, presented in
Sect. 1.3, p. 6, results in the Cartesian model of hyperbolic geometry. The latter,
in turn, enables hyperbolic geometry to be studied analytically. Indeed, Figs. 2.3
and 2.4 of Sect. 2.4 and Figs. 2.5 and 2.6 of Sect. 2.6 indicate the way we study
analytic hyperbolic geometry, guided by analogies with analytic Euclidean geome-
try.

2.6 Gyroangles—the Hyperbolic Angles

The analogies between lines and gyrolines suggest corresponding analogies between
angles and gyroangles. Let O , A and B be any three distinct points in an Einstein
gyrovector space (Rn

s ,⊕,⊗). The resulting gyrosegments OA and OB that emanate
from the point O form a gyroangle α = ∠AOB with vertex O , as shown in Fig. 2.5
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Fig. 2.6 Let A and C be two distinct points, let O be a point not on gyroline AC, and let B be a
point between A and C in an Einstein gyrovector space (Rn

s ,⊕,⊗). Furthermore, let α = ∠AOB

and β = ∠BOC be the two adjacent gyroangles that the three gyrosegments OA,OB and OC

form, and let γ be their composite gyroangle, formed by gyrosegments OA and OC. Then,
γ = α+β , demonstrating that, like angles, gyroangles are additive. We call (�O⊕A)/‖�O⊕A‖ a
unit gyrovector. When applied to an inner product of unit gyrovectors, the common cosine function
of trigonometry becomes the gyrocosine function of gyrotrigonometry

for n = 2. Following the analogies between gyrolines and lines, the radian measure
of gyroangle α is, suggestively, given by the equation

cosα = �O⊕A

‖�O⊕A‖ · �O⊕B

‖�O⊕B‖ . (2.23)

Here, (�O⊕A)/‖�O⊕A‖ and (�O⊕B)/‖�O⊕B‖ are unit gyrovectors, and cos
is the common cosine function of trigonometry, which we apply to the inner prod-
uct between unit gyrovectors rather than unit vectors. Accordingly, in the context
of gyrovector spaces rather than vector spaces, we refer the function “cosine” of
trigonometry to as the function “gyrocosine” of gyrotrigonometry. Similarly, all the
other elementary trigonometric functions and their interrelationships survive unim-
paired in their transition from the common trigonometry in Euclidean spaces R

n to
a corresponding gyrotrigonometry in Einstein gyrovector space R

n
s , as we will see

in Chap. 6.
The center 0 = (0, . . . ,0) ∈ R

n
s of the ball R

n
s = (Rn

s ,⊕,⊗) is conformal (to
Euclidean geometry) in the sense that the measure of any gyroangle with vertex 0
is equal to the measure of its Euclidean counterpart. Indeed, if O = 0 then (2.23)
reduces to

cosα = A

‖A‖ · B

‖B‖ , (2.24)

which is indistinguishable from its Euclidean counterpart.
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2.7 The Euclidean Group of Motions

The Euclidean group of motions of R
n consists of the commutative group of all

translations of R
n and the group of all rotations of R

n about its origin.
For any x ∈ R

n, a translation of R
n by x ∈ R

n is the map Lx : R
n → R

n given by

Lxv = x + v (2.25a)

for all v ∈ R
n.

A rotation R of R
n about its origin is an element of the group SO(n) of all n × n

orthogonal matrices with determinant 1. The rotation of v ∈ R
n by R ∈ SO(n) is

given by Rv. The map R ∈ SO(n) is a linear map of R
n that keeps the inner product

invariant, that is,

R(u + v) = Ru + Rv,

Ru·Rv = u·v (2.25b)

for all R ∈ R
n and u,v ∈ R

n.
The Euclidean group of motions is the semidirect product group

R
n × SO(n) (2.26)

of the Euclidean commutative group R
n = (Rn,+) and the rotation group SO(n).

It is a group of pairs (x,R), x ∈ (Rn,+), R ∈ SO(n), acting on elements v ∈ R
n

according to the equation

(x,R)v = x + Rv. (2.27)

The group operation of the semidirect product group (2.26) is given by action
composition. The latter, in turn, is determined by the following chain of equations,
in which we employ the associative law:

(x1,R1)(x2,R2)v = (x1,R1)(x2 + R2v)

= x1 + R1(x2 + R2v)

= x1 + (R1x2 + R1R2v)

= (x1 + R1x2) + R1R2v

= (x1 + R1x2,R1R2)v (2.28)

for all v ∈ R
n.

Hence, by (2.28), the group operation of the semidirect product group (2.26) is
given by the semidirect product

(x1,R1)(x2,R2) = (x1 + R1x2,R1R2) (2.29)

for any (x1,R1), (x2,R2) ∈ R
n × SO(n).
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Definition 2.6 (Covariance) An identity in R
n that remains invariant in form under

the action of the Euclidean group of motions of R
n is said to be covariant.

We will see in Chap. 4 that Euclidean barycentric coordinate representations of
points of R

n are covariant, by Theorem 4.3, p. 87.

2.8 The Hyperbolic Group of Motions

The hyperbolic group of motions of R
n
s consists of the gyrocommutative gyrogroup

of all left gyrotranslations of R
n
s and the group of all rotations of R

n
s about its center.

For any x ∈ R
n
s , a left gyrotranslation of R

n
s by x ∈ R

n
s is the map Lx : R

n
s → R

n
s

given by

Lxv = x⊕v (2.30a)

for all v ∈ R
n
s .

The group of all rotations of the ball R
n
s about its center is SO(n). Following

(2.25b), we have

R(u⊕v) = Ru⊕Rv,

Ru·Rv = u·v (2.30b)

for all R ∈ SO(n) and u,v ∈ R
n.

The hyperbolic group of motions is the gyrosemidirect product group

R
n
s × SO(n) (2.31)

of the Einsteinian gyrocommutative gyrogroup R
n
s = (Rn

s ,⊕) and the rotation group
SO(n). It is a group of pairs (x,R), x ∈ (Rn

s ,⊕), R ∈ SO(n), acting on elements
v ∈ R

n
s according to the equation

(x,R)v = x⊕Rv. (2.32)

The group operation of the gyrosemidirect product group (2.31) is given by ac-
tion composition. The latter, in turn, is determined by the following chain of equa-
tions, in which we employ the left gyroassociative law:

(x1,R1)(x2,R2)v = (x1,R1)(x2⊕R2v)

= x1⊕R1(x2⊕R2v)

= x1⊕(R1x2⊕R1R2v)

= (x1⊕R1x2)⊕gyr[x,R1x2]R1R2v

= (
x1⊕R1x2,gyr[x,R1x2]R1R2

)
v (2.33)

for all v ∈ R
n
s .
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Hence, by (2.33), the group operation of the gyrosemidirect product group (2.31)
is given by the gyrosemidirect product

(x1,R1)(x2,R2) = (
x1⊕R1x2,gyr[x,R1x2]R1R2

)
(2.34)

for any (x1,R1), (x2,R2) ∈ R
n
s × SO(n). Indeed, the gyrosemidirect product is a

group operation, as demonstrated in Sect. 1.11, p. 23.

Definition 2.7 (Gyrocovariance) An identity in R
n
s that remains invariant in form

under the action of the hyperbolic group of motions of R
n
s is said to be gyrocovari-

ant.

We will see in Chap. 4 that hyperbolic barycentric (that is, gyrobarycentric) co-
ordinate representations of points of R

n
s are gyrocovariant, by the Gyrobarycentric

Coordinate Representation Gyrocovariance Theorem 4.6, p. 90.

2.9 Problems

Problem 2.1 Einstein Scalar Multiplication:
Show that k⊗v := v⊕· · ·⊕v (k terms) is given by (2.1), p. 45.

Problem 2.2 Einstein Scalar Multiplication:
Prove the second equation in (2.2), p. 46.

Problem 2.3 The Einstein Half:
Prove the Einstein-half identities (2.3)–(2.4), p. 46.

Problem 2.4 Einstein Scalar Distributive Law:
Prove the scalar distributive law in (2.5), p. 46.

Problem 2.5 Einstein Scalar Associative Law:
Prove the scalar associative law in (2.5), p. 46.

Problem 2.6 Scaling Property:
Prove the scaling property (2.6), p. 46.

Problem 2.7 A Gyroautomorphism Property:
Prove the gyroautomorphism property (2.7), p. 46.

Problem 2.8 Inner Product Invariance Under Gyrations:
Prove the identities in (2.9), p. 47.

Problem 2.9 Rotations Respect Einstein Addition:
Show that the first identity in (2.30b), p. 56, follows from (2.25b), p. 55.
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Sect. 4.2 of Chap. 4 that the relativistically invariant mass m0 in (3.62) is what we
need for the introduction of barycentric coordinates into hyperbolic geometry. The
latter, in turn, is what we need for the determination of hyperbolic triangle centers.

3.9 Remarkable Analogies

In this section, we emphasize the analogies in Theorems 3.2, p. 65, and 3.3, p. 71,
that the classical mass and center of momentum velocity of a particle system in
(3.78a)–(3.78d) below share with their relativistic counterparts in (3.79a)–(3.79d)
below.

Seeking a way to place the relativistic mass m0γv0
of a particle system S under

the umbrella of the Minkowskian four-vector formalism of special relativity, we
have uncovered the novel, relativistically invariant, or rest, mass m0 of a particle
system, presented in (3.79d) below. Furthermore, following the discovery of m0 in
(3.62), we have uncovered remarkable analogies that Newtonian and Einsteinian
mechanics share.

To see the analogies clearly, let us consider the following well known classical
results, (3.78a)–(3.78d) below, which are involved in the determination of the New-
tonian resultant mass m0 and the classical center of momentum velocity of a Newto-
nian system of particles, and to which we will subsequently present our Einsteinian
analogs that have been discovered in Theorem 3.2. Let

S = S(mk,vk,Σ0, k = 1, . . . ,N), vk ∈ R
n (3.78a)

be an isolated Newtonian system of N noninteracting material particles the kth par-
ticle of which has mass mk and Newtonian uniform velocity vk relative to an inertial
frame Σ0, k = 1, . . . ,N . Furthermore, let m0 be the resultant mass of S, considered
as the mass of a virtual particle located at the center of momentum of S, and let
v0 be the Newtonian velocity relative to Σ0 of the Newtonian center of momentum
frame of S. Then we have the following well-known identities:

1 = 1

m0

N∑
k=1

mk (3.78b)

and

v0 = 1

m0

N∑
k=1

mkvk,

w + v0 = 1

m0

N∑
k=1

mk(w + vk),

(3.78c)
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where the binary operation + is the common vector addition in R
n, and where

m0 =
N∑

k=1

mk (3.78d)

for v,wk ∈ R
3, mk > 0, k = 0,1, . . . ,N .

In full analogy with (3.78a), let

S = S(mk,vk,Σ0, k = 1, . . . ,N), vk ∈ R
n
c (3.79a)

be an isolated Einsteinian system of N noninteracting material particles the kth
particle of which has invariant mass mk and Einsteinian uniform velocity vk relative
to an inertial frame Σ0, k = 1, . . . ,N . Furthermore, let m0 be the resultant mass
of S, considered as the mass of a virtual particle located at the center of mass of
S (calculated in (3.29)), and let v0 be the Einsteinian velocity relative to Σ0 of
the Einsteinian center of momentum of the Einsteinian system S. Then, as shown
in Theorem 3.2, the relativistic analogs of the Newtonian expressions in (3.78b)–
(3.78d) are, respectively, the following Einsteinian expressions in (3.79b)–(3.79d),

γv0
= 1

m0

N∑
k=1

mkγvk
,

γu⊕v0
= 1

m0

N∑
k=1

mkγu⊕vk
,

(3.79b)

and

γv0
v0 = 1

m0

N∑
k=1

mkγvk
vk,

γw⊕v0
(w⊕v0) = 1

m0

N∑
k=1

mkγw⊕vk
(w⊕vk),

(3.79c)

where the binary operation ⊕ is the Einstein velocity addition in R
n
c , given by (1.2),

p. 4, and where

m0 =
√√√√√√

(
N∑

k=1

mk

)2

+ 2
N∑

j,k=1
j<k

mjmk(γ	vj ⊕vk
− 1) (3.79d)

for w,vk ∈ R
3
c , mk > 0, k = 0,1, . . . ,N . Here m0 is the relativistic invariant mass

of the Einsteinian system S, supposed concentrated at the relativistic center of mass
of S, and v0 is the Einsteinian velocity relative to Σ0 of the Einsteinian center of
momentum frame of the Einsteinian system S.
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To conform with the Minkowskian four-vector formalism of special relativity,
both m0 and v0 are determined in Theorem 3.2 as the unique solution of the
Minkowskian four-vector equation (3.19).

We finally wrote (3.62) as (3.65), i.e.,

m0 =
√

m2
newton + m2

dark, (3.80)

viewing the relativistically invariant, or rest, mass m0 of the system S as a
Pythagorean composition of the Newtonian rest mass, mnewton and the dark mass,
mdark of S. The mass mdark is dark in the sense that it is the mass of virtual matter
that does not collide and does not emit radiation. Following observations in cosmol-
ogy, one may postulate that our dark mass reveals its presence only gravitationally.
We have shown qualitatively that (3.80) explains observations in both astrophysics
and particle physics.

We should remark that the presence of our dark mass is predicted by theoretic
special relativistic techniques. Hence, it need not account for the whole mass of dark
matter observed by astrophysicists in the cosmos because there could be contribu-
tions from general relativistic considerations and, perhaps, other unknown sources.

3.10 Problems

Problem 3.1 Matrix Representation of the Lorentz Boost:
Show that the Lorentz boost L(u), given vectorially by (3.5), p. 61, is a linear map
that possesses the matrix representation (3.1), p. 60.
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