JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 7, 146-162 (1963)

Some Tauberian Theorems and the Asymptotic Behavior of
Probabilities of Recurrent Events

Apriano M. Garsia*

California Institute of Technology

Submitted by Samuel Karlin

INTRODUCTION

The problem we shall be concerned with here has been suggested by the
theory of probability but can be formulated and treated in a purely analytical
fashion.

We are given a sequence { f,} of real numbers satisfying the requirements

=0, anzl

(greatest common divisor of the #’s such that f,, > 0) = 1, (LD
and we define a sequence {,} by the equations
u, =1
(1.2)

n
Uy = ), frbn_s n> 1.
kz:/:l k%n—k
It is easy to see that for each n, 0 < u, < 1, and it is well known [9] that
7 -1
Jim = lim (3 45) @)
Our attention here will be devoted to the cases in which

kfy, = . (L4)
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SOME TAUBERIAN THEOREMS 147

This condition, in view of (I.3), implies that u,, — 0 as n — . However, if no
further assumptions about the f,’s are made, the behavior of {u,} may be
very irregular. In general (see [3]) it is not even true that

Uiy ~ Uy - (1.5)
Nevertheless, Erdos and de Bruijn [2-4] established (1.5) when

lim (fulf) =1,

and in some other interesting cases. They conjectured that perhaps (1.5)
could be obtained under very general conditions upon the f,’s. More recently
Orey [5] has shown that a result such as (1.5) has applications to the theory
of Markov chains. This development brought again attention to the problem
originally investigated by Erdos and de Bruijn. In a recent work [6] the
result (1.5) has been established under the condition

lim sup (foffn) < 1* (L6)

or even, less restrictively, under the condition

: Jorr T hare + = 4 fraen
1 < f . L
H’{l"’iqun b T o = 1 (forsome N >1) (L.7)

We should also bring the attention to another work related to the present
one. In [7], under different types of assumptions, some very precise results
concerning the behavior of {u,} were obtained. Namely, under the condition

R, = fos1 + fasa + o ~e/n® (1.8)
for some 4 < « < 1 it has been established that

1 sinna

Uy~ cnl—®

— (1.9)
Similar results have been found when the constant ¢ is replaced by a slowly
varying function. It is perhaps worth mentioning that (1.8) does not, in
general, imply (1.9) when 0 < « < 1. Nevertheless, when (1.8) holds, in any
case it can be shown [7] that one has at least

1 sin 7a
c w

. (L.10)

lim inf #l—*y, >
n->0

1 Actually (I.4) can occur only in the case of equality,
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In the present paper we shall establish (1.5) under very general conditions.
Although our results here include all the above mentioned results as special
cases they are not best possible. The only necessary and sufficient conditions
for (1.5) to hold, known to this date, are conditions involving the sequences
{f.} and {u,} simultaneously (see [3], [6], and Theorems 1.42 and 2.3 of the
present paper) and cannot be considered satisfactory.

Perhaps the two main corollaries of our results here are the following
theorems.

Tueorem L1. If conditions (1.1} are satisfied and in addition for some
a > 1 we have

n+1f
lim s it to nHL
P T T,

then

uﬂ’H—l ~ Uy .

To state the next theorem we need to introduce an auxiliary sequence
{a,}. For large n we let a, be the positive solution of the equation

frow + foot 4+ fuoh = 1. (L11)

This defines «, for n > n, where fn0 is the first f, > 0. For n < ny, — 1 it is
convenient to set
Ky = Otno .

It is easy to see that {«,} is a nonincreasing sequence of numbers approaching
one.

TueoreMm 1.2. If the conditions (I.1) are satisfied and in addition the series
zfn 00 "t Oty (I.12)
n

1s convergent, then

Upyy ™~ Uy .

Theorem 1.1 was conjectured by S. Orey. It has the advantage over the
previous results in that it allows the sequence f,, to have arbitrarily large gaps,
while the only known counterexamples to (1.5) have been obtained by intro-
ducing such gaps.
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From Theorem L.2 it is readily deduced that the condition
R, = O[ 1/n]

implies (I.5). The following corollary of Theorem 1.2 is also worth noting

Tueorem 1.3.  If the sequence f, satisfies (I.1) and the sequence
Ry = foi1 + fasg + = is such that for some « in the range (\/5 — 1)/2,1)

we have
A. R,=0[1/n%.

B. liryp_) glf (R[no]/R,) = 1fo*  (forall0 <o < 1).

then
Upyq ™~ Uy

We should mention that the constant (4/5 — 1)/2 in Theorem 1.3 is not the
best possible. The result there can be improved by replacing (/5 — 1)/2 by
the number o, > % defined by the equation

1
¢ = o f €° dojo™ , (L13)
0
Perhaps the best constant in Theorem 1.3 is 4. It is also a conjecture whether
or not the assumption R, ~ ¢/n* implies (I.5) also for 0 < o < 3.
I. NotarioNs AND AUXILIARY RESULTS

1.1 For convenience we shall introduce the generating functions
Foy=3,fi", RO = R, U=, ut. (L11)
n=1 n=0 n=0
The following relations hold.

11
EOROEDIION

Ut)=1— (1.12)
We shall also set

un+1/un =Tun-

10
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A very convenient method of establishing Tauberian theorems is one that
is essentially due to Beurling [8]. We shall introduce it in the form needed in
the present context. Suppose we are in possession of a bound of the form

limsupr, <M <.

Then by a diagonal process we can find a sequence 7, such that all variables
rnk+l (l = 0) :*: ]v —_'t 23 .")

are convergent to finite limits.
We set

llzi—‘)n; rnk+l =0y (lc13)

The idea is that the sequence #, can be chosen so that o, results equal to a
particular limit of the sequence 7,. For instance we can make so that

g, = liminfr or gy = limsupr,.
0 n-w0 n 0 n—)oop n

We then proceed to find relations between the numbers o, which eventually
imply estimates upon o,.

This approach was used with success, in this problem, in [6]. To simplify
our exposition a subsequence as described above will be referred to as
“a determining sequence.”

1.2 We shall recall a few results which will be of use in the following.
First of all from (I.1) and (I.2) it can be easily shown that u, > 0 for all
sufficiently large #.

We also have the inequality

Uy = Uy, (forall0 < & < n) (1.21)
This yields in particular that for all sufficiently large N
u, = Ofuy,y]- (1.22)
We can then deduce
LemMa 1.2. A necessary and sufficient condition for
tny = Oluy) (1.23)
is that there exists an Ny > 1 such that

Uy = Oty y + 4y 5+ + un—No]‘ (1.24)
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Proor. The necessity is obvious. As for the sufficiency we note that if
(1.22) is true for all N > N,, then in view of (1.24) we have

U, = O[“n+N1-1 + tpga + 0+ un+N1—1] = O[u'n+N1—1]'

This implies the validity of (1.22) for all N, in particular (1.23). The lemma
gives a useful criterion.

CRITERION. If there exists an N such that

Jo=Olfoes + foa+ "+ fan] (1.25)
then

1 sup (n4a/up) < .

Such a result was noticed and used in both [3] and [6]. It can be established
by showing that (1.25) implies (1.24).

1.3 If f;=0, lim inf 7, need not be different from zero but if
7>

lim_xsnup Tn=M < > (1.31)
then we have
li;n%inf r, = MF(1/M). (1.32)

In view of the definition (1.11) of F(£) and (L.1) we get

TueoreM 1.3. When (1.1), (1.2) hold, in order that
Uppy ™~ Uy
it is necessary and sufficient that

lir;l_)goup (/1) < 1. (1.33)

1.4 Let us assume that (1.31) holds and let ;. be an arbitrary determining
sequence. From (I.2) we deduce that for n > N

N
Uy 2 2 fku'n—k
k=1

dividing by u,
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passing to the limit along » = #; + / first, then letting N — o and using
(1.13) we obtain

1>i fe =041, 22,0, (1.41)

- k=1 S TR A 3

Note that these relations are equivalent to

0, > 2 P LI (1=0,-1, 42, ). (1.42)

o4Oy
Thus, in particular, the inequality (1.32) is obtained when

0o = liminfr,.
N0

We note that equality in (1.41) cannot be assured for all determining
sequences and for all  without establishing that u, , ~ #,. As a matter of
fact we have

TaeoREM 1.41. For all determining sequences we have

I

i—‘ﬁ“ 1 (=0+1+2-) (1.43)

011" 01
if and only if
Uy ~ Uy .

A proof of this result can be found in [6].
We shall also recall that

TuroreM 1.42. The equalities in (1.43) and therefore u, ; ~ u, hold if
and only if

11m lim sup 1 ( 2 fku,,*k) = 0. (1.44)

Nowo  moo0 & Uy, N S8

A similar but slightly more complicated necessary and sufficient condition

can be found in [3].
From the inequality (1.21) and Theorem 1.42 we easily deduce the

CriterioN 1.4. A sufficient condition for u, ., ~ u, is that the series

D, folttn (1.45)

is convergent.
This criterion was also mentioned in [3].
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II. Proors oF THE MAIN RESULTS

2.1 The criterion 1.4 suggests looking for some suitable lower bounds for
the sequence #,. The importance of such bounds was already noticed in [1].
The results there (cf. Theorem 2.2, p. 4) are of the form

U, >(1 — e forall n>n(e) (2.11)

and for every ¢ > 0. Such bounds can be obtained immediately from (1.3)
In fact, observe that for large N the sequence

fi=hoy, fi=fod, = fu=fyeks fo=0 for n>N
satisfies 1.1, so that the sequence #, defined by (1.2), in view of (1.3), satisfies
N
lim w, = 1]y, kol
n—e0 =1

On the other hand it is clear that we have

U, >uyfoy,  forall n>0. (2.12)

It was also shown in [1] that (2.11) cannot in general be further improved
without taking into account the behavior of the f,’s. Nevertheless, in each
particular case, (2.11) may be a long way from reflecting the behavior of the
u,’s. A more satisfactory type of bound is the one given by the following

TrEOREM 2.1. If the f,’s satisfy (1.1) and the a,’s are defined by (1.11),
then there exist a constant A > 0 and an integer ny such that

Upgrrs = Af{lyog o) forall k2 >0. (2.13)
Proor. For simplicity we shall prove the theorem under the assumption

that f; > 0. We shall then have u, > 0 for all n. Thus there exists a constant
A so that

Uy = Al(ogos *+* on) (2.14)

at least for » = 0, 1. We proceed by induction and assume (2.14) true for
0 <n <m — 1. We then have

m
Aoy Ay lly, = Ef *L OO *** i Wnte] Oy *** Oy +
x=1
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Using the definition of {«,} and (2.14)

m
k
0 0lg = Qo > A kaam = A.
k=1

This proves the theorem.
Combining the estimate (2.14) with criterion 1.4 we obtain a proof of
Theorem I.2 stated in the introduction.

2.2 To prove Theorem 1.3 we set

Gw)=73, fi» R®=1—0G@), o=e""

k<

The definition of «, gives that

L= [ eine aGl) = — [Jesmzan — 6. @2y
1] 0

>~——J. ( n ) ( ) n f ( ) ( )
l 1 X dG X 1 Ii’n X ala X). 2'22

Integrating by parts and making the substitution x = #no in both (2.21) and
(2.22) we get

nR, 1

4, < = 2.23
" |} R(ne)do — nR, f; [R(nc)/R(n)] do — 1 (2.23)
1 R(na)
Ap __ Ago
Py f e R (2.24)
Under the assumption B of Theorem 1.3 we get (by Fatou’s lemma)
. l—«
A= lugljoup A4, < (2.25)

Passing to the limit in (2.24) along a suitable subsequence and using Fatou’s
lemma again, from (2.24) we obtain

et > 4 j " ee (doo), (2.26)

This inequality implies that
A < A(a) (2.27)

where A(o) is the number A which reduces (2.26) to an equality.
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From (2.27) we get
oo o, = O[nA*]  forany € >0.

Using assumption A of Theorem 1.3 we obtain that the series

Ef’” Xy 7T Oy
is convergent as soon as the series

nA(az)+e

2
is convergent. That is, when

A(o) < a.
But this occurs when

a > o,

o, being the solution of Eq. (I.13).

Remark. We should mention that when
R, = O[l/n] (2.28)
the inequality (2.22) (together with the assumption (1.4)) gives
Ayjn = ofR] = oft/n]

and then also

oo+t o, = 0 [log ).

This result combined with (2.28) yields the convergence of the series (I.12),

2.3. We shall obtain the proof of Theorem I.1 after several steps. We
start by establishing:

THEOREM 2.3. A necessary and sufficient condition for u, ., ~ u, is that
there exists a sequence of nonnegative numbers {m,} (not all vanishing) and an
tnteger p > 0 such that

n

lim lim su Tty = 0, 2.31
Am Lm Sup Hrp w5 1lhn—x ( )
. Pt S R
hr;‘a_soup ——ZTT < 1. (2-32)

»=0 "y n—y
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Proor. The necessity is quite clear. (When ny =1 and =, =0, n >0
it is trivial; when =y = 0 and =, = f,, # > 0 it follows from Theorem 1.42.)

The sufficiency is more difficult and will require two auxiliary lemmas.
We first observe that since p may be any integer greater than zero, there is no
loss of generality in assuming that =, > 0.

Lemma 2.31. Under the hypotheses (2.31) and (2.32) we have

M= lirgl_)foup Uy 1 [thy, < 0, (2.33)

Proor. From (2.32) we have

n+1 n-—-p

> it =0 [2 mun_,,_,] ) (2.34)
=0 v=0
But (2.31) implies that for IV large enough we have
>, Mty = Oty ). (2.35)
y=N+1

Combining (2.35) with (2.34) we get

N
Moty = O [2 n-vun_p_v] + Olu,],

=0

in other words
Unyy = Oftty + g + > + up_n_p]-

Thus Lemma 2.31 follows from Lemma 1.2.

LemmMma 2.32.  Under the hypotheses (2.31) and

M = lim Sup w4/, < (2.36)

there exists a constant I such that for every determining sequence and for every [

0

rn=-—"__<r (2.37)

yeg T1-1""" 01—y

In addition for every determining sequence {n;} we have

nk+l ©

lim D) Ml = ;—-‘”——— . (2.38)

o Unp+t 30 v=0 T1-1""" Oty
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Proor. Let {n;} be a determining sequence. From (2.31) and (2.36) we
deduce that for a given ¢ > 0 and a sufficiently large N,

n
2 mi,_, < e forall  n>n(N,).

Uy, v=N+1

Let now N be arbitrary and m = lim,,_,
We shall have

5‘/ i 2 - 2 +e  (239)

vmo Tn-1""Tnv 30 Tu1'"" Too Tna ' Taw

infr, (in view of (2.36) m > Q).

Passing to the limit along n = n, + [ we get

N,
N €
Ty Ty
2 LYY, 3 S E my + €
I— »=0

=0 !

Since N is arbitrary, this inequality implies the first statement of the lemma.
The remaining part of the lemma is obtained by first passing to the limit in
(2.39) along n = n;, 4 [ and then letting N and N, tend to infinity.

2.4 We are now in a position to complete the proof of Theorem 2.3. We
shall achieve this by showing that for every determining sequence {n,} and
every [ we have

>l (2.41)

=1 %1170

In other words we shall reduce Theorem 2.3 to Theorem 1.41. Formula (2.41)
can be established as follows. The assumption (2.32) in view of (2.38) yields

o (/) < 1. (2.42)
By a repeated application of this inequality we obtain that for every £ > 1

L

CRASTRALN ) A

I <
Multiplying by f; and summing

I < 2 T r,_k (2.43)

We note that the series on the right hand side of this inequality is convergent
because of (1.41) and the uniform boundedness of the I'}’s (2.37.) Since the
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terms of this series are nonnegative, we can sum them in any order we please.
For instance, using (2.37)

011701y 321 Ot—v—1 """ Olvk

i flc.r’l—k :i Ty < Je <T.
‘This inequality reverses (2.43). But this can be possible only if
)il
k=1 [ TV R al—v—-k

for each v such that =, > 0. Since 7y > 0 and [ is arbitrary, we obtain 2.4]1.

2.5 Theorem L.1 is a corollary of the following:

THEOREM 2.5. If the sequence f, satisfies (1.1) and in addition there exists
a nonnegative sequence {m,} and an integer p > 0 such that

tim tim sup | L 0] =0 (2.51)
Nowo a0 Unip N1
lim sup nfl + 7Tn—1f2 + 770fn+1 <1 (2.52)

o1 f1 -+ g fo + 0+ oS
then u,  , ~ u,.

Proor. Here again since p may be greater than zero, we can assume
without loss that =, > 0. For convenience we introduce the constants

Ay =mp g fr + Mafot+ o+ ToJn (2.53)

and the functions

A(t) = i‘, A, m(t) = i P

=0

We then have A(f) = =(t) F(2) so that using the formulas (1.12) we obtain
~(U — 1) = UA.
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Equating coeflicients we get

ni Tyl _y = i Avun—v 0 (254)
=0 v=1

From (2.52) we get that for any given A > 1 we can find n(A) so that
A,,; < A4, for all v > n(A). Using this fact in (2.54) for n > N > n(A) +
p -+ 1 we obtain

n=1 N n
2 Tyl _y < 2 Avu'n-v + Aett 2 Av—ﬂ—lu‘n—v
v=0 v=1 y=N+1
N n—p—1
= 2 Avun—v + s 2 Avun—P—l—v .
v=1 y=N—p
Using (2.54) again we get
n—1 N n—p—2 N—p-1
2 Tylly < 2 Avu'n—v + Apil [ E 77'1:“12—[7—1—1- - 2 Avun—-p—l—v] * (255)
v=0 r=1 »=0 v=0
From (2.51) we get that
n—p—2
Tylln_p—1-v = O[un—l]'
»=N—p

Combining this estimate with (2.55) we obtain that
Uy = O[un—l + g+ o+ un—N]'

Thus, in view of Lemma 1.2 we get u,,; = O[u,]. This result implies that
(2.51) must also be true with p = 0.

2.6 We shall reduce Theorem 2.5 to Theorem 2.3 by showing that

LevMa 2.6. Under the assumption (2.51), if for some A > 1, we have

""nfl + mpa fo o F "ofn+1 <A

lim su 2.61
L P "n—-lfl + "n—2f2 + o+ ﬂofn ( )
then we must also have
A’ = lim sup To=tMo Tt 0 by (2.62)

no t qally 4= Tty + 0t mol,
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Proor. In Section 2.5 we have essentially shown that (2.51) and (2.61)
imply
M = lim sup —*+ i1 oo, (2.63)

n->0 ﬂ
We can thus choose a determining sequence {7;} such that

Ty T Tty + *0 + Tolly,

Jim — /. (2.64)

koo amy g + gy £t Ty,

Since we are assuming (2.51) and we have (2.63), Lemma 2.32 applies. From
it, (2.64), and the definition of /1" we obtain that

UIF 41 ’ UOF ’
“pisd, phed (2.65)

This also gives that A" << MI'fmy < oo,

We note that under the assumption of this lemma the inequality (2.55)
must hold for any A > 4 and for p = 0. Dividing (2.55) by #, and passing
to the limit along # = n;, 4 [ we obtain

& A N-1 4,
2 ‘O [Fl_l o 2 Grs 0y —v-l] . (2.66)

Since N may be arbitrarily large, we shall pass to the limit as N — =, But
before doing so we observe that by (2.53), (2.37), and (1.41) we have

®© 9] I“l—
2 Oy 2 ~'fk"fﬂfcl—k

011 k=1 %11
= 2 2 <TI) <, (2.67)
,,=o —V Jo=1 [ R al—v—k

Thus (2.66) yields

<y [11_1 E Ji Lo R )

1 %1101« 101—-2 """ Ol—k—1

Since A may be an arbitrary number greater than /4, we can replace A by 4
in (2.68). The resulting inequality is best written in the form

poala)<f ot (ra-alas). e

014 o O1—k—1
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2.7 Let us now assume, if possible, that
A > A, (2.71)
Note that for [ = | we have (in view of (2.65))

I, _ 4
4P =T, (1 _ 717) . 2.72)

Suppose then that (2.72) holds for a given L From (2.69), using (2.65),
(2.67), and (2.71), we get

1’1(1u%)g§—f’“—5——’“—(1 ——A—)grl(l A). (2.73)

=1 O " 01 A, o T
This implies not only that (2.73) must be an equality, but also that

' _ Iy

14
A O g1

(2.74)

at least for all % such that f; > 0. However, then the aperiodicity condition
in (I.1) assures the existence of an [ such that (2.74) holds for every & > 0.
Making a repeated use of (2.74) we obtain
I Ty

(A')k - C11°""" 01& ’

Multiplying this relation by f, and summing, we obtain

but this is absurd if A" > 1.

Remarks. We shall close by showing how Theorem I.1 may be deduced
from Theorem 2.5. Suppose that for some « > 1

; afy + ofy £ - 4
ISP o ¥ oty b o oty

This condition, setting
7 = (1), (2.75)

is easily seen to imply (2.52).
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We are thus left to verify that condition (2.51) is always satisfied by a
sequence such as (2.75). This, however, is an easy consequence of (1.21) and
the lower bounds (2.11). In fact we have

1 zn o= ] Z 1
- Tyl i == E < < E — ™
“n i N k=N+1 oy k=N11 [o(1 — e)}F

at least when e is sufficiently small.

We should also mention that condition (2.51) is trivially satisfied when m,,
is a sequence that has only a finite number of non vanishing terms. Thus
from Theorem 2.5 we obtain also that the condition

; Toforr + =+ T fanin
lim sup <1
o S g fo A A Ty fan
for some nonnegative constants m,, ,, *--, 7y is sufficient to guarantee that
Upiy ™~ Uy -

This result was announced without proof in [6].
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