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INTRODUCTION 

The problem we shall be concerned with here has been suggested by the 
theory of probability but can be formulated and treated in a purely analytical 
fashion. 

We are given a sequence { fn} o real numbers satisfying the requirements f 

I fnro, Sf*= 1 
FS=l 

(greatest common divisor of the n’s such thatf, > 0) = 1, (‘*I) 

and we define a sequence (u,} by the equations 

(I-2) 

It is easy to see that for each n, 0 < U, 5 I, and it is well known [9] that 

lim u, = lim n-MO n’63 tg kfT* (1.3) 

Our attention here will be devoted to the cases in which 

j$ kfg = “‘. 
k=l 

(I-4) 

* In carrying out this work the author was supported by Contract Nonr-220(31) 
between the Office of Naval Research and the California Institute of Technology. 
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This condition, in view of (1.3), implies that u, -+ 0 as 12 -+ 00. Hlowever, if no 
further assumptions about the fn’s are made, the behavior of {un} may be 
very irregular. In general (see [3]) it is not even true that 

%lt1- %I * (1.5) 

Nevertheless, Erdos and de Bruijn [2-41 established (1.5) when 

and in some other interesting cases. They conjectured that perhaps (1.5) 
could be obtained under very general conditions upon the fn’s. More recently 
Orey [5] has shown that a result such as (I 5) has applications to the theory 
of Markov chains. This development brought again attention to the problem 
originally investigated by Erdos and de Bruijn. In a recent work [6] the 
result (1.5) has been established under the condition 

or even, less restrictively, under the condition 

. . . 

We should also bring the attention to another work related to the present 
one. In [7], under different types of assumptions, some very precise results 
concerning the behavior of {un} were obtained. Namely, under the condition 

for some 8 < 01< 1 it has been established that 

Similar results have been found when the constant c is replaced by a slowly 
varying function. It is perhaps worth mentioning that (1.8) does not, in 
general, imply (1.9) when 0 < 01 < 8. Nevertheless, when (1.8) holds, in any 
case it can be shown [7] that one has at least 

1 sin 1~01 
lim inf nl-“u, 2 - - , 
?Z- c lr 

(1.10) 

1 Actually (1.4) can occur only in the case of equality. 
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In the present paper we shall establish (1 S) under very general conditions. 
Although our results here include all the above mentioned results as special 
cases they are not best possible. ‘The only necessary and sufficient conditions 
for (1.5) to hold, known to this date, are conditions involving the sequences 
{ fn> and {un} simultaneously (see [3], [6], and Theorems 1.42 and 2.3 of the 
present paper) and cannot be considered satisfactory. 

Perhaps the two main corollaries of our results here are the following 
theorems. 

THEOREM 1.1. If  conditions (I.1) are satisjied and in addition fey some 

CL > 1 we have 

then 

To state the next theorem we need to introduce an auxiliary sequence 
{an}. For large n we let 01, be the positive solution of the equation 

(1.11) 

This defines 01, for n 2 n, where fn, is the first fn > 0. For n < n, - 1 it is 
convenient to set 

It is easy to see that {an} is a nonincreasing sequence of numbers approaching 
one. 

THEOREM 1.2. If the conditions (1.1) are satisJed and in addition the series 

is convergent, then 

Theorem I.1 was conjectured by S. Orey. It has the advantage over the 
previous results in that it allows the sequencef, to have arbitrarily large gaps, 
while the only known counterexamples to (1.5) have been obtained by intro- 
ducing such gaps. 
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From Theorem I.2 it is readily deduced that the condition 

R, = 0[ l/n] 

implies (1.5). The following corollary of Theorem I.2 is also worth noting 

THEOREM 1.3. If the sequence fn satisfies (IA) and the sequence 

R,, = fn+l + fn+z + *.a is such that for some 01 in the range (& - 1)/2, 1) 
we have 

A. R,, = 0[ l/n”]. 

B. l$n@f (R[na]/R,J 2 l/aCI (for all 0 < u < 1). 

then 

We should mention that the constant (1/3 - 1)/2 in Theorem I.3 is not the 
best possible. The result there can be improved by replacing (6 - 1)/2 by 
the number CQ > $ defined by the equation 

eao = a0 
s 

1 
eaou du/uqo . (1.13) 

0 

Perhaps the best constant in Theorem I.3 is i. It is also a conjecture whether 
or not the assumption R, w c/ncl implies (1.5) also for 0 < LX 5 &. 

I. NOTATIONS AND AUXILIARY RESULTS 

1.1 For convenience we shall introduce the generating functions 

R(t) = 2 R$, 
n=l It=0 

The following relations hold. 

U(t) = -g z&P. (1.11) 
n=o 

U(t) = l 1 
1 -F(t) =(l - t)R(t)’ 

(1.12) 

We shall also set 
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A very convenient method of estabhshing Tauberian theorems is one that 
is essentially due to Beurling [8]. We shall introduce it in the form needed in 
the present context. Suppose we are in possession of a bound of the form 

Then by a diagonal process we can find a sequence nk: such that all variables 

r nlE+Z (E = 0, & 1, i 2, -*) 

are convergent to finite limits. 
We set 

The idea is that the sequence rzk can be chosen so that aa results equal to a 
particular limit of the sequence r,. For instance we can make so that 

a0 = lim inf r, ?I- 
or ua = lim sup r, . 

n+m 

We then proceed to find relations between the numbers ui which eventually 
imply estimates upon uO. 

This approach was used with success, in this problem, in [6]. To simplify 
our exposition a subsequence as described above will be referred to as 
“a determining sequence.” 

1.2 We shall recall a few results which will be of use in the following. 
First of all from (1.1) and (1.2) it can be easily shown that u, > 0 for all 
sufficiently large n. 

We also have the inequality 

%z 2 u,%,-, (for all 0 < k I n) 

This yields in particular that for all sufficiently large N 

%a = O[%z+h& 
We can then deduce 

(1.21) 

(1.22) 

LEMMA 1.2. A necessary and su..cient condition for 

I4 ?I+1 = O[%zl 

is that there exists an IV, 2 1 Such that 

u, = O[%-, + U%-2 + *** + %-NJ. 

(1.23) 

(1.24) 
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PROOF. The necessity is obvious. As for the sufficiency we note that if 
(1.22) is true for all N 2 N,, then in view of (1.24) we have 

This implies the validity of (1.22) for all N, in particular (1.23). The lemma 
gives a useful criterion. 

CRITERION. If there extits an N such that 

fn = O[fn-, + fn-2 + *** + Ll 
then 

(1.25) 

Such a result was noticed and used in both [3] and [6]. It can be established 
by showing that (1.25) implies (1.24). 

1.3 If fi = 0, liy+%f r, need not be different from zero but if 

lim sup Y, = M < 03 ?I- (1.31) 

then we have 

liF2f r, 2 MF(l/M). (1.32) 

In view of the definition (1.11) of F(t) and (1.1) we get 

THEOREM 1.3. When (I.l), (1.2) hold, in order that 

%a+1 -%l 

it is necessary and suficient that 

li:Lup (un+&J I 1. (1.33) 

1.4 Let us assume that (1.31) holds and let nk be an arbitrary determining 
sequence. From (1.2) we deduce that for n > N 

dividing by u, 
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passing to the limit along n = n,. T 1 first, then letting N-t m and using 
(1.13) we obtain 

Note that these relations are equivalent to 

Thus, in particular, the inequality (1.32) is obtained when 

0s = lim inf r, . n+m 

We note that equality in (1.41) cannot be assured for all determining 
sequences and for all 2 without establishing that un+r - u,. As a matter of 
fact we have 

THEOREM 1.41. For all determining sequences we have 

m  

2 
fk =I 

k=l ~1-1"'~l--k 
(1 = 0, & 1, f 2, --) (1.43) 

if and only if 

A proof of this result can be found in [6]. 
We shall also recall that 

THEOREM 1.42. The equalities in (1.43) and therefore u,,, - u, hold if 

and only if 

A similar but slightly more complicated necessary and sufficient condition 
can be found in [3]. 

From the inequality (1.21) and Theorem 1.42 we easily deduce the 

CRITERION 1.4. A sufficient condition for u~+~ N u, is that the series 

is convergent. 
This criterion was also mentioned in [3]. 
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II. PROOFS OF THE MAIN RESULTS 

2.1 The criterion 1.4 suggests looking for some suitable lower bounds for 
the sequence u,. The importance of such bounds was already noticed in [l]. 
The results there (cf. Theorem 2.2, p. 4) are of the form 

u,Z(l -c) for all n 2 n(e) (2.11) 

and for every E > 0. Such bounds can be obtained immediately from (1.3) 
In fact, observe that for large N the sequence 

f; =flaN, fi = fiai, -, fk =f,c$‘; fi = 0 for n > N 

satisfies 1.1, so that the sequence z& defined by (1.2), in view of (I-3), satisfies 

On the other hand it is clear that we have 

%a 2 4&I: for all n 2 0. (2.12) 

It was also shown in [I] that (2.11) cannot in general be further improved 
without taking into account the behavior of the f%‘s. Nevertheless, in each 
particular case, (2.1 I) may b e a long way from reflecting the behavior of the 
u,‘s. A more satisfactory type of bound is the one given by the following 

THEOREM 2.1. If the fn’s satisfy (I.1) and the an’s are defined by (I.ll), 
then there exist a constant A > 0 and an integer n, such that 

PROOF. For simplicity we shall prove the theorem under the assumption 
that fi > 0. We shall then have u, > 0 for all n. Thus there exists a constant 
A so that 

at least for n = 0, 1. We proceed by induction and assume (2.14) true for 
O<n<m-l.Wethenhave 
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Using the definition of (~~1 and (2.14) 

This proves the theorem. 
Combining the estimate (2.14) with criterion 1.4 we obtain a proof of 

Theorem I.2 stated in the introduction. 

2.2 To prove Theorem I.3 we set 

G(x) = x fk > R(x) = 1 - G(x), 01, =I &Jn. 
R$X 

The definition of (Y, gives that 

1 = jn etAnin’% dG(x) = - j; ecAninjz d[ 1 - G(x)]. (2.21) 
0 

And we obtain 

12 j: (1 + + x) dG(x) = 1 - R, - $ j; x dR(x). (2.22) 

Integrating by parts and making the substitution x = nu in both (2.21) and 
(2.22) we get 

A, < - nRn 
1 -- 

n J; R(m) da - nR,, = Ji [R(na)/R(n)] do - 1 
(2.23) 

1 
eAn = A, 

s 
eA,,o R(nu) do 

0 R(n)' 
(2.24) 

Under the assumption B of Theorem I.3 we get (by Fatou’s lemma) 

I-LY 
A = liy*Fp A, 2 - . a 

(2.25) 

Passing to the limit in (2.24) along a suitable subsequence and using Fatou’s 
lemma again, from (2.24) we obtain 

eA 2 A 
I 

1 eAo (da/u*). 

This inequality implies that 

A I A(a) 

where A(a) is the number A which reduces (2.26) to an equality. 

(2.26) 

(2.27) 
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From (2.27) we get 

%“2 
. . . an = (qn-w+q for any E > 0. 

Using assumption A of Theorem I.3 we obtain that the series 

is convergent as soon as the series 

nA(a)+r 

z--- nl+” 

is convergent. That is, when 

A(a) < a. 

But this occurs when 

a,, being the solution of Eq. (I. 13). 

Remark. We should mention that when 

R, = O[l/n] 

the inequality (2.22) (together with the assumption (1.4)) gives 

A&z = o[R,J = o[l/n] 

and then also 

(2.28) 

ala2 *a* a, = 0 [logn]. 

This result combined with (2.28) yields the convergence of the series (1.12). 

2.3. We shall obtain the proof of Theorem I.1 after several steps. We 
start by establishing: 

THEOREM 2.3. A necessary and s@cient condition for u,,, - u,, is that 

there exists a sequence of nonnegative numbers {ry) (not all vanishing) and an 
integer p 2 0 such that 

m&-l, = 0, (2.3 1) 

(2.32) 
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PROOF. The necessity is quite clear. (When 7~,, = 1 and rn = 0, n > 0 
it is trivial; when no = 0 and rfi : ,fn, n >:- 0 it follows from Theorem 1.42.) 

The sufficiency is more difficult and will require two auxiliary lemmas. 
We first observe that since p may be any integer greater than zero, there is no 
loss of generality in assuming that rTTn > 0. 

LEMMA 2.31. Under the hypotheses (2.31) and (2.32) we have 

M = lip+;up ufl+rlu, < 03. (2.33) 

PROOF. From (2.32) we have 

But (2.31) implies that for N large enough we have 

Combining (2.35) with (2.34) we get 

in other words 

U n+1 - - o[u, + %-I + **’ + %-N-,,I- 

Thus Lemma 2.31 follows from Lemma 1.2. 

LEMMA 2.32. Under the hypotheses (2.31) and 

M = li?zp u,+,/u, < ~0 

(2.34) 

(2.35) 

there exists a constant r such that for every determining sequence and for every 1 

In addition for every determining sequence (1~~) we have 

(2.37) 

=v%Ll,+z-v = (2.38) 
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PROOF. Let {nk} be a determining sequence. From (2.31) and (2.36) we 
deduce that for a given E > 0 and a sufficiently large N, 

Let now N be arbitrary and m = lim,,, inf r, (in view of (2.36) m > 0). 
We shall have 

Passing to the limit along n = n, + 1 we get 

Since N is arbitrary, this inequality implies the first statement of the lemma. 
The remaining part of the lemma is obtained by first passing to the limit in 
(2.39) aIong n = nk + I and then letting N and N, tend to infinity. 

2.4 We are now in a position to complete the proof of Theorem 2.3. We 
shall achieve this by showing that for every determining sequence {nk} and 
every 1 we have 

m 
(2.41) 

In other words we shall reduce Theorem 2.3 to Theorem 1.41. Formula (2.41) 
can be established as follows. The assumption (2.32) in view of (2.38) yields 

cz (rz+l/rz> s 1’ (2.42) 

By a repeated application of this inequality we obtain that for every k 2 1 

r, I rz-k . 
UZ-1 *** U&k 

Multiplying by fk and summing 

(2.43) 

We note that the series on the right hand side of this inequality is convergent 
because of (1.41) and th e uniform boundedness of the rz’s (2.37.) Since the 
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terms of this series are nonnegative, we can sum them in any order we please. 
For instance, using (2.37) 

and using (1.41) 

al-.,,-I **' ul+-k - 

This inequality reverses (2.43). But this can be possible only if 

m 
c; fk =I 
k=l u 2-v-l "' u&v-k 

for each v such that rrv > 0. Since x,, > 0 and 1 is arbitrary, we obtain 2.41. 

2.5 Theorem I.1 is a corollary of the following: 

THEOREM 2.5. If the sequence fn satzijies (1.1) and in addition there exists 

a nonnegative sequence {TT~} and an integer p 2 0 such that 

lim lim sup [& $r ~A-V] = 0 
N-m n- 

(2.51) 

(2.52) 

then unfl N u,. 

PROOF. Here again since p may be greater than zero, we can assume 
without loss that no > 0. For convenience we introduce the constants 

A, = rn-lfi + s-,fi + *a* + aofn (2.53) 

and the functions 

A(t) = $ A,$“, n-(t) = f$ 7r”P. 
TZ=l v=o 

We then have A(t) = r(t) F(t) so that using the formulas (1.12) we obtain 

,r(iJ-l)=UA. 
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Equating coefficients we get 

(2.54) 

From (2.52) we get that for any given h > 1 we can find n(X) so that 
A “+r I hA, for all Y 2 n(h). Using this fact in (2.54) for n > N > n(h) + 
p + 1 we obtain 

n-1 

2 ~,U*+ I f  A,u,-, + hpfl 2 A,-,-,u,-, 
v=o v=l v=N+l 

=g 
n-p-1 

A,u,-, + W-l z: &n-p--1--v . 
V=l v=N-p 

Using (2.54) again we get 

n-1 N 

2 

N-P-l 

T"U.&-, I 2 

n-p-2 

A,u,-, + hpfl 
E 

=%&-p-1-Y - z Avz+,+-v 1 . (2.55) 
V=O V=l V=O l-0 

From (2.51) we get that 

n-p-2 

z ~"%I-P-l-" = O[z&-l] . 
v=N-p 

Combining this estimate with (2.55) we obtain that 

t‘, = o[u,-, + u,4 + ‘*’ + %-N]’ 

Thus, in view of Lemma 1.2 we get u,+r = O[u,]. This result implies that 
(2.51) must also be true with p = 0. 

2.6 We shall reduce Theorem 2.5 to Theorem 2.3 by showing that 

LEMMA 2.6. Under the assumption (2.51), if for some A 2 1, we have 

(2.61) 

then we must also have 

A’ = liyzp %=,U, + T&u, + *-- + ~&,l < A 
r,u, + 7r,-,u, + *** + 7roun - * 

(2.62) 
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PROOF. In Section 2.5 we have essentially shown that (2.51) and (2.61) 
imply 

(2.63) 

We can thus choose a determining sequence {nk} such that 

Since we are assuming (2.51) and we have (2.63), Lemma 2.32 applies. From 
it, (2.64), and the definition of A’ we obtain that 

This also gives that A' 5 MT/a0 < ~0. 
We note that under the assumption of this lemma the inequality (2.55) 

must hold for any h > A and for p = 0. Dividing (2.55) by u, and passing 
to the limit along n = nk + I we obtain 

(2.66) 

Since N may be arbitrarily large, we shall pass to the limit as N -+ 03. But 
before doing so we observe that by (2.53), (2.37), and (1.41) we have 

Thus (2.66) yields 

Since h may be an arbitrary number greater than A, we can replace h by A 
in (2.68). The resulting inequality is best written in the form 

r, -A '-'-) < 2 fk (Tlek -Ah) . (2.69) 
0 z-1 k=l uZ-l"'" Z-k uz-k-1 
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2.7 Let us now assume, if possible, that 

A’>A. 

Note that for I = 1 we have (in view of (2.65)) 

(2.71) 

(2.72) 

Suppose then that (2.72) holds for a given 1. From (2.69), using (2.65) 
(2.67), and (2.71), we get 

J-l (1 - +, 5 k$ ult”;-k (1 - $j 5 G (1 - $) . (2.73) 

This implies not only that (2.73) must be an equality, but also that 

rz-k T&k-l -= 
A’ 

(2.74) 
*z--k--l 

at least for all K such that fk > 0. However, then the aperiodicity condition 
in (1.1) assures the existence of an I such that (2.74) holds for every K 2 0. 

Making a repeated use of (2.74) we obtain 

rl-76 
& = ate1 --* c7-k * 

Multiplying this relation by f, and summing, we obtain 

but this is absurd if A’ > 1. 

Remarks. We shall close by showing how Theorem I.1 may be deduced 
from Theorem 2.5. Suppose that for some 01 > 1 

This condition, setting 

is easily seen to imply (2.52). 

(2.75) 
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We are thus left to verify that condition (2.51) is always satisfied by a 
sequence such as (2.75). This, however, is an easy consequence of (1.21) and 
the lower bounds (2.11). In fact we have 

at least when E is sufficiently small. 
We should also mention that condition (2.51) is trivially satisfied when V, 

is a sequence that has only a finite number of non vanishing terms. Thus 
from Theorem 2.5 we obtain also that the condition 

for some nonnegative constants ~a, rri, ..-, nN is sufficient to guarantee that 

This result was announced without proof in [6]. 
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