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Abstract It holds in great generality that a plan is optimal for a dynamic program-
ming problem, if and only if it is “thrifty” and “equalizing.” An alternative charac-
terization of an optimal plan, that applies in many economic models, is that the plan
must satisfy an appropriate Euler equation and a transversality condition. Here we
explore the connections between these two characterizations.
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1 Introduction

It was shown by Dubins and Savage [4] that necessary and sufficient conditions for
a strategy to be optimal for a gambling problem are that the strategy be “thrifty”
and “equalizing.” These conditions were later adapted for dynamic programming by
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Blackwell [3], Hordijk [6] and Rieder [9], among others. For a special class of dy-
namic programming problems important in economic models, it has been shown that
optimality is equivalent to the satisfaction of an “Euler equation” and a “transversal-
ity condition”; see Stokey & Lucas [12] for a discussion and references. Our main
objective here is to understand the relationship between these two characterizations
of optimality. One corollary of our approach is a simple proof for the necessity of the
transversality condition, which has been considered a difficult problem. (See Stokey
& Lucas, page 102, and Kamihigashi [7].) The notions of “thrifty” and “equalizing”
seem not to be very widely known to dynamic programmers working in economics,
though they have proved quite useful in other contexts; we hope that this paper will
help spread the word about them.

Section 2 is a brief exposition of the thrifty-and-equalizing theory for a fairly gen-
eral class of dynamic programming models. Section 3 introduces the Euler equation
and the transversality condition, and then explains their relationship to the thrifty and
equalizing conditions. In Sect. 4 we take a brief look at “envelope inequalities” and
“Euler inequalities” for one-dimensional problems without imposing smoothness or
interiority conditions, and obtain the necessity of an appropriate “transversality con-
dition” in this context. There is an Appendix on measure-theoretic questions that arise
in dynamic programming.

2 Thrifty and Equalizing

Consider a dynamic programming problem (S,A,q, r,β) where S is a nonempty set
of states, the mapping A assigns to each state s ∈ S a nonempty set A(s) of actions
available at s, the law of motion q associates to each pair (s, a) with s ∈ S, a ∈ A(s)

a probability distribution q(· |s, a) on S, the daily reward r(· , ·) is a nonnegative
function defined on pairs (s, a) with s ∈ S and a ∈ A(s), and β ∈ (0,1) is a discount
factor. Play begins in some state s = s1; you choose an action a1 ∈ A(s1), receive a
reward of r(s1, a1), and the system moves to the next state s2 which is an S-valued
random variable with distribution q(· |s1, a1). This process is iterated, yielding a ran-
dom sequence

(s1, a1), (s2, a2), . . . (2.1)

and a total discounted reward
∑∞

n=1 βn−1r(sn, an). A plan is a sequence π =
(π1,π2, . . .), where πn tells you how to choose the nth action an as a function
πn(hn) of the previous history hn = (s1, a1, . . . , sn−1, an−1, sn). A plan π , together
with an initial state s1 = s, determine the distribution P

π,s of the random sequence
in (2.1) as well as the expected total discounted reward

Rπ(s) := E
π,s

( ∞∑

n=1

βn−1r(sn, an)

)

. (2.2)

The optimal reward or value at s ∈ S is V (s) := supπ Rπ(s) .

Remark 1 (Measure theory) If the state space S is uncountable, then nontrivial
measure-theoretic questions arise in the theory. For example, it can happen that the
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value function V (·) is not Borel measurable, even when all the primitives of the prob-
lem are Borel in an appropriate sense [2]. To ease the exposition, we defer further
discussion of these difficulties to the Appendix, where it will be explained how they
can be resolved. For now we ask the reader to suspend disbelief and assume that the
functions which arise in this section are measurable and the expectations are well-
defined.

Assume throughout, for simplicity, that V (s) < ∞,∀s ∈ S, and ask whether the
supremum in (2.2) is attained, say by some plan π∗; if so, this plan is called optimal.
A key tool for answering such questions is the characterization of the value function
V (·) via the Bellman equation

V (s) = sup
a∈A(s)

(

r(s, a) + β

∫

S

V (t) q(dt |s, a)

)

, s ∈ S

which holds in great generality and is also known as the “optimality equation” (see,
for example, Sect. 9.4 of Bertsekas & Shreve [1]). For a ∈ A(s) and a measurable
function v : S �→ R

+, define

(Ta v)(s) := r(s, a) + β

∫

S

v(t) q(dt |s, a).

The Bellman equation can now be cast as: V (s) = supa∈A(s)[(TaV )(s)].

Definition 1 An action a ∈ A(s) conserves V (·) at s ∈ S, if (TaV )(s) = V (s).

Thus an action a ∈ A(s) conserves V (·) at s ∈ S, if and only if

a ∈ arg max
A(s)

{

r(s, ·) + β

∫

S

V (t) q(dt |s, · )
}

.

Notice also that (TaV )(s) ≤ V (s) for all s and a ∈ A(s).

Let us fix now an initial state s = s1 along with a plan π , and consider the random
sequences {Mn}n≥1 and {Qn}n≥1 given by

Qn :=
n∑

k=1

βk−1 r(sk, ak), (2.3)

M1 := V (s1), Mn+1 := Qn + βnV (sn+1), n ≥ 1. (2.4)

Let Fn be the σ -field generated by the history hn = (s1, a1, . . . , sn−1, an−1, sn).

Lemma 1 For every plan π and initial state s, the adapted sequences {Mn, Fn}n≥1
and {βn−1V (sn), Fn}n≥1 are nonnegative supermartingales under P

π,s .

Proof Set Q0 = 0. Then for any n ≥ 1, any given history hn = (s1, a1, . . . ,

sn−1, an−1, sn), and letting an = πn(hn), we have

Mn+1 = Qn−1 + βn−1[r(sn, an) + βV (sn+1)
]
, and thus
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E
π,s[Mn+1|Fn] = Qn−1 + βn−1 (TanV )(sn) ≤ Qn−1 + βn−1 V (sn) = Mn (2.5)

a.s. under P
π,s ; we have used the fact that Qn is Fn-measurable, and q(· |sn, an)

is the conditional distribution of sn+1 given Fn. Thus {Mn, Fn}n≥1 is a P
π,s -

supermartingale. The sequence {Qn}n≥1 is nondecreasing, since the daily reward
function r(·, ·) is nonnegative. From this fact and (2.4), it follows easily that
{βn−1V (sn), Fn}n≥1 is also a P

π,s -supermartingale. All of these sequences are
clearly nonnegative, because r(· , ·) is. �

It follows from the lemma that the sequences {Mn}n≥1 and {βn−1V (sn)}n≥1 con-
verge almost surely and are non-increasing in expectation, under P

π,s . Define

�π(s) := lim
n→∞ ↓ E

π,s(Mn),

so that

V (s) = E
π,s(M1) ≥ lim

n→∞E
π,s(Mn+1) = �π(s)

= lim
n→∞

{
E

π,s(Qn) + βn
E

π,s[V (sn+1)]
}

= Rπ(s) + lim
n→∞

{
βn

E
π,s[V (sn+1)]

} ≥ Rπ(s). (2.6)

Definition 2 A given plan π is called: thrifty at s ∈ S, if V (s) = �π(s) ; it is called
equalizing at s ∈ S, if �π(s) = Rπ(s).

Theorem 2 below is an obvious, but useful, consequence of the string of inequali-
ties in (2.6). The two results that follow it (Theorems 3 and 4) give simple character-
izations of thrifty and equalizing plans, respectively.

Theorem 2 A plan π is optimal at s ∈ S, if and only if π is both thrifty and equal-
izing at s.

Theorem 3 For a given plan π and initial state s ∈ S, the following are equivalent:

(a) the plan π is thrifty at s;
(b) the sequence {Mn, Fn}n≥1 is a martingale under P

π,s ; and

(c) for all n ≥ 1, we have P
π,s(an conserves V (·) at sn) = 1.

Proof We write E[ · ] for the expectation operator E
π,s[ · ] below.

We start by assuming (a). Then, since E[Mn] is non-increasing in n, we have
E[Mn+1] = E[M1] = V (s) for all n ≥ 1. Hence, equality must hold in (2.5) with
probability one, and (b) follows.

Now, let us assume (b). Then equality holds P
π,s -almost surely in (2.5), and thus

(TanV )(sn) = V (sn) almost surely, so (c) follows.
Finally, we assume (c). Taking expectations in (2.5), we see that E[Mn+1] =

E[Mn] = E[M1] = V (s) and, consequently �π(s) = V (s), so (a) follows. �

Theorem 4 A given plan π is equalizing at s ∈ S, if and only if we have
limn→∞(βn

E
π,s[V (sn+1)]) = 0.
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This result is an obvious consequence of (2.6). If the reward function admits an up-
per bound 0 ≤ r(s, a) ≤ K < ∞ for all s ∈ S, a ∈ A(s), then 0 ≤ V (s) ≤ K/(1 − β)

for all s ∈ S and every plan π is equalizing.
Paraphrasing Blackwell [3], Theorem 3 says that a plan is thrifty if, with probabil-

ity one, it makes no “immediate, irremediable mistakes” along any history; whereas
Theorem 4 says that a plan is equalizing, if “it is certain to force the system into states
where little further income can be anticipated.”

We conclude this section with a brief look at the problem on a finite horizon. For
n = 1,2, . . . and s ∈ S, define the optimal n-day return as

Vn(s) := sup
π

E
π,s

(
n∑

k=1

βk−1r(sk, ak)

)

. (2.7)

The following result records the well-known backward induction algorithm and the
fact that the optimal n-day return converges to that for the infinite-horizon problem.
For a proof, see Sect. 9.5 of Bertsekas & Shreve [1].

Theorem 5 Let V0(·) be identically zero. Then for all s ∈ S and n = 1,2, . . . ,

(a) Vn+1(s) = supa∈A(s)(TaVn)(s), and
(b) V (s) = limn→∞ Vn(s).

3 The Euler and Transversality Conditions

We now specialize to problems with concave daily reward functions and convex ac-
tion sets as in Stokey & Lucas [12]. We shall use the notation and many of the as-
sumptions of this book so, for brevity, will refer to it as just S&L.

As in S&L, we assume that the state space S is a product S = X × Z, with a
vector s = (x, z) consisting of an “endogenous state” x ∈ X and an “exogenous
shock” z ∈ Z. The sets X and Z are nonempty Borel subsets of the Euclidean spaces
R

l and R
k , respectively; we shall assume that X is convex.

For each s = (x, z) the action set A(s) = �(x, z) is a nonempty Borel subset of
X and is convex in x: that is, if y ∈ �(x, z), y′ ∈ �(x′, z), z ∈ Z, and 0 ≤ θ ≤ 1, then
θy + (1 − θ)y′ ∈ �(θx + (1 − θ)x′, z) (Assumption 9.11 of S&L).

The daily reward function is now of the form r(s, y) = F(x, y, z); here F : X ×
X × Z → [0,∞) is a given, Borel measurable “reward” function, concave in the pair
(x, y), for every given z ∈ Z (Assumption 9.10 of S&L).

The law of motion is of the form s = (x, z) −→ (y, z); here a = y ∈ �(x, z) is the
“action”, and the distribution of the Z-valued random variable z is given by a Markov
kernel q(dξ |z). Note that the action y is the next value of the endogenous state: for
n ≥ 1 we have yn ≡ xn+1, a random variable measurable with respect to the σ -field

Fn := σ(x1, y1, z1, . . . , xn−1, yn−1, zn−1, xn, zn). (3.1)

In this setting, the Bellman equation becomes

V (x, z) = sup
y∈�(x,z)

(

F(x, y, z) + β

∫

Z

V (y, ξ)q(dξ |z)
)

. (3.2)
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(There appears to be a technical oversight in S&L, pages 246 and 273, where it is
stated that, under these conditions, there may not be a Bellman equation because of
measurability issues; see Remark 1 above, and the Appendix, Theorem 14.) We shall
denote the function occurring inside the supremum in (3.2) by

ψ(x, y, z) := F(x, y, z) + β

∫

Z

V (y, ξ)q(dξ |z). (3.3)

Lemma 6 The value function V (y, z) is concave in y; hence, so is ψ(x, y, z). The
function ψ(x, y, z) is strictly concave in y, if F(x, y, z) is.

Proof Let V0(· , ·) be identically zero and, for n ≥ 1, let Vn(· , ·) be the optimal n-day
return function as in (2.7) with s = (x, z). Then, by Theorem 5(a),

Vn+1(x, z) = sup
y∈�(x,z)

(

F(x, y, z) + β

∫

Z

Vn(y, ξ)q(dξ |z)
)

.

If, for each z ∈ Z, the function Vn(· , z) is concave, then Vn+1(· , z) is the supremum
of a concave function over a convex set; by a well-known result, it is concave. An
induction shows that all the Vn(· , z) are concave. From Theorem 5(b), the function
V (· , z) is thus the pointwise limit of concave functions, and is therefore concave as
well. The assertions about the function ψ of (3.3) are now easy to check. �

The usual treatment of the Euler and transversality conditions assumes that the
plans in question are at interior states and choose interior actions. To be precise, we
say that the state s = (x, z) is interior, if x is in the interior of the set X; and we say
that the action y at s is interior, if y belongs to the interior of the set �(x, z). A plan
π is called interior at s = (x, z), if s is interior and, with probability one under P

π,s ,
only interior states are visited and only interior actions are taken.

We assume for the rest of this section that the daily reward function (x, y) �→
F(x, y, z) is continuous on X × X and continuously differentiable in the interior of
X ×X, for every z ∈ Z. We shall use the notation DiF(x, y, z) for the partial deriva-
tive of F at (x, y, z) with respect to the ith coördinate, for i = 1,2, . . . ,2l. Let DxF

be the vector (D1F,D2F, . . . ,DlF ) consisting of the partial derivatives of F with re-
spect to its first l arguments, and let DyF be the vector (Dl+1F,Dl+2F, . . . ,D2lF )

of the next l partial derivatives of F . We shall use similar notation for the partial
derivatives of other functions, such as V (x, z).

We shall assume (cf. Assumptions 9.8 and 9.9 in S&L) that the action sets �(x, z)

and the daily reward function F(x, y, z) are nondecreasing in x; that is,

�(x, z) ⊆ �(x′, z) and F(x, y, z) ≤ F(x′, y, z) whenever x ≤ x′. (3.4)

We shall also impose the following continuity assumption (cf. Assumption 9.6 in
S&L): for every interior state (x0, z) and interior action y ∈ �(x0, z), there exists an
open neighborhood O ⊂ X of x0 such that y ∈ �(x, z) , ∀ x ∈ O.
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Lemma 7

(i) The value function V (x, z) is nondecreasing in x.
(ii) If the partial derivatives DxV (x, ξ) exist for q(· |z)-almost all ξ ∈ Z, then, when-

ever both its sides are well-defined, the following equality holds:

Dx

∫

Z

V (x, ξ)q(dξ |z) =
∫

Z

DxV (x, ξ)q(dξ |z).

Proof To verify (i), let x ≤ x′ and consider any plan π for a player who begins at
state (x, z). By (3.4), a second player at (x′, z) can choose the same initial action y

and receive an initial daily reward at least as large as that for the first player. Both
players proceed to the state (y, z), where z has distribution q(·|z). Thus the second
player can earn the same rewards as the first thereafter.

For part (ii), consider for ε > 0 the quotients (V (x1, . . . , xi + ε, . . . , xl, z) −
V (x1, . . . , xi, . . . , xl, z))/ε. By part (i), these are nonnegative; and by the concav-
ity of V (· , z), they are nondecreasing as ε ↓ 0 [10, pp. 4, 5]). The desired equality
now follows by monotone convergence. �

Theorem 8 Suppose that π is an interior plan at s = (x, z). Then π is thrifty at s, if
and only if the following hold with probability one under P

π,s :

(a) the Envelope equation

DxV (xn, zn) = DxF(xn, yn, zn), ∀n = 1,2, . . . ;
(b) the Euler equation

DyF(xn, yn, zn) + β

∫

Z

DxF(yn, yn+1, ξ)q(dξ |zn) = 0, ∀n = 1,2, . . . .

Proof Let us start by assuming that π is thrifty. By Theorem 3, the actions yn con-
serve V (· , ·) at sn for all n ∈ N, on an event of probability one. Hence, for out-
comes in this event, yn maximizes ψ(xn, · , zn) over �(xn, zn), and the envelope
equation can be established exactly as in Theorem 9.10, page 267, of S&L; namely,
using the concavity of ψ(xn, · , zn) from Lemma 6, and the fact that DxV (xn, zn) =
Dxψ(xn, yn, zn) from Theorem 4.10, page 84 of S&L.

Here is the gist of this (pathwise) argument, reproduced here at the request of the
referee: By the interiority and continuity assumptions there exists, for every n ∈ N, an
open neighborhood On of xn such that yn ∈ �(x, zn) holds for all x ∈ On. Therefore,
the function

W(x) := F(x, yn, zn) + β

∫

Z

Vn(yn, ξ)q(dξ |zn) (3.5)

is concave, continuously differentiable, and satisfies W(x) ≤ V (x, zn), ∀ x ∈ On,
with equality for x = xn. Now, any subgradient p ∈ R

l of the function V (· , zn) at xn

must satisfy

p · (x − xn) ≥ V (x, zn) − V (xn, zn) ≥ W(x) − W(xn), ∀x ∈ On,
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where the dot · signifies the usual inner product in R
l . But W(·) is differen-

tiable at xn, so there is only one such subgradient; thus V (· , zn) is differentiable
at xn (cf. [11, p. 242]) and we have DxV (xn, zn) = DxW(xn) = DxF(xn, yn, zn) =
Dxψ(xn, yn, zn), as claimed.

The Euler equation, which can be written equivalently as

DyF(xn, yn, zn) + β · E
π,s

[
DxF(yn, yn+1, zn+1) | Fn+1

] = 0, (3.6)

follows now by setting Dyψ(xn, y, zn) = 0 at y = yn, and recalling the envelope
equation and part (ii) of Lemma 7. (Note that (y, ξ) �→ DxV (y, ξ) is continuous
by (a).)

• For the converse, assume that (a) and (b) hold. We need to show that, with P
π,s -

probability one, yn maximizes on the set �(xn, zn) the concave function ψ(xn, · , zn)

as in (3.3), for each n ∈ N. But by (a), (b) and Lemma 7(ii), and recalling yn ≡ xn+1,
we obtain, with P

π,s -probability one:

Dyψ(xn, yn, zn) = DyF(xn, yn, zn) + β

∫

Z

DxV (yn, ξ)q(dξ |zn)

= DyF(xn, yn, zn) + β

∫

Z

DxF(yn, yn+1, ξ)q(dξ |zn) = 0. �

To prove the necessity of the customary transversality condition for an optimal
interior plan, we shall use both its thriftiness and equalization properties.

Theorem 9 Suppose the plan π is optimal and interior at s = (x, z), and that the
reward function satisfies the requirement

x · DxF(x, y, z) ≥ 0 (3.7)

for all interior states (x, z) and interior actions y ∈ �(x, z). Then π satisfies

(c) the Transversality Condition

lim
n→∞

(
βn

E
π,s

[
xn · DxF(xn, yn, zn)

])
= 0.

Proof Since π is optimal, it is thrifty by Theorem 2 and thus, from Theorem 8, sat-
isfies with P

π,s -probability one the envelope equation; therefore for all n = 1,2, . . .,
we have the string of inequalities

V (xn, zn) ≥ V (xn, zn) − V (0, zn)

≥ xn · DxV (xn, zn) = xn · DxF(xn, yn, zn) ≥ 0. (3.8)

Here, the first inequality holds because V (· , ·) is nonnegative; the second inequality
follows from a general property of concave functions (Theorem A, Chap. IV, page 98
in [10]); the equality is by the envelope equation (a) in Theorem 7; and the last in-
equality is from condition (3.7).

Since π is optimal, it is also equalizing by Theorem 2. Now take expectations
under P

π,s in (3.8), and use Theorem 4. �
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Remark 2 Notice that DxF(x, y, z) ≥ 0 since, by (3.4), F(x, y, z) is nondecreasing
in x. Thus assumption (3.7) in the statement of Theorem 9 is automatically satisfied
if all the states x ∈ X lie in the nonnegative orthant R

l+ of R
l , as is often true in

economic applications. Furthermore, the assumption that the equality in Lemma 7(ii)
holds was not needed in Theorem 8 to show that thriftiness implies the envelope
equation. Consequently, this assumption is not needed in Theorem 9 to establish the
transversality condition.

The next result is familiar to dynamic programmers working in economics.

Theorem 10 Suppose the plan π is interior at s = (x, z), and (3.7) holds.
If π is optimal, then it satisfies both the Euler equation with P

π,s -probability one,
and the transversality condition. Conversely, if these two conditions hold for π and,
in addition, we have X ⊆ R

l+, then π is optimal.

Proof If π is optimal, then it is thrifty by Theorem 2; if in addition it is interior at s =
(x, z), it satisfies also the Euler equations with P

π,s -probability one, by Theorem 8.
The transversality condition holds by Theorem 9.

• On the other hand, as stated in S&L, p. 281 it is straightforward to adapt their proof
for the non-stochastic case (Theorem 4.15, p. 98), and show that the Euler equation
and the Transversality condition together imply the optimality of π when X ⊆ R

l+.
At the request of the referee, we sketch this adaptation.

Consider any other strategy π̃ and suppose, as we may, that we have constructed
on the same probability space (�, F ,P) the state/action sequences {(xn, yn, zn)}n∈N

and {(̃xn, ỹn, zn)}n∈N corresponding to π and π̃ , respectively, with (̃x1, z1) =
(x1, z1) = s; for notational convenience, let us also set (x0, y0, z0) ≡ (x1, y1, z1).
Then for the corresponding sequences {Qn}n∈N and {Q̃n}n∈N as in (2.4),

β(QN − Q̃N)

=
N∑

n=1

βn
[
F(xn, yn, zn) − F (̃xn, ỹn, zn)

]

≥
N∑

n=1

βn
[
(xn − x̃n) · DxF(xn, yn, zn) + (xn+1 − x̃n+1) · DyF(xn, yn, zn)

]

=
N∑

n=1

βn−1 (xn − x̃n) ·
[
DyF(xn−1, yn−1, zn−1) + β DxF(yn−1, yn, zn)

]

+ βN (xN+1 − x̃N+1) · DyF(xN,yN, zN), ∀N ∈ N

a.s. We have used yn ≡ xn+1, and the concavity of the function F(· , · , z). Now we
take expectations and recall the notation of (3.1), to obtain for all N ∈ N:

β
[
E(QN) − E(Q̃N)

]

≥ βN
E

[
(xN+1 − x̃N+1) · DyF(xN,yN, zN)

]



430 Appl Math Optim (2010) 61: 421–434

+ E

N−1∑

n=0

βn(xn+1 − x̃n+1)

×
[
DyF(xn, yn, zn) + β E

(
DxF(yn, yn+1, zn+1) | Fn+1

) ]
.

Thanks to the version (3.6) of the Euler equation, this last (summation) term is equal
to zero; as for the term that precedes it, this same equation allows us to write it as

βN+1
E

[
(̃xN+1 − xN+1) · DxF(yN,yN+1, zN+1)

]

≥ −βN+1
E

[
xN+1 · DxF(xN+1, yN+1, zN+1)

]
.

For this last inequality, we have used the assumption X ⊆ R
l+ and recalled Remark 2.

We conclude from all this:

βN
E

[
xN+1 · DxF(xN+1, yN+1, zN+1)

] + E(QN) ≥ E(Q̃N), ∀N ∈ N.

Passing to the limit as N → ∞ we obtain, with the help of the transversality condition
and monotone convergence, the comparison Rπ(s) ≥ R π̃ (s) in the notation of (2.2),
that is, the optimality of π . �

By Theorems 2 and 10, the thriftiness and equalization conditions are equivalent to
the Euler equations and the transversality condition for the special class of problems
of this section, when the plan π is interior.

4 Envelope and Euler Inequalities

In the one-dimensional case l = 1 it is possible to replace the Envelope Equation and
the Euler Equation of Theorem 8 with appropriate inequalities, thereby dispensing
with interiority assumptions on the part of the plan π .

Let us illustrate this possibility by taking

X = [0,∞), �(x, z) = [
0, γ (x, z)

)
,

where γ : [0,∞) × Z → [0,∞) is continuous, concave, and non-decreasing in the
first argument: �(x, z) ⊆ �(x + ε, z) holds for every ε > 0 and (x, z) ∈ [0,∞) × Z.
We also assume that F(· , y, z) is concave, nondecreasing, and nonnegative for all
(y, z), but need no longer assume that this function is differentiable.

We shall denote by D±
x F (x0, y, z), D±

x V (x0, z) the left- and right-derivatives at
x = x0 of the concave functions F(· , y, z) and V (· , z), respectively.

Theorem 11 (Envelope Inequalities) If the plan π is thrifty at s = (x1, z1) then, with
probability one under P

π,s , we have for all n = 1,2, . . . the properties

D+
x V (xn, zn) ≥ D+

x F (xn, yn, zn), (4.1)

D−
x V (xn, zn) ≤ D−

x F (xn, yn, zn) on {yn < γ (xn, zn)} . (4.2)
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Proof By Theorem 3, the actions yn conserve V (· , ·) at (xn, zn) on an event of
P

π,s -probability one, so we have W(xn) = V (xn, zn) for the function W(·) of (3.5).
Furthermore, yn ∈ �(xn, zn) ⊆ �(xn + ε, zn) holds for ε > 0, hence W(xn + ε) ≤
V (xn + ε, zn), and (4.1) follows.

As for the second inequality, it follows from the continuity of the function γ (· , zn)

that yn ∈ �(xn − ε, zn) for ε > 0 sufficiently small. Hence, for such ε, W(xn − ε) ≤
V (xn − ε, zn) and (4.2) follows. �

Theorem 12 (Euler Inequalities) If the plan π is thrifty at s = (x1, z1) then, with
probability one under P

π,s , we have for all n = 1,2, . . . the inequalities

0 ≥ D+
y F (xn, yn, zn) + β

∫

Z

D+
x F (yn, yn+1, ξ)q(dξ |zn) on {yn < γ (xn, zn)} ,

(4.3)

0 ≤ D−
y F (xn, yn, zn) + β

∫

Z

D−
x F (yn, yn+1, ξ)q(dξ |zn) on {yn > 0} . (4.4)

Proof By Theorem 3, with probability one under P
π,s , the action yn conserves

V (· , ·) at each state sn = (xn, zn), n = 1,2, . . . . To wit, the concave function y �→
ψ(xn, y, zn) of (3.3) is maximized over �(xn, zn) at yn. This implies

0 ≥ D+
y ψ(xn, yn, zn) provided yn < γ (xn, zn) (4.5)

as well as

0 ≤ D−
y ψ(xn, yn, zn) provided yn > 0. (4.6)

For each (y, z) ∈ [0,∞) × Z, the quotients (V (y + ε, z) − V (y, z))/ε, ε ≥ 0 are
nonnegative, and increase as ε ↓ 0. This is because the function F(·, y, z) is increas-
ing and concave, which implies that V (·, z) is also increasing and concave. Thus, by
monotone convergence, we obtain

D+
y

∫

Z

V (y, ξ)q(dξ |z) =
∫

Z

D+
y V (y, z)q(dξ |z).

Similar reasoning gives the same formula for left-derivatives at (y, z) ∈ (0,∞).
An application of the Envelope Inequality (4.1) to (4.5) now yields

0 ≥ D+
y ψ(xn, yn, zn) = D+

y F (xn, yn, zn) + β

∫

Z

D+
y V (yn, ξ)q(dξ |zn)

≥ D+
y F (xn, yn, zn) + β

∫

Z

D+
x F (yn, yn+1, ξ)q(dξ |zn)

on {yn < γ (xn, zn)}. This establishes (4.3); and (4.4) is proved similarly. �

It is now possible, in the special setting of this section, to show that a transversality
condition is necessary for a plan to be optimal, even without interiority or smoothness
of the daily reward.
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Theorem 13 (Transversality Condition) If π is optimal at s = (x1, z1), then

lim
n→∞

(
βn

E
π,s[xn · D+

x F (xn, yn, zn)]
)

= 0. (4.7)

Proof We calculate as follows:

V (xn, zn) ≥ V (xn, zn) − V (0, zn) =
∫ xn

0
D+

x V (x, zn) dx

≥ xn · D+
x V (xn, zn) ≥ xn · D+

x F (xn, yn, zn) ≥ 0.

Here the equality follows from a general property of concave functions (Problem A,
p. 13 in [10]). The second inequality holds because D+

x V (x, zn) is nonincreasing in
x; the third is by the Envelope inequality (4.1), which applies because the optimality
of π implies its thriftiness by Theorem 2; the final inequality holds because xn ≥ 0
and F(· , yn, zn) is nondecreasing. Since π is optimal, it is equalizing by Theorem 2.
Now apply Theorem 4. �

We leave open the question of whether there is a converse in the context of this
section. That is, if a plan π satisfies the Transversality Condition (4.7) and the Euler
Inequalities (4.3), (4.4) hold with probability one, is π then optimal?

Appendix: Measurability

Our objective here is to describe a fairly general class of dynamic programming prob-
lems for which the optimal reward function is measurable in an appropriate sense. We
shall only sketch the proof and provide references for further details.

A dynamic programming problem (S,A,q, r,β) as in Sect. 2 will be called mea-
surable, if the following hold:

(a) The state space S is a nonempty Borel subset of a Polish space. (A topologi-
cal space is called Polish, if it is homeomorphic to a complete, separable metric
space. In particular, any Euclidean space is Polish.)

(b) There is a Polish space X that contains the union of the action sets A(s), s ∈ S.
Furthermore, the set Ã below is a Borel subset of the product space S × X:

Ã := {(s, a) : s ∈ S , a ∈ A(s)}.
(c) The law of motion q is a Borel-measurable transition function from Ã to S. That

is, for each fixed (s, a) ∈ Ã, q(· |s, a) is a probability measure on the Borel sub-
sets of S; and for each fixed Borel subset B of S, q(B| · , ·) is a Borel-measurable
function on Ã.

(d) The daily reward function r : S × X → [0,∞) is Borel measurable.

We also need to impose measurability conditions on the plans that a player is
allowed to choose. To do so, we introduce the notion of universal measurability.

Let Y be a Polish space and let B be its σ -field of Borel subsets.
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Definition 3 A subset U of Y is called universally measurable, if it belongs to the
completion of B under every probability measure μ on B.

The set of all universally measurable subsets of Y is a σ -field U larger than B, if
Y is uncountable. A function f : Y → Z, where Z is another Polish space, is called
universally measurable, if f −1(C) ∈ U holds for every Borel subset C of Z. Notice
that

∫
f dμ is well-defined for every universally measurable function f : Y → [0,∞)

and every probability measure μ defined on B.
A plan π = (π1,π2, . . .) is universally measurable if, for every n = 1,2, . . . , πn is

a universally measurable function from (S × X)n−1 × S to X. Let  be the set of all
universally measurable plans π . Let H = S × X × S × X × · · · be the Polish space
of all infinite histories h = (s1, a1, s2, a2, . . .). Each state s ∈ S together with a plan
π ∈  determines a probability measure P

π,s on the Borel subsets of H . The optimal
reward V (s) at s ∈ S is now defined by

V (s) := sup
π∈

Rπ(s) = sup
π∈

∫

g(h) d P
π,s(h);

here g(·) is the Borel-measurable function defined for h ∈ H by

g(h) := g(s1, a1, s2, a2, . . .) =
∞∑

n=1

βn−1r(sn, an). (A.1)

Theorem 14 ([13]) The optimal reward function V (·) of a measurable dynamic pro-
gramming problem is universally measurable.

Proof We will only sketch the main ideas; for more details we refer the reader to
Theorem 4.2 of Feinberg [5]. (It should be noted that Feinberg uses Borel rather than
universally measurable plans and, for this reason, must assume that the set Ã contains
the graph of a Borel-measurable function from S into X.)

Let M(H) be the set of all probability measures on the Borel subsets of H . Then
M(H), when equipped with its usual topology of vague convergence, is again a
Polish space (cf. [8]). It can be shown that

L := {
(s,P

π,s) : s ∈ S, π ∈ 
}

is a Borel subset of S × M(H) (see Sect. 3 of [5]). For s ∈ S, let L(s) be the s-section
of L; that is,

L(s) = {
μ ∈ M(H) : μ = P

π,s for some π ∈ 
}
.

Then, with g(·) as in (A.1), we have V (s) = sup{∫ gdμ : μ ∈ L(s)}, s ∈ S. It is not
difficult to check that the function M(H) � μ �→ ∫

gdμ ∈ R is Borel measurable.
Also, for each c ∈ R, the set Sc = {s ∈ S : V (s) > c} is the projection onto S of the
Borel set Bc = {(s,μ) ∈ L : ∫

gdμ > c}. Thus Sc is an analytic set, and therefore
universally measurable (Corollary 7.42.1, p. 169 in [1]). It follows that V (·) is uni-
versally measurable. �
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The assumption made in this paper that the daily reward function r(·, ·) is non-
negative is not necessary for the proof of Theorem 14 or for the proof of the Bellman
equation. See [1, 13], and [5] for more general results.
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