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Abstract

This paper studies how and how much active experimentation is used in discounted
or 0nite-horizon optimization problems with an agent who chooses actions sequen-
tially from a 0nite set of actions, with rewards depending on unknown parameters
associated with the actions. Closed-form approximations are developed for the optimal
rules in these ‘multi-armed bandit’ problems. Some re0nements and modi0cations of
the basic structure of these approximations also provide a nearly optimal solution to
the long-standing problem of incorporating switching costs into multi-armed bandits.
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1. Introduction

In many situations, rational economic agents face the dilemma between
the objective of reward maximization and the need for experimentation with
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potentially suboptimal actions to learn about their expected rewards. Proto-
typical examples are multi-armed bandit problems, in which an agent chooses
actions sequentially from a 0nite set {a1; : : : ; ak} such that the reward R(aj) of
action aj has a probability distribution depending on an unknown parameter
�j which has a prior distribution �(j). The agent’s objective is to maximize
the total discounted reward∫

: : :
∫

E�1 ;:::;�k

{ ∞∑
t=0


tR(Xt+1)

}
d�(1)(�1) : : : d�(k)(�k); (1)

where 0¡
¡ 1 is a discount factor and Xt denotes the action chosen by the
agent at time t. The optimal solution to this problem, commonly called the
‘discounted multi-armed bandit problem’, was shown by Gittins and Jones
(1974) and Gittins (1979) to be the ‘index rule’ that chooses at each stage
the action with the largest ‘dynamic allocation index’ (DAI). In Section 2
a precise de0nition of the DAI of action aj at stage t is given, and it is a
complicated function of the posterior distribution of �j given the rewards, up
to stage t, at the times when action aj is used. We develop in Section 2
a simple and easily interpretable approximation of the DAI. It is based on
numerical solution of an optimal stopping problem for a limiting diIusion.
A computational method to solve this optimal stopping problem, which has
been studied analytically via free boundary problems for the heat equation
and integral representations by Chang and Lai (1987) and Brezzi and Lai
(1999), is also given.
In the 0nite-horizon version of bandit problems, the agent’s objective is to

maximize the total reward∫
: : :
∫

E�1 ;:::;�k

{
N−1∑
t=0

R(Xt+1)

}
d�(�1; : : : ; �k); (2)

where � is a prior distribution of the vector (�1; : : : ; �k). Even when the �i

are independent under � (so that � is a product of marginal distributions
as in (1)), the optimal rule that maximizes (2) does not reduce to an index
rule. In principle, one can use dynamic programming to maximize (2). For
the case k=2 and (�1; �2) ∈ {(�; �); (�; �)}, where � and � are known numbers
with �(�)¿�(�), Feldman (1962) found by this approach that the optimal
rule chooses a1 or a2 at stage n + 1 if �(1)

n ≥ 1=2 or �(1)
n ¡ 1=2, where �(1)

n

is the posterior probability in favor of (�; �) at the end of stage n. In the
case of k = 2 Bernoulli populations with independent Beta priors for their
parameters, Fabius and van Zwet (1970) and Berry (1972) studied the dy-
namic programming equations analytically and obtained several qualitative
results concerning the optimal rule. Beyond the two-point priors considered
by Feldman, optimal rules in the 0nite-horizon multi-armed bandit problem
are de0ned only implicitly by the dynamic programming equations, whose
numerical solution becomes formidable for large horizon N . Re0ning the
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earlier work of Lai and Robbins (1985), Lai (1987) showed that although
index rules do not provide exact solutions to the optimization problem (2),
they are asymptotically optimal as N → ∞, and have nearly optimal perfor-
mance from both the Bayesian and frequentist viewpoints for moderate and
small values of N . Section 3 gives a brief review of these nearly optimal
index rules in the 0nite-horizon case, which are easily implementable and
whose indices can be interpreted as certain upper con0dence bounds for the
expected rewards of a1; : : : ; ak . Making use of these simple approximations
to the optimal policy, we analyze the value of experimentation in Section 3,
where our results show that unless the horizon N or the discount factor 
 is
large enough, experimentation does not have much value since the optimal
rule that involves active learning by experimentation has little improvement
over the myopic rule that chooses the action with the largest posterior mean
reward. On the other hand, Section 3 also shows that for large horizon N
or for 
 close to 1, the ineKciency of the myopic rule due to inadequate
learning is much more pronounced.
The theory of multi-armed bandits has been applied to pricing under de-

mand uncertainty (cf. Rothschild, 1974), decision making in labor markets
(cf. Jovanovich, 1979; Mortensen, 1985), general search problems (cf. Gittins,
1989; Banks and Sundaram, (1992)), and resource allocation among compet-
ing projects (cf. Gittins, 1989). Banks and Sundaram (1994) have pointed
out the need to incorporate switching costs into bandit problems, since ‘it
is diKcult to imagine a relevant economic decision problem in which the
decision-maker may costlessly move between alternatives’. They show that
unfortunately it is not possible to de0ne indices which have the property
that the resulting index strategy is optimal when there are switching costs.
In Section 4 we assume a cost of switching from one arm to another in
multi-armed bandits. Although the index rules in Sections 2 and 3 are no
longer applicable, they provide important insights into how and how much
active experimentation is used by optimal rules to generate information about
the unknown parameters of the diIerent actions. Making use of these insights,
we develop in Section 4 nearly optimal and easily implementable procedures
for bandit problems with switching costs. Some concluding remarks are given
in Section 5.

2. Gittins indices in discounted multi-armed bandits

As pointed out in Section 1, the optimal solution to the discounted k-armed
bandit problem (1) is the ‘index rule’ that chooses at each stage the action
with the largest dynamic allocation index (also called the ‘Gittins index’).
Speci0cally, at stage t, let nt(j) =

∑t
i=1 1{Xi=aj} denote the total number of

times that action aj has been used so far, and let �(j)
nt( j) denote the posterior
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distribution of �j based on Yj;1; : : : ; Yj;nt( j), where the Yj; i denote the rewards
at the successive times when aj is used. The index rule chooses at stage t the
action aj with the largest �(�( j)

nt( j)), where �(·) is the Gittins index, de0ned by
(3) below, associated with the posterior distribution. Here and in the sequel,
1A denotes the indicator variable of an event A (i.e., 1A = 1 or 0 depending
on whether A occurs or not).
Let R(aj) have distribution function F�j (depending on the unknown param-

eter �j) so that Yj;1; Yj;2; : : : are independent random variables with common
distribution function F�j . Let �(j) be a prior distribution on �j. The Gittins
index �(�(j)) associated with �(j) is de0ned as

�(�(j)) = sup
�



∫
E�j

(∑�−1
i=0 


iYj; i+1

)
d�(j)(�j)∫

E�j

(
�−1∑
i=0


i

)
d�(j)(�j)




; (3)

where the supremum is over all stopping times � ≥ 1 de0ned on {Yj;1; Yj;2; : : :}
(cf. Gittins, 1979). As is well known, the conditional distribution of (�j; Yj;n+1;
Yj;n+2; : : :) given (Yj;1; : : : ; Yj;n) can be described by that Yj;n+1; Yj;n+2; : : : which
are independent having common distribution function F�j and that �j has
distribution �(j)

n , which is the posterior distribution of �j given (Yj;1; : : : ; Yj;n).
Letting �(�j) = E�j(R(aj)), it then follows that for m¿n,

E[Yj;m|Yj;1; : : : ; Yj;n] =
∫

�(�j) d�( j)
n (�j) = E[�(�j)|Yj;1; : : : ; Yj;n]: (4)

The Gittins index (3) of �(j) can be equivalently de0ned as the in0mum of
the set of solutions M of the equation

sup
�

∫
E�j

{
�−1∑
n=0


n
∫

�(�j) d�( j)
n (�j) +M

∞∑
n=�


n

}
d�(j)(�j) =M

∞∑
n=0


n;

(5)

where we set �( j)
0 =�(j) (cf. Whittle, 1980).

Chapter 7 of Gittins (1989) describes computational methods to calculate
Gittins indices for normal, Bernoulli and exponential F�, with the prior distri-
bution of � belonging to a conjugate family. These methods involve approx-
imating the in0nite horizon in the optimal stopping problem (5) by a 0nite
horizon N and using backward induction. When 
 is near 1, a good approx-
imation requires a very large N and becomes computationally prohibitive. In
this case, we can get around the computational diKculties by using a diIu-
sion approximation, which involves the Gittins index for a Wiener process
and is described in the next three subsections.
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2.1. Gittins index for a Wiener process

Let w(t); t ≥ 0, be a Wiener process with drift coeKcient � which has a
normal distribution with mean u0 and variance v0. The posterior distribution
of � given {w(s); s ≤ t} is normal with variance vt satisfying v−1

t = v−1
0 + t

and mean ut = vt{w(t) + u0=v0}. In analogy with (5), where we set 
= e−c,
de0ne the Gittins index Mc(u0; v0) as the in0mum of the set of solutions M
of the equation

sup
T≥0

Eu0 ;v0

{∫ T

0
ute−ct dt +M

∫ ∞

T
e−ct dt

}
=M

∫ ∞

0
e−ct dt; (6)

where the supremum is taken over all stopping times T ≥ 0. Under the change
of variables

v= (v−1
0 + t)−1; Y (v) = ut − u0; s= v=c; Z(s) = Y (cs)=

√
c;

z0 = (u0 −M)=
√
c; s0 = v0=c; (7)

{Z(s); 0¡s ≤ s0} is a Brownian motion in the −s scale and (6) can be
rewritten as

z0e−1=s0 = inf SE[Z(S)e−1=S |Z(s0) = z0]; (8)

where inf S is over all stopping times (in the −s scale) of the Brownian
motion with initial value Z(s0)= z0. The optimal stopping rule S∗ that attains
the in0mum in the right-hand side of (8) has a continuation region C of the
form

C= {(z; s): z¿− b(s)}; (9)

in which b(·) is a nonnegative function such that

b(s) = (2−1=2 + o(1))s as s → 0;

= {2s[log s− 1
2 log log s− 1

2 log 16�+ o(1)]}1=2 as s → ∞; (10)

see Chang and Lai (1987). Since (8) is equivalent to z0=−b(s0) (i.e., (z0; s0)
belongs to the boundary of C), the Gittins index can be represented via (7) as

Mc(u0; v0) = u0 +
√
cb(v=c): (11)

We can therefore determine the values of the Gittins indices Mc(· ; ·) by
computing the optimal stopping boundary −b(·).

2.2. Numerical computation of the optimal stopping boundary

To compute the optimal stopping boundary for the Brownian motion Z(s)
(in the −s scale) corresponding to the loss function L(s; z) = ze−1=s, we use
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the corrected binomial method due to ChernoI and Petkau (1986) together
with a representation of the optimal value function given in Brezzi and Lai
(1999) to initialize the algorithm. Letting +(s; z)= inf SE[L(S; Z(S))|Z(s)= z]
be the optimal value function, the procedure is described below.
The basic idea of the ChernoI–Petkau method is to approximate Brown-

ian motion (in the −s scale) by a symmetric Bernoulli random walk with
time increment −, and space increment

√
,Yi, where the Yi are independent

Bernoulli random variables with P(Yi = 1) = 1=2 = P(Yi =−1) so that + can
be approximated by the recursion

+(si; z) = min{L(si; z); [+(si−1; z +
√
,) + +(si−1; z −

√
,)]=2} (12)

with si = i, (so that si − , = si−1) and z ∈ Z, : ={
√
,n: n is an integer}.

The subtle point in the present problem is that because L converges to 0
exponentially fast as s → 0, initializing the recursion (12) at s0(= 0) with the
obvious boundary condition +(0; z) = 0 leads to numerical diKculties due to
0nite-precision arithmetic. We can get around these diKculties by initializing
at some si0 ¿ 0 and using the following representation of + derived in Brezzi
and Lai (1999):

+(s; z) =
∫ s

0
E{g(t; z +√

s− tZ)1{z+√
s−tZ≤−b(t)}} dt if z¿− b(s);

= L(s; z) if z ≤ −b(s); (13)

where g(s; z) = ((1=2)@2=@z2 − @=@s)L(s; z) = −s−2ze−1=s and Z is a standard
normal random variable. Although representation (13) involves the optimal
stopping boundary −b(·) which is to be determined, we can use the approx-
imation b(t) =̇ t=

√
2 given by (10) for t ≤ s when s = si0 (=i0,) is small.

The integrand in (13) can be expressed in terms of the standard normal den-
sity and distribution functions and the integral can be evaluated by numerical
integration. In our implementation, we take ,= 3× 10−5 and si0 = 5× 10−3.
Each point z ∈ Z, can be determined to be a stopping or continuation

point at time si depending on whether +(si; z) = L(si; z) or +(si; z)¡L(si; z).
We use the following continuity correction, proposed by ChernoI and Petkau
(1986), to compute the optimal stopping boundary for the Brownian motion.
Let b,(si) = max{z ∈ Z,: +(si; z) = L(si; z)}, b,;0(si) = b,(si) +

√
,; b,;1(si) =

b,(si) + 2
√
,, and de0ne

Dj(xi) = L(si; b,; j(si))− +(si; b,; j(si)) for j = 0; 1:

The continuity correction involves
√
,; D0(si) and D1(si), and subtracting it

from b,;0(si) yields

b(si) = b,;0(si)−
√
,|D1(si)={2D1(si)− 4D0(si)}|: (14)
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Fig. 1. Optimal stopping boundary (solid curve) and its approximation (dotted curve).

2.3. Closed-form approximations to Gittins indices

Fig. 1 plots the optimal stopping boundary computed by the above method.
The plot and the asymptotic behavior (10) suggest the closed-form approxi-
mation b(s) :=

√
s (s), where

 (s) =




√
s=2 if s ≤ 0:2;

0:49− 0:11s−1=2 if 0:2¡s ≤ 1;

0:63− 0:26s−1=2 if 1¡s ≤ 5;

0:77− 0:58s−1=2 if 5¡s ≤ 15;

{2log s− log log s− log 16�}1=2 if s¿ 15:

The approximation
√
s (s) is also plotted in Fig. 1 (dotted curve) and is in

good agreement with the solid curve representing b(s). Putting this approx-
imation in (11) yields the following approximation to the Gittins index for
the Wiener process w(t):

Mc(u0; v0)
:= u0 +

√
v0 (v0=c): (15)

We now use (15) to provide closed-form approximations to the Gittins
index �(�( j)

n ), de0ned in (3), of the posterior distribution �( j)
n of �j given
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Yj;1; : : : ; Yj;n. Let �j;n and vj;n denote the mean and variance, respectively,
of �( j)

n . Under mild regularity conditions, �( j)
n is asymptotically normal

N(�j;n; vj;n) as n → ∞, with probability 1 (cf. LeCam, 1953). Let 32(�j)
be the variance of F�j , which may depend on the unknown parameter �j, and
let 
 = e−c. Then the functional central limit theorem can be used to show
that as n → ∞ and 
 → 1 (or equivalently c → 0), �(�( j)

n )− �j;n is asymp-
totically equivalent to

√
c3(�j;n)Mc(0; vj;n=c32(�j;n)), where Mc(u0; v0) is the

Gittins index of the prior normal distribution N(u0; v0) for the drift coeKcient
of a Wiener process (as de0ned in Section 2.1). The approximation (15) for
Mc(· ; ·) therefore yields

�(�( j)
n ) := �j;n +

√
vj;n (vj;n=c32(�j;n)) (16)

for large n and small c.

Example 1. Let Y1; Y2; : : : be independent random variables from a Bernoulli
distribution whose parameter p has a Beta prior distribution. Then the pos-
terior distribution of p is also a Beta distribution. Table 1 gives the absolute
value of the diIerence between the Gittins index of a Beta(a; b) distribution,
computed by Gittins (1989) in his Table 8, and the approximation (16), for

Table 1
DiIerence (absolute value) between the Gittins index and its approximation for a Beta (a; b)
prior distribution when 
 = 0:8

a 12 14 16 18 20 Index

b min max

2 0.0111 0.0105 0.0100 0.0093 0.0087 0.8756 0.9183
4 0.0072 0.0072 0.0074 0.0069 0.0064 0.7730 0.8463
6 0.0060 0.0059 0.0061 0.0060 0.0059 0.6901 0.7836
8 0.0057 0.0059 0.0056 0.0054 0.0053 0.6226 0.7291
10 0.0059 0.0054 0.0054 0.0053 0.0051 0.5666 0.6814
12 0.0056 0.0054 0.0053 0.0052 0.0049 0.5195 0.6394
14 0.0054 0.0049 0.0047 0.0049 0.0047 0.4797 0.6021
16 0.0052 0.0047 0.0050 0.0047 0.0043 0.4455 0.5689
18 0.0049 0.0049 0.0048 0.0045 0.0041 0.4158 0.5390
20 0.0046 0.0045 0.0043 0.0041 0.0044 0.3897 0.5120
22 0.0044 0.0041 0.0045 0.0042 0.0039 0.3666 0.4877
24 0.0041 0.0043 0.0040 0.0037 0.0040 0.3460 0.4656
26 0.0043 0.0040 0.0036 0.0038 0.0041 0.3276 0.4433
28 0.0039 0.0041 0.0037 0.0040 0.0036 0.3111 0.4268
30 0.0041 0.0037 0.0039 0.0036 0.0037 0.2961 0.4097
32 0.0037 0.0038 0.0035 0.0036 0.0033 0.2825 0.3938
34 0.0037 0.0034 0.0036 0.0038 0.0033 0.2701 0.3792
36 0.0033 0.0035 0.0036 0.0033 0.0034 0.2587 0.3656
38 0.0034 0.0036 0.0032 0.0033 0.0035 0.2482 0.3529
40 0.0034 0.0032 0.0033 0.0034 0.0029 0.2386 0.3411
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= 0:8. To compare the magnitude of each diIerence with the actual index,
we also summarize the range of Gittins indices for each row of Table 1. As
shown in the tables of Gittins (1989), the Gittins index of Beta(a; b) is an
increasing function of a for each 0xed value of b. In order to not present
an overly large table with similar results, we only consider in Table 1 even
values of a and b on page 226 of Gittins (1989), c whose Table 8 consists
of four pages. The approximation diIers from the index by less than 1.5%.
Moreover, with the exception of b = 2, for which the mean a=(a + b) is
close to the Gittins index when a lies in the range considered in Table 1,
incorporating the second summand in (16) reduces the approximation error
of the simple approximation using only the 0rst summand (which is equal to
a=(a+b) in the present example) by a factor between 51% and 75%. Similar
results, not reported in Table 1, also hold for other values of a and b in
Table 8 of Gittins (1989) and for his other tables dealing with 
=0:9; 0:95
and 0:99. This shows that (16) provides good closed-form approximations to
Gittins indices for 
 ≥ 0:8 and min(a; b) ≥ 4. There is also closer agreement
between the Gittins index and the approximation (16) as 
 increases through
these values.

3. The value of experimentation

Brezzi and Lai (2000) give the following upper and lower bounds for
�(�( j)

n ) involving only �j;n and the posterior variance vj;n:

�j;n ≤ �(�( j)
n ) ≤ �j;n + 


√
vj;n =(1− 
) (17)

and use these bounds to give a simple proof of the incomplete learning the-
orem for k-armed bandits with k ≥ 2: With positive probability, the optimal
rule chooses the optimal action only a 0nite number of times and it can
estimate consistently only one of the �j. This generalizes the results of Roth-
schild (1974), McLennan (1984) and Banks and Sundaram (1992). Since the
optimal rule is an index rule that chooses at stage t the action aj with the
largest �(�( j)

Nt( j)), (16) and (17) show the extent of experimentation in the

optimal rule. When 
 is small, (17) shows that �(�( j)
n ) diIers little from

the posterior mean �j;n, so the index rule has very little active experimen-
tation. On the other hand, as 
(= e−c) → 1;  (vj;n=c32(�j;n)) → ∞ and (16)
shows that the diIerence between �j;n and �(�( j)

n ) becomes in0nite, suggest-
ing continued experimentation with aj to reduce the variance of the posterior
distribution of �j.
The expected total discounted reward (1) involves an in0nite series of

rewards and is not easy to compute directly by Monte Carlo simulations for
the performance analysis of diIerent allocation strategies. We have to 0rst
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replace the in0nite series
∑∞

t=0 by a 0nite sum
∑N−1

t=0 with suitably large N
that depends on 
 and the distribution of R(aj), 1 ≤ j ≤ k. For simplicity,
we shall consider in the following simulation study a 0xed horizon N in the
undiscounted case 
=1. This corresponds to the 0nite-horizon bandit problem
that maximizes the expected total reward (2). Although the optimal proce-
dure that maximizes (2) is no longer an index rule, there are simple index
rules that are asymptotically optimal as N → ∞, as shown by Lai (1987).
The starting point in Lai’s approximation is to consider the normal case.

Suppose that an experimenter can choose at each stage n(≤ N ) between sam-
pling from a normal population with known variance 1 but unknown mean �
and sampling from another normal population with known mean 0. Assuming
a normal prior distribution N(�0; v) on �, the optimal rule that maximizes the
expected sum of N observations samples from the 0rst population (with un-
known mean) until stage T ∗ = inf{n ≤ N : �̂n + an;N ≤ 0} and then takes the
remaining observations from the second population (with known mean 0),
where �̂n is the posterior mean based on observations Y1; : : : ; Yn from the 0rst
population and an;N are positive constants that can be determined by backward
induction. Writing t=n=N; w(t)=(Y1+ · · ·Yn)=

√
N , and treating 0¡t ≤ 1 as

a continuous variable, Lai (1987) approximates an;N by
√
vn h(n=N ), where

vn is the posterior variance of � and

h(t) =




{2 log t−1 − log log t−1 − log 16�

+0:99 exp(−0:038t−1=2)}1=2 if 0¡t ≤ 0:01;

−1:58√t + 1:53 + 0:07t−1=2 if 0:01¡t ≤ 0:28;

−0:576t3=2 + 0:299t1=2 + 0:403t−1=2 if 0:28¡t ≤ 0:86;

t−1(1− t)1=2{0:639− 0:403(t−1 − 1)} if 0:86¡t ≤ 1:

The function h is obtained by 0rst evaluating numerically the boundary of
the corresponding optimal stopping problem and then developing a sim-
ple closed-form approximation to the boundary. As shown by Lai (1987,
p. 1108), there is close agreement between h and the boundary for the
continuous-time 0nite-horizon optimal stopping problem, similar to Fig. 1
for the in0nite-horizon discounted case.
Without assuming a prior distribution on the unknown parameters, suppose

Yj;1; Yj;2; : : : ; are independent random variables from a one-parameter expo-
nential family with density function f�j(y) = exp{�jy − g(�j)} with respect
to some dominating measure. Then �(�) = E�Y1 = g′(�) is increasing in �
since Var(Yj;1) = g′′(�j), and the Kullback–Leibler information number is

I(�; +) = E�[log(f�(Y )=f+(Y ))] = (�− +)�(�)− (g(�)− g(+)): (18)

Assuming that all the �j lie in some open interval 9 such that inf �∈9 g′′(�)¿ 0
and sup�∈9 g′′(�)¡∞ and letting �̂j; n be the maximum likelihood estimate of
�j based on Yj;1; : : : ; Yj;n, Lai (1987) considered an upper con0dence bound
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for �(�j) of the form �(�∗j; n), where

� ∗
j; n = inf{� ∈ 9: � ≥ �̂j; n; 2nI(�̂j; n; �) ≥ h2(n=N )}: (19)

Note that nI(�̂j; n; �0) is the generalized likelihood ratio statistic for testing
�=�0, so the above upper con0dence bound adopts the usual construction of
con0dence limits by inverting a generalized likelihood ratio test.
De0ne the regret of an allocation rule at (�1; : : : ; �k) by

rN (�1; : : : ; �k) = N max
1≤i≤k

�(�i)− E�1 ;:::;�k

{
N−1∑
t=0

R(Xt+1)

}
: (20)

Note that the problem of maximizing the expected value of
∑N−1

t=0 R(Xt+1)
is equivalent to that of minimizing the regret. Lai and Robbins (1985) de-
rived the following asymptotic lower bound for the regret rN (�1; : : : ; �k) of
uniformly good rules:

rN (�1; : : : ; �k) ≥ (logN )
∑

j:�j¡� ∗

{
�(� ∗)− �(�j)

I(�j; � ∗)
+ o(1)

}
; (21)

where � ∗ = max1≤i≤k �i, and a rule is said to be ‘uniformly good’ if
rN (�1; : : : ; �k) = O(logN ) for any 0xed (�1; : : : ; �k) ∈ 9k . Lai (1987) showed
that the preceding upper con0dence bound rule is uniformly good and attains
the lower bound (21) not only at 0xed (�1; : : : ; �k) as N → ∞ (so that the rule
is asymptotically optimal from the frequentist viewpoint), but also uniformly
over a wide range of parameter con0gurations, which can be integrated to
show that the rule is asymptotically Bayes with respect to a large class of
prior distributions � for (�1; : : : ; �k).

This asymptotic theory for the 0nite-horizon undiscounted case is closely
related to the asymptotic theory, as the discount factor 
 approaches 1, for
the discounted multi-armed bandit problem, in which the discounted regret of
an allocation rule at (�1; : : : ; �k) is de0ned by

r̃
(�1; : : : ; �k) = E�1 ;:::;�k

[ ∞∑
t=0


t
{
max
1≤i≤k

�(�i)− R(Xt+1)
}]

: (22)

Making use of (21) with N ∼ (1− 
)−1, Chang and Lai (1987) showed that
as 
 → 1,

r̃
(�1; : : : ; �k) ≥ |log(1− 
)|
∑

j:�j¡� ∗

{
�(� ∗)− �(�j)

I(�j; � ∗)
+ o(1)

}
(23)
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for every rule that satis0es r̃
(�′1; : : : ; �
′
k)=O(|log(1−
)|) for all (�′1; : : : ; �′k) ∈

9k . They also showed that Gittins’ index rule and its approximation that
replaces the Gittins indices by the simpler upper con0dence bounds (19)
with h(n=N ) replaced by  ({(1− 
)n}−1) attain the asymptotic lower bound
(23) and are also asymptotically Bayes with respect to a large class of priors
(not necessarily assuming independence among �1; : : : ; �k).
While the regret of the preceding upper con0dence bound rule is of log-

arithmic order as N → ∞ in the 0nite-horizon case or as 
 → 1 in the dis-
counted case, the regret of the myopic rule that chooses the action with the
largest posterior mean reward (or the largest sample average reward without
assuming a prior distribution on the unknown parameters) has regret of order
N (in the 0nite-horizon case) or order (1 − 
)−1 (in the discounted case);
see Kumar (1985). Therefore the upper con0dence bound rule is consider-
ably more eKcient than the myopic rule for large horizons N or for discount
factors approaching 1, showing the importance of active experimentation in
these cases. On the other hand, it is diKcult to improve on the myopic rule
when N is moderate or small, or when there is substantial discounting, since
the long-term bene0t of active experimentation to improve future performance
cannot be realized when there is not much time left before the 0nal action
or when future values become insigni0cant after discounting.

Example 2. To illustrate this point, consider the case of Bernoulli bandits
with k = 2 (arms) and a = b = 1 for the parameters of the prior Beta dis-
tribution. The Bayesian myopic (BM) rule chooses the arm with the larger
posterior mean at each stage, using randomization in the case of ties. The
frequentist myopic (M) rule does not assume the Beta(1; 1) (or uniform)
prior distribution for �1 or �2, and replaces the posterior mean in the BM
rule by the sample mean. The upper con0dence bound (UCB) rule described
above uses the upper con0dence bound (19) in lieu of the posterior mean.
Table 2 gives the regret (20) of each rule at diIerent values of (�1; �2) for
N = 20; 100; 300; 3000. Also given in Table 2 is the Bayes regret∫ 1

0

∫ 1

0
rN (�1; �2) d�1 d�2 =N

∫ 1

0

∫ 1

0
max(�1; �2) d�1 d�2 − R�

=2N=3− R� (24)

for each rule, where R� is the Bayes reward de0ned by (2) with uniform
�. Each result in the table is based on 1000 simulations. Table 2 shows that
all three rules M, BM and UCB are nearly Bayes for N = 20, as they have
small Bayes regret. While the regret function and the Bayes regret increase
slowly with N for the UCB rule, they grow much faster with N for the
myopic rules M and BM. For N = 3000, the UCB rule that incorporates an
appropriate amount of active experimentation in a simple way shows great
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Table 2
Regret for the myopic (M,BM) and upper con0dence bound (UCB) rules in Bernoulli two-armed
bandits

(�1; �2) N = 20 N = 100 N = 300 N = 3000

M BM UCB M BM UCB M BM UCB M BM UCB

(0:1; 0:7) 1:16 0:84 0:87 1:68 0:86 1:00 3:77 0:93 1:61 65:6 1:11 2:89
(0:2; 0:8) 1:41 0:96 0:83 1:44 1:46 1:20 5:60 1:92 1:68 122:1 3:62 2:57
(0:25; 0:75) 1:51 1:11 1:03 2:40 1:76 1:57 5:76 3:17 2:29 34:1 9:10 4:33
(0:3; 0:5) 1:15 1:21 1:10 4:74 4:21 1:57 13:32 10:14 4:37 124:6 95:7 7:95
(0:4; 0:5) 0:84 0:78 0:75 3:51 3:74 3:07 10:32 10:08 5:99 102:4 108:4 12:91
(0:5; 0:65) 1:01 1:09 0:94 4:33 4:49 3:22 11:76 12:57 5:74 117:4 120:1 9:73

Bayes 1:00 0:85 0:70 3:83 2:65 2:00 12:8 10:56 5:88 78:11 35:49 9:74

improvement over the myopic rules, from both the frequentist and Bayesian
viewpoints.

4. Multi-armed bandit problems with switching costs

When switching costs are present, even the discounted multi-armed bandit
problem does not have an optimal solution in the form of an index rule,
as shown by Banks and Sundaram (1994). At any stage one has a greater
propensity to stick to the current arm instead of switching to the arm with
the largest index and incurring a switching cost. Although the optimal so-
lution becomes much more complicated when there are switching costs, the
basic ideas in Sections 2 and 3 can be extended to multi-armed bandits with
switching costs.
To reduce switching costs, Agrawal et al. (1988) modi0ed the construction

by Lai and Robbins (1985) of rules that attain the asymptotic lower bound
(21) for the regret at every 0xed (�1; : : : ; �k) so that the total switching cost
up to time t is of smaller order than the regret (i.e., is o(log t)). Speci0cally,
they divide time into ‘frames’ numbered 0; 1; 2; : : : and further subdivide each
frame f into blocks of equal length max{f; 1} such that mf−mf−1=�(2f2 −
2(f−1)2)=f�kf for f ≥ 1, where mf denotes the time instant at the end of
frame f, with m0 = k. Thus the pair (f; i) denotes block i in frame f. The
time instant t when (f; i) begins is a comparison instant at which upper
con0dence bounds Unt( j)(j) for �(�j) are computed for j = 1; : : : ; p, and the
action aj∗ with the largest Unt( j)(j) is chosen for the entire block (f; i).

The upper con0dence bounds Unt( j)(j) used by Agrawal et al. are the
same as those in Lai and Robbins (1985) and do not involve the horizon
N or the discount factor 
. By incorporating N into the construction of up-
per con0dence bounds, Lai (1987) improved the 0nite-sample performance
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of the corresponding index-type rule in 0nite-horizon bandit problems with-
out switching costs. In this connection, recall the role of N in h(n=N ) or of
c(=− log 
) in  (vj;n=c32(�j;n)) in determining the amount of active experi-
mentation in (19) or (16). Moreover, the choice of blocks by Agrawal et al.
(1988) does not involve N (or 
). We can improve its performance by suit-
ably incorporating this basic parameter into the de0nition of the blocks, as in
the following construction of nearly optimal allocation rules in the presence
of switching costs.

4.1. Normal two-armed bandits

To begin with, consider the 0nite-horizon bandit problem with k = 2
normal arms, assuming common known variance 1 for each arm. For nota-
tional simplicity let nt(1)=mt , nt(2)=nt , Yj=Yj;1, Zj=Yj;2, UY j=(Y1+· · ·+Yj)=j,
UZj = (Z1 + · · ·+ Zj)=j. The generalized likelihood ratio (GLR) statistic ‘t for
testing H0 : EY1 = EZ1 based on Y1; : : : ; Ymt ; Z1; : : : ; Znt is given by

‘t =
mtnt

2(mt + nt)
( UYmt − UZnt)

2: (25)

Note that ‘t has the same form as the GLR statistic n UX
2
n=2 for testing H′

0: �=0
based on i.i.d. normal X1; : : : ; Xn with mean � and variance 1, if we replace
n by mtnt=(mt + nt) and UX n by UYmt − UZnt . As noted by Lai (1987), the upper
con0dence bound (19) in the UCB rule can be constructed by inverting a
GLR test, and for the 0nite-horizon problem of choosing between a normal
population �1 with unknown mean � and another normal population �2

with known mean 0, a nearly optimal rule samples from the population with
unknown mean until stage

T = inf{n ≤ N : 2nI( UX n; 0) ≥ h2(n=N )}
= inf{n ≤ N : n UX

2
n ≥ h2(n=N )}; (26)

and then samples the remaining N −T observations from �1 or �2 depending
on whether UX T ¿ 0 or UX T ¡ 0.
Note that n UX n=w(n), where w(·) is a Wiener process with drift coeKcient

�. Letting � = EY1 − EZ1, Robbins and Siegmund (1974) have shown that
the random sequences {mn( UYm − UZn)=(m + n)} and {w(mn=(m + n))} have
the same joint distribution for any sequence of integer pairs (m; n) which is
nondecreasing in each coordinate. This suggests that in analogy with (26),
after stage

�= inf
{
t: mt + nt ≤ N;

mtnt

mt + nt
( UYmt − UZnt)

2 ≥ h2
(

mtnt

(mt + nt)N

)}
;

(27)
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we can stop sampling from Y or Z depending on whether UYm� ¡ UZn�
or UZn� ¡ UYm� . Prior to stage �, we can use an adaptive sampling rule that
carries out active experimentation with an apparently inferior population in
blocks of consecutive time periods to reduce switching costs. This is the basic
idea underlying the following sampling scheme.
Take an even integer b (depending on the horizon N ) and partition time

into blocks so that the length of the jth block is bj −bj−1. In the 0rst block,
sample b=2 observations 0rst from Y and then from Z with probability 1=2,
and sample b=2 observations 0rst from Z and then from Y with probability
1=2. For the jth block (j ≥ 2), we de0ne the leading population as that
having the maximum of the two sample means at the end of the (j − 1)st
block. Sample the 0rst (bj − bj−1)=2 observations of the jth block from the
leading population. Then switch to sampling from the other population until
stage

�j = inf{t: mt + nt ≤ bj; mtnt( UYmt − UZnt)
2=(mt + nt)

≥ h2(mtnt=N (mt + nt))}: (28)

If the set in (28) is non-empty, stop experimentation and sample the remaining
N − �j observations from Y (or Z) if UYm�j

¿ (or¡) UZn�j . In particular, if
�j occurs at the time of switching with the leading population still having
the larger sample mean, then no switching actually occurs as the apparently
inferior population is eliminated from further sampling. If the set in (28) is
empty, let �j = bj and note by induction that in this case we have sampled
bj=2 observations from each population at the end of the jth block. If N =
bJ for some integer J , the preceding de0nition applies to all J blocks. If
bJ−1 ¡N ¡bJ , we modify the de0nition of the J th block by proceeding as
before until the N th (instead of the bJ th) observation. We shall call this
rule the block experimentation (BE) rule. It experiments with an apparently
inferior population within blocks of consecutive times to reduce switching
costs. The amount of experimentation is similar to that of the UCB rule, as
illustrated in the following.

Example 3. The regret (20) of the BE rule that uses b = 10 to form the
blocks is compared with that of the UCB rule and the frequentist myopic
(M) rule described in Section 3, where the Bernoulli populations in Example
2 are replaced by normal populations. Note that the 0rst block of the BE rule
consists of the 0rst 10 stages, the second block consists of stages 11 through
100, etc. Let � = EY1 − EZ1. Table 3 gives the results for various values of
� and for N = 100 or 1000. They show that the BE rule has a somewhat
larger regret than the UCB rule but a substantially smaller regret than the
myopic rule when N = 1000, although the regret of the myopic rule is only
slightly larger than that of the BE rule when N =100. The expected number
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Table 3
Regret and expected number of switches for the myopic (M), upper con0dence bound (UCB)
and block experimentation (BE) rules in normal two-armed bandits

� N = 100 N = 1000

Switch # Regret Switch # Regret

M UCB BE BE(2) M UCB BE BE(2) M UCB BE M UCB BE

1 2:31 5:01 3:90 5:82 12:35 4:12 8:72 7:30 2:89 8:60 3:90 95:5 6:6 10:2
0:8 2:38 5:94 3:78 6:22 10:97 4:85 9:17 7:59 2:41 11:1 3:83 82:3 7:7 11:5
0:6 2:55 6:98 3:69 6:58 11:46 5:06 9:44 8:21 2:43 14:1 3:74 118:2 8:8 14:3
0:4 2:65 9:33 3:36 7:22 11:35 6:08 10:07 7:85 2:71 17:8 4:03 104:3 10:5 16:1
0:2 2:82 10:55 3:23 7:87 8:33 5:75 7:08 6:49 2:79 28:6 4:42 72:5 19:4 28:4
0:1 2:85 11:79 3:12 7:87 4:96 3:93 4:25 3:55 3:08 34:9 4:32 41:8 22:5 27:0

of switches of the UCB rule, however, is considerably larger than that of the
BE rule or the myopic rule.
Unlike the rigid choice of frames and blocks in the rule of Agrawal et al.

(1988), the choice of b in the BE rule can depend on N and the switching
cost. In particular, it will be shown in Theorem 1 below that as N → ∞,
by choosing b ∼ (logN )? with 1=2¡?¡ 1, the expected number of switches
converges to 3.5 for 0xed � �= 0, while the regret of the BE rule is asymp-
totically equivalent to that of the UCB rule. On the other hand, for moderate
values of N and relatively small switching costs, it may be desirable to choose
b as small as 2. In particular, for the case N =100 in Table 3, the rule BE(2)

uses b=2. Its regret is closer to that of the UCB rule than that of BE (which
uses b= 10) while the expected number of switches increases substantially.

4.2. Extension to the exponential family and general k

The preceding block experimentation and sequential GLR testing ideas can
be readily generalized to k populations �1; : : : ; �k such that �i has density
function f�i(y)=exp{�iy− g(�i)} with respect to some common dominating
measure for i=1; : : : ; k. Let b be a positive integer divisible by k and partition
time into frames such that the length of the jth frame is b for j = 1 and is
bj−bj−1 for j ≥ 2. The jth frame is further subdivided into k blocks of equal
length so that (j; i) refers to the ith block in frame j. Let (3(1); : : : ; 3(k)) be a
random permutation of (1; : : : ; k) (i.e., all k! permutations are equally likely).
The block (1; i) in the 0rst frame is devoted to sampling from �3(i). For the
jth frame (j ≥ 2), denote the population with the ith largest sample mean
among all populations not yet eliminated at the end of the (j−1)st frame by
�3j(i). Let Ij denote the number of such populations and let î= 3j(i). Let �i∗

denote the population with the largest sample mean among all populations not
yet eliminated at the end of the block (j; i − 1), where the end of the block
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(j; 0) means the end of the frame j − 1. Let Yi;1; Yi;2; : : : denote successive
observations from �i and UY i; t be the sample mean based on Yi;1; : : : ; Yi; t . For
the block (j; i), which will be denoted by Bj; i (with 1 ≤ i ≤ Ij), we sample
from �î until stage

�= inf

{
t ∈ Bj; i: ‘( UY i∗ ; nt(i∗); UY i;nt(î); nt(i∗); nt(î))

≥ 1
2
h2
(

nt(i∗)nt(î)
N [nt(i∗) + nt(î)]

)}
; (29)

where � is de0ned as the largest number in Bj; i if the set in (29) is empty,
and ‘( UY k;m; UY i;n;m; n) is the GLR statistic for testing H0: EYk = EYi based
on Yk;1; : : : ; Yk;m; Yi;1; : : : ; Yi;n and is given by (30) below. If the set in (29) is
non-empty, eliminate �î (or �i∗) from further sampling if UY i;n�(î) ¡ (or ¿)
UY i∗ ; n�(i∗), and the remaining observations in the block (j; i) are sampled from
�i∗ (or �î). Note that (29) reduces to (28) in the normal case, for which the
GLR statistics are given by (25). For Ij ¡ i ≤ k, the block (j; i) is devoted
to sampling from the population with the largest sample mean among all
populations not yet eliminated at the end of block (j; Ij). We call this rule
the BE rule for the k-armed bandit problem.
If N = bJ for some integer J , the preceding de0nition of the BE rule

applies to all J frames. If bJ−1 ¡N ¡bJ , we modify the de0nition of the
J th frame by proceeding as before until the N th observation. The follow-
ing theorem, whose proof is given in the appendix, shows that the BE rule
has an asymptotically optimal regret and also gives the asymptotic behav-
ior of its expected number of switches. As in Lai (1987), our analysis of
boundary crossing probabilities of GLR statistics in the proof of the theo-
rem requires the regularity condition that �1; : : : ; �k all belong to an open
interval 9 = (�; �∗) such that −∞ ≤ �¡�∗ ≤ ∞, inf �−,¡�¡�∗+,g′′(�)¿ 0,
sup�−,¡�¡�∗+, g

′′(�)¡∞ and g′′ is uniformly continuous on (� − ,; �∗ + ,)
for some ,¿ 0. Note that this condition is satis0ed in the normal case with
� = −∞ and �∗ = ∞. The maximum likelihood estimate of �(�i) based on
Yi;1; : : : ; Yi;m is �(�) ∨ ( UY i;m ∧ �(�∗)), where ∨ and ∧ denote maximum and
minimum, respectively, and the GLR statistic for testing H0 :�(�k) = �(�i)
based on Yk;1; : : : ; Yk;m; Yi;1; : : : ; Yi;n is

‘( UY k;m; UY i;n;m; n) =mL( UY k;m) + nL( UY i;n)

− (m+ n)L((m UY k;m + n UY i;n)=(m+ n)) (30)

with L(y)= L̃(�(�)∨ (y∧�(�∗))) and L̃(z)= z�−1(z)−g(�−1(z)), noting that
the function �=g′ is continuous and increasing and therefore has an inverse.
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Moreover, for this asymptotic theory, we can replace, as in Lai (1987), the
speci0c form of h in Section 3 by more general positive functions on (0; 1]
such that for some B¿− 3=2,

h2(t) ∼ 2 log t−1 and h2(t)=2 ≥ log t−1 + B log log t−1 as t → 0:

(31)

Theorem 1. In the BE rule above; suppose b ∼ (logN )? for some 1=2¡?¡ 1
and h : (0; 1] → (0;∞) satis.es (31) for some B¿− 3=2. Let I(�; +) denote
the Kullback–Leibler information number de.ned in (18). De.ne the re-
gret rN (�1; : : : ; �k) of the BE rule by (20); and let sN (�1; : : : ; �k) denote its
expected number of switches up to stage N . Let � ∗ =max1≤i≤k �i.
(i) At every .xed (�1; : : : ; �k) ∈ 9k; as N → ∞;

rN (�1; : : : ; �k) ∼ (logN )
∑

j:�j¡� ∗
(�(� ∗)− �(�j))=I(�j; � ∗);

sN (�1; : : : ; �k) → 2k − k−1 if � ∗ = �i for only one i.
(ii) Let #N (j) denote the expected number of observations from �j and

SN (j) denote the expected number of switches to and from �j up to stage
N. Then as � ∗ − �j → 0 but N (� ∗ − �j)2 → ∞;

#N (j) ∼ (log[N (� ∗ − �j)2])=I(�j; � ∗);

SN (j) =O(max{1; | log(� ∗ − �j) | =log logN}):

Parts (i) and (ii) of Theorem 1 can be used to show that the Bayes re-
gret

∫
: : :
∫
rN (�1; : : : ; �k) d�(�1; : : : ; �k) is asymptotically minimal over a large

class of prior distributions �, as in Lai (1987).

4.3. Discounted bandit problems with switching costs

We can easily modify the BE rule for the in0nite-horizon discounted bandit
problem with regret r̃
(�1; : : : ; �k) de0ned by (22). Simply replace N in (29)
by (1− 
)−1 and remove the upper bound J on the number of frames. This
modi0ed rule will be denoted by BE
. The analogue of sN (�1; : : : ; �k) in the
discounted problem is

s̃
(�1; : : : ; �k) = E�1 ;:::;�k

[ ∞∑
t=1


t1{a switch occurs at time t}

]
:
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Theorem 2. Suppose h : (0;∞) → (0;∞) satis.es (31) for some B¿ − 3=2
and b ∼ | log(1− 
) |? for some 1=2¡?¡ 1 in the BE
 rule. Then at every
.xed (�1; : : : ; �k) ∈ 9k; as 
 → 1;

r̃
(�1; : : : ; �k) ∼ | log(1− 
) |
∑

j:�j¡� ∗
(�(� ∗)− �(�j))=I(�j; � ∗);

s̃
(�1; : : : ; �k) → 2k − k−1 if � ∗ = �i for only one i:

Moreover; the conclusion of Theorem 1(ii) also holds for the rule BE
.

5. Conclusion

In Section 2, we provide closed-form approximations to Gittins indices so
that the optimal index rule can be easily implemented for discounted bandit
problems. Although index rules are no longer optimal for 0nite-horizon (in-
stead of discounted in0nite-horizon) multi-armed bandit problems, they are
asymptotically optimal from both Bayesian and frequentist viewpoints for
large horizons. They also perform well for small or moderate values of the
horizon N , for which even the myopic rule that does not incorporate active
experimentation is shown to perform well in Section 3. When switching costs
are present, even the discounted multi-armed bandit problem does not have
an optimal solution in the form of an index rule, as shown by Banks and
Sundaram (1994). Nevertheless, Section 4 has shown how index rules can be
modi0ed by not switching within prespeci0ed blocks of time to come up with
asymptotically optimal rules in the discounted or 0nite-horizon multi-armed
bandit problem with switching costs.
The incomplete learning theorem for discounted multi-armed bandits estab-

lished by Rothschild (1974), Banks and Sundaram (1992) and Brezzi and Lai
(1999b) shows that in feedback control of a system with unknown parameters,
the control objective may preclude full knowledge of the parameter values
in the long run. However, one still needs suKcient information about the
unknown parameters to come up with an appropriate action at every stage.
A good control rule therefore introduces adjustments into the myopic rule
so that some active experimentation is used to generate information about
the unknown parameters. For discounted or 0nite-horizon multi-armed ban-
dits, we have shown how such adjustments can be implemented by using
an index which replaces the sample estimates of the parameters by suitable
upper con0dence bounds. In view of the duality between con0dence intervals
and hypothesis testing, we can also perform these adjustments by testing the
hypothesis whether an apparently superior action is indeed superior. In par-
ticular, we have used this hypothesis testing approach in Section 4 to address
the long-standing problem of switching costs in multi-armed bandits.
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Appendix.

Proof of Theorem 1. Consider the special case k=2, as the general case can
be treated by a similar argument. Without loss of generality, we shall assume
that �1 ¿�2. Let d= �1 − �2. In view of (31), we can make use of Lemma
2:6 of Zhang (1992) on boundary crossing probabilities of GLR statistics
(with a modi0cation of the statement to accommodate unequal sample sizes
from the two populations but with essentially the same proof) to show that
as Nd2 → ∞ with O¡d= o((logN )1=2),

P{‘( UY 1; nt(1); UY 2; nt(2); nt(1); nt(2)) ≥ 1
2
h2 (nt(1)nt(2)=N [nt(1) + nt(2)])

and UY 1; nt(1) ¡ UY 2; nt(2) for some t ≤ N}=O((Nd2)−1(logNd2)−B−1=2):

(A.1)

Consider the event F = {Population 1 is not eliminated at any stage t ≤ N},
and let Fc denote its complement. Since Fc is a subset of the event in (A.1),
P(Fc) =O((Nd2)−1) by (A.1). Note that

E{nN (2)1F} ≤ #N (2) ≤ NP(Fc) + E{nN (2)1F}
=E{nN (2)1F}+O(d−2(logNd2)−B−1=2): (A.2)

Since B¿−3=2, it follows from (A.2) that #N (2)−E{nN (2)1F}=o(d−2logNd2).
First consider the case of 0xed d¿ 0, as in part (i) of the theorem. By

standard large deviation bounds for sample means from an exponential family,
there exists E¿ 0 such that

P{ UY 1;m ¡ UY 2; n}=O(e−Em + e−En) as m → ∞ and n → ∞: (A.3)

For the BE rule, nb(1)=nb(2)=b=2 ∼ (logN )?=2. On F ∩{ UY 1; nb(1) ¿ UY 2; nb(2)},
the BE rule samples from �1 for stages nb(1) + 1; : : : ; nb(1) + (b2 − b)=2
and then switches to sampling from �2 until the end of the second frame
or the elimination of �2, whichever occurs sooner. Let �i = �(�i). Since
L̃
′
(y) = �−1(y), it follows that as m=n → ∞,

L̃
(
m�1 + n�2

m+ n

)
= L̃(�1) +

n
m+ n

(�2 − �1)�1 +O
(( n

m

)2)
:

Since I(�2; �1)= (�2−�1)�2− (g(�2)−g(�1)) and L̃(�i)=�i�i −g(�i), it then
follows that

mL̃(�1) + nL̃(�2)− (m+ n)L̃((m�1 + n�2)=(m+ n))

=n{L̃(�2)− L̃(�1)− (�2 − �1)�1 +O(n=m)}
=n{I(�2; �1) +O(n=m)} (A.4)
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as m=n → ∞. Noting that mn=(m + n) ∼ n as m=n → ∞ and using (31)
and (A.4) together with the law of large numbers, it can be shown that
with probability 1, �2 is eliminated at some stage t in frame 2 with nt(2) ∼
(logN )=I(�2; �1). Uniform integrability arguments can then be used to show
that

E{nN (2)1F∩{ UY 1; nb(1)¿
UY 2; nb(2)}} ∼ (logN )=I(�2; �1): (A.5)

Making use of exponential bounds for the large deviation probabilities of
sample means and noting that nN (2)¡b2 on the event that �2 is eliminated
in the second frame, we obtain that

E{nN (2)1F∩{ UY 1; nb(1)≤ UY 2; nb(2)}} ≤ b2e−Eb +O(Ne−Eb2); (A.6)

where the second summand on the right hand side simply bounds nN (2) by
N . Since b2 ∼ (logN )2? and 2?¿ 1, it then follows that

E{nN (2)1F}= E{nN (2)1F∩{ UY 1; nb(1)¿
UY 2; nb(2)}}+ o(1) ∼ (logN )=I(�2; �1):

The preceding proof also shows that on F ∩ { UY 1; nb(1) ¿ UY 2; nb(2)}, there are
two switches in the second frame, to and from �2, with probability 1 as
N → ∞. There is also one switch in the middle of the 0rst frame, and with
probability 1=2 one more switch at the end of the 0rst frame (when �1 is
chosen at the beginning). Uniform integrability arguments and bounds of the
type in (A.6) then show that sN (�1; �2) → 3:5 in this case.
We next consider the case d → 0 but Nd2 → ∞, as in part (ii) of the

theorem. In this case, (A.2) still holds and �2 is eliminated at some stage
t belonging to some frame j with nt(2) ∼ (logNd2)=I(�2; �1), with prob-
ability approaching 1 as Nd2 → ∞. At the end of frame j − 1, the BE
rule has sampled bj−1=2 observations from each population on the event
F . Therefore, similar uniform integrability arguments can be used to show
that E{nN (2)1F} ∼ (logNd2)=I(�2; �1). Moreover, the expected number of
switches is O(Jd), where bJd ¿ (1+o(1))(logNd2)=I(�2; �1)¿bJd−1=2. Since
I(�2; �1) ∼ d2g′′(�1)=2, we have

Jd log(logN )? = log(logN + logd2)− logd2 +O(log logN );

yielding ?Jd ∼ (−logd2)=(log logN ) +O(1).

Proof of Theorem 2. Take any a¿ 0 and choose a positive integer N (a) ∼
a(1 − 
)−1. We can derive the desired conclusions as 
 → 1 by applying
Theorem 1 to the horizon N (a) with a arbitrarily large.
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