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1 Introduction

The framework of multi-armed bandit problems is among the most widely-used models for the
study of optimal information acquisition and “learning” by economic agents. An important factor
in this popularity is the considerable degree of analytical tractability possessed by even very
general formulations of problems in this framework. In large part, this tractability derives from
the remarkable Theorem of Gittins and Jones (1974), which asserts that in any independent-armed
bandit problems with geometric discounting over an infinite horizon, it is possible to associate
with each arm an index, known as the Gittins index, with the property that a strategy in the
bandit problem is an optimal strategy if, and only if, it (almost) always involves playing an arm
with the highest value of the Gittins index at that point. (Such a strategy is called a Gittins index
strategy.) The feature that gives this result especial potency is that the Gittins index on an arm
depends solely on characteristics of that arm (and on the rate of discounting), but not on any
other feature of the problem under study.

The fact that indices of the arms can be computed separately and then put together to gener-
ate the optimal strategy makes the Gittins-Jones Theorem a powerful tool in the characterization
of optimal plans. For instance, Banks and Sundaram (1992a) show that the Gittins index function
possesses certain curvature and continuity properties. Exploiting these properties, they show that
in a very large class of bandit problems, it is the case that with non-zero probability, the optimal
strategy will involve the play of just a single arm of the bandit forever. Moreover, this need
not be the “best” type of arm (i.e., one that would be optimal under complete information);
indeed, it could even be the case that arms that are optimal under complete information will
be discarded in finite time with probability one, under the optimal strategy. Similarly, Banks
and Sundaram (1992b) demonstrate–once again by identifying and exploiting properties of the
Gittins index function–the existence of a class of bandit problems in which optimal strategies
are myopic, i.e., in which regardless of the rate of discounting, the optimal strategies remain
the same as those that are optimal at a discount factor of zero. Since the latter are trivial to
compute, characterizing optimal behavior is made simple.

Given the importance of the Gittins-Jones Theorem in characterizing optimal plans, a natural
question that arises concerns the extent to which the assumptions of the theorem may be relaxed,
without doing violence to its conclusions. A number of papers in the literature have addressed
various aspects of this question. On the positive side, it has been shown that an index theorem
continues to hold when new projects are continually appearing (Whittle, 1981); when project
stages are variable and the bandit problem is a semi-Markovian decision problem (Gittins, 1979);
for the scheduling of priorities in a queue (see Whittle, 1982, Ch. 14.12); and in problems
that resemble the bandit framework such as the “Pandora’s Box” (or “treasure-hunt”) problem
(Weitzman, 1979; Whittle, 1982, Ch.14.10). On the downside, the stationarity of the underlying
decision problem is very important: Berry and Fristedt (1985) show that for the Gittins index
to be able to identify optimal strategies in all bandit problems, it is not only sufficient that
discounting be geometric, it is also necessary.

This paper summarizes and generalizes some recent work in this area, and presents some new
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results on this issue. Three questions are studied, all motivated by economic considerations.

In a number of economic applications, notably in the field of job-search and matching, it is
natural to posit the presence of an infinite number of available arms. In section 4, we examine
the extension of the Gittins-Jones result to such a setting, from its original assumption of a finite
number of available arms. When the number of arms is not finite, the Gittins index strategy may
itself cease to be well-defined, i.e., there may exist a set of histories which occur with positive
probability, such that after any of these histories, it is no longer possible to identify an arm that
attains the supremum of the Gittins indices following that history. We begin, therefore, with the
identification of a set of conditions that are both necessary and sufficient for the Gittins index
strategy to be well-defined from a given initial state (Theorem 4.1). Then, we show (Theorem
4.2) that regardless of the cardinality of the set of arms, as long as the Gittins index strategy
is well-defined from a given initial state, a strategy is optimal from that state if, and only if, it
is a Gittins index strategy. To complete the analysis, we examine the converse question: if the
Gittins index strategy is not well-defined, is it the case that an optimal strategy does not exist
from that initial state? It appears a strong conjecture that the answer to this question is in the
affirmative, but this paper provides only a partial answer (Theorem 4.3). Two conjectures, which
are of independent interest, but will also help provide a more complete answer answer are stated.

The standard formulation of the bandit problem limits the decision-maker to only choosing
one arm in each period. This precludes the possibility of “parallel search” by the decision-maker,
in which several options may be learnt about simultaneously. In section 5, we examine a simple
generalization of the bandit framework, which allows the decision-maker to play a fixed number
k ≥ 2 arms per period, and examine the validity of a conjecture that arises naturally: whether it
is the case that optimal strategies involve the decision-maker playing the arms with the k highest
values of the Gittins index in each period. Somewhat unfortunately, this conjecture turns out
to be false. We describe a three-arm problem in which k = 2. At the given initial state in this
example, arm 3 has the highest index, arm 2 the next highest, and arm 1 the lowest, but we show
that begining with arms 1 and 3 strictly dominates begining with arms 2 and 3.

Finally, in section 6, we consider a generalization of the bandit framework that is of consid-
erable interest for economic analysis: the introduction of a cost for switching between arms.1

Indeed, it is difficult to imagine a relevant decision problem in which the decision-maker may
move between alternatives in a costless manner. Since switching costs do not affect the model’s
stationarity, it appears a strong conjecture that a suitably generalized version of the Gittins index
will continue to identify all optimal strategies in this problem. Moreover, as Weitzman (1979)
has shown, optimal index strategies do exist in the related problem of “Pandora’s Box” which
involves switching costs. Unfortunately, this conjecture also turns out to be false: Banks and
Sundaram (1994) show that in the presence of switching costs, it is no longer possible to define
any index on the arms which will unfailingly identify optimal strategies. In section 6 of this paper,
we provide an alternative proof of their theorem.

The rest of this paper is organized as follows. Section 2 describes a typical bandit problem and

1Despite their obvious appeal, bandit problems with switching costs have not been studied very widely. The
literature consists only of a few papers including Kolonko and Benzing (1983) and Agarwal, et al (1991).
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identifies some useful classes of strategies in these problems; it also provides a brief description
of some of the principal applications of the bandit framework to economic analysis. Section 3
describes the construction of the Gittins index, and reviews the Gittins-Jones Theorem on the
optimality of Gittins index strategies. Then, as stated above, section 4 focusses on infinite-armed
bandits; section 5 on bandits with multiple plays allowed in each period; and section 6 on bandit
problems with switching costs. The Appendix contains proofs of results omitted in the main text.

2 Bandit Problems

2.1 Description of the Framework

An independent-armed bandit problem with geometric discounting (herafter, simply bandit prob-
lem) is specified by the following objects:

1. A finite set I = {1, . . . , n} of arms of the bandit, with generic element i.
2. A tuple Ci = (Xi, ri, qi) for each arm i, where

(a) Xi, a Borel subset of some Polish (i.e., complete, separable, metric) space, describes
the set of possible states of arm i;

(b) ri : Xi → R is a bounded measurable function describing the instantaneous reward
from arm i; and

(c) qi represents a family of transition probabilities on Xi, i.e., for each xi ∈ Xi, qi(.|xi)
is a probability measure on Xi, and for each fixed Borel subset G of Xi, qi(G|.) is a
measurable function from Xi to [0,1].

3. A discount factor δ ∈ [0, 1).

We will denote such a problem by (I, (Ci)i∈I , δ), or, suppressing dependence on δ, sometimes
simply by (I, (Ci)i∈I). We also define X = ×i∈IXi, and denote by x = (x1, . . . , xn) ∈ X a
typical state of the bandit problem.

There is a single decision-maker in the problem, who must decide, in each period t =
0, 1, 2, . . . , of an infinite horizon, the arm i ∈ I of the bandit to be activated that period.
This decision is made with full knowledge of the history of play upto that point, including the
state xt = (x1t, . . . , xnt) at the begining of period t. If the decision-maker chooses arm i in pe-
riod t, two things happen; first, he receives an instantaneous reward of ri(xit); second, the state
of arm i moves to its period-(t + 1) value xit+1 which is realized according to the distribution
qi(.|xit). The state of all unused arms remains frozen, so we have xjt+1 = xjt for all j = i.
The decision-maker discounts future rewards by δ ∈ [0, 1) and aims to maximize total discounted
expected reward over the infinite horizon.
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Formally, a t-history, denoted ht, is a list of the states of all the arms in each period upto
t, the arm chosen in each of those periods, the consequent reward witnessed, and the period-t
state. A strategy σ for the decision-maker is a sequence {σt}, where for each t, σt specifies the
action to be taken (i.e., the arm to be activated) in period-t as a measurable function of the
history upto t. Let Σ denote the set of all strategies for the bandit problem.

Each strategy σ and each initial state x ∈ X define, in the obvious way, a t-th period expected
reward, denoted rt[σ, x], for the decision-maker for each t. The worth of the strategy σ from
the initial state x, denoted W (σ)(x), is defined as ∞

t=0 δ
trt[σ, x]. A strategy σ

∗ is optimal from
an initial state x if its worth from x is maximal amongst all possible strategies, i.e., we have
W (σ∗)(x) ≥W (σ)(x) for all σ ∈ Σ. If a strategy is optimal from all x ∈ X, then we simply say
it is an optimal strategy.

The value function V :X → R of the problem is defined by V (x) = supσ∈ΣW (σ)(x). Note
that, as the supremum of the set of attainable rewards, the value function is well-defined whether
or not an optimal strategy exists since rewards are bounded and there is strict discounting (i.e.,
δ < 1.) On the other hand, it is obvious that if an optimal strategy does exist, then V must be
equal to the worth W (σ∗)(.) of any optimal strategy.

2.2 The “Classical” Framework

The framework we have described above treats each arm of the bandit as an abstract Markov
process whose “state” remains frozen when the arm is not in use. In what we shall call the
“classical framework” of bandit problems, these states of an arm correspond to the belief of a
decision-maker regarding the “true” distribution of rewards from that arm. We provide a brief
description of this framework here. For omitted details, we refer the reader to the excellent
monograph of Berry and Fristedt (1985).

Let D denote the set of all probability distributions on the real line, and let ∆ represent the
set of all probability distributions on D. Both D and ∆ are given the topology of convergence in
distribution. In the classical framework, the space ∆ represents the state space Xi for any arm
i, and is interpreted as the space of possible beliefs regarding the true distribution of rewards
from arm i. To wit, each arm i is thought of as generating rewards according to some probability
p ∈ D. F ∈ ∆ then denotes the decision-maker’s belief (or prior) regarding the likelihood of
these different distributions.

Thus, in the classical framework, the set ∆n, defined as the n-fold Cartesian product of ∆
and endowed with the product topology, arises as the state space of the bandit problem. Let
F = (F1, . . . , Fn) denote a typical element of ∆

n. The reward functions ri:Xi → R are defined
in the obvious manner as

ri(Fi) =
∆

rpi(dr)Fi(dpi)

Finally, there remains the definition of the transition probabilities. For any Fi ∈ ∆, let Fi[r]
represent a version of the conditional probability distribution (i.e., the posterior belief) that arises
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when arm i is used and the reward r is witnessed. We assume that for each Fi and r, some version
has been chosen and is held fixed. (Berry and Fristedt (1985) show that Fi[r] can be chosen
to depend measurably on i and r.) The posteriors Fi[r] then implicitly define the transition
probabilities qi on the space Xi(= ∆) : given any Borel subset B of ∆, the probability qi(B|Fi)
of the posterior belief being in B given the prior belief Fi, is simply the probability under Fi of
observing a reward r such that Fi[r] ∈ B.

2.3 Markovian Strategies and Index Strategies

We close this section with a brief discussion of two subclasses of strategies of especial interest in
the sequel: stationary Markovian strategies (hereafter, simply Markovian strategies), and strate-
gies defined through an “index.” Given any t-history ht, let x(ht) = (x1(ht), . . . , xn(ht)) denote
the period-t vector of states under ht.

A stationary Markovian strategy is a strategy σ in which at each t, σt depends on ht only
through x(ht), but not through t or any other details of the history upto t. Such a strategy can
evidently be represented completely by a measurable function g:X → I, with the interpretation
that g(x(ht)) ∈ I is the arm to be in played if the t-history ht has occured–and indeed, every
such function gives rise to a stationary Markovian strategy. Abusing notation, we will refer to
such a strategy by simply the fuction g.

An index for the bandit problem is a function λ that associates with each arm i and each state
xi ∈ Xi, a real number λ(xi, Ci). Loosely speaking, the number λ(xi, Ci) may be interpreted as
the “worth” of an arm i whose characteristics are given by Ci and whose current state is xi, but
we will not push this interpretation.

A strategy σ is said to be an index strategy with respect to the index λ if at each t and each
t-history ht upto t, we have σt(ht) ∈ {i ∈ I | λ(xi(ht), Ci) ≥ λ(xj(ht), Cj) ∀j ∈ I}, i.e., if σ
always selects one of the arms whose index, calculated according to λ is maximal at that point.

Intuitively speaking, the notions of Markovian strategies and index strategies appeal to dif-
ferent aspects of the framework we have defined. The former owe their interest to the fact that
the optimization problem facing the decision-maker in our model is itself a stationary Markovian
one, i.e., the current state of the arms encapsulates all relevant information concerning current
and future payoff possibilities. Thus, stationary Markovian strategies constitute a natural starting
point for analysis in these problems.

The idea of using an “index” to define strategies, on the other hand, has its genesis in the
independence assumption that when any arm i is in use, the states of all remaining arms are
frozen. To wit, suppose that in some independent-armed bandit problem, it is optimal to discard
the current incumbent arm i in favor of some arm j if the history h transpires when i is in use;
and that it is optimal to replace i with a third arm k, if the history that is witnessed from i is
instead h . Since no information is being obtained on j (or k or any other arm) when arm i is
in use, it seems very plausible–indeed, almost “obvious”–that there must also exist an optimal
strategy which chooses arm j after the history h also. Put differently, the converse seems very
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improbable: that it is optimal to continue with j after the history h, but not after the history h .
The conjecture that an index exists which gives rise to an optimal strategy is a stronger version
of this statement: it asserts that this continuation arm j can be chosen by calculating its “worth”
in some manner, independent of the other available arms.

2.4 Applications of the Bandit Framework

The bandit framework has found a vast degree of applicability in economics and allied disciplines.
We present a brief description of simple formulations of a few of these in this section, in part to
motivate some of the generalizations considered later in the paper.

2.4.1 Market Pricing: Learning the Demand Curve

It is common in most of economic theory to assume that firms and managers act under perfect
knowledge of market conditions when choosing price and output decisions. One of the first papers
to move away from this perfect information formulation was Rothschild (1974) who introduced
the bandit framework to economic theory.

Rothschild considers the problem of a seller who does not know the parameters of the “true”
demand curve he faces. Specifically, there are a finite number of possible prices (p1, . . . , pn) the
seller can charge. Associated with each price pi is a “probability of purchase” πi (the probability
that a consumer faced with the price pi will actually buy the good). If the vector (π1, . . . , πn) is
known, then the seller maximizes expected profits simply by setting the price equal to that i at
which piπi is maximized. When the πi’s are unknown, however, the seller faces a bandit problem
in the classical framework where the n prices act as the n arms. The reward from choosing arm
i is either pi (if a sale occurs) or 0 (if one does not).

2 Each time the seller chooses a price pi, he
learns something about the probability of purchase at that price.

Rothschild shows that when n = 2 (the case he studies throughout), there is a non-zero
probability under the optimal strategy that the seller will choose one arm and stick to it forever.
He further shows that this arm could be the inferior arm (i.e., the arm that would not be optimal
under full information). Banks and Sundaram (1992a) generalize these findings substantially.
They prove that both results remain true under very general conditions in independent-armed
bandit problems in the classical framework, i.e., there is a non-zero probability that an arm that
becomes optimal at some point will remain optimal forever, and as in Rotschild’s case this need
not not be the “best” type of arm, that is the arm that would be optimal under full information.
Indeed, a particularly strong version of this last result is true. Banks and Sundaram provide an
example of a bandit with a countable infinity of arms where each arm is one of the same three
possible types, and show that in any optimal strategy in this example, the best type of arm (the
one with the highest expected reward) will be rejected in finite time with probability one, while

2The situation is, thus, analogous to one where the arms generate rewards according to Bernoulli distributions
with unknown probabilities.
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the arm that would be second-best under complete information survives forever with probability
one.

2.4.2 Job Search and Matching

The framework of bandit problems has also proved a popular one for the analysis of decision
making in labor markets, notably in the theory of job-search and matching (see Mortensen (1985)
for references). A typical “matching” model has the following structure: there is a single decision-
maker (the “worker”) who faces a infinite number of a priori identical potential employers. The
productivity of the worker is match-specific: it depends on the firm she opts to work for. However,
the productivity levels of some or all of the matches are a priori unknown. Instead, both firm and
worker begin with (the same) belief regarding her productivity, which is updated as information
comes in. In the meanwhile, the worker receives as compensation the expected value of her match
as given by the current belief on this score.

It is easy to see that, treating the firms as arms of the bandit, and the productivity of a
match as the “true” distribution of rewards from that arm, the optimization problem facing the
worker is precisely a bandit problem in the classical framework, the only difference being the
assumption of an infinite number of available arms (firms). However, it is shown in Banks and
Sundaram (1992a) that the independent-armed bandit framework we have outlined above is easily
generalized to accomodate a countable infinity of arms, and existence of optimal strategies may
be guaranteed under very general conditions that includes the case where all arms are a priori
identical.

In addition to existence of optimal strategies, Banks and Sundaram (1992a) also show that
the assumption of an infinite number of a priori identical arms has the following implications.
First, there is always at least one optimal “no recall” strategy which never re-uses a once-tried
and discarded arm. Second, the expected number of arms used in any optimal strategy is finite,
so that, with probability one, the worker uses only a finite number of arms. And finally, when the
true distribution of rewards from any match is one of only two possible types, myopic strategies
(strategies which select the arm to be played purely on the basis of current expected rewards
from each arm) are fully optimal.

2.4.3 Technology Choice and Learning-By-Doing

Consider the problem faced by a firm which has available to it two possible modes of production.
The first (the “old” technology) has associated with it a constant marginal cost of production,
denoted say c. The second (the “new” technology) has an initial marginal cost that is higher than
c, but this marginal cost declines over time as the technology is used owing to a learning-by-doing
effect. For definiteness, assume that the marginal cost of production using the new technology
is given by

g(d0, d1, d2, τ ; ζ) = d0 + ζd1e
−d2τ (2.1)
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where d0, d1, d2 > 0; d0 < c < d0 + d1; τ is the number of periods the second technology has
been used; and ζ is a noise term with known distribution Z and mean 1. Note that if τ = 0
(i.e., the new technology has not yet been used), then the (expected) marginal cost of production
using this technology is d0 + d1 > c, while as τ → ∞, this marginal cost approaches d0 < c.
Moreover, d2 parametrizes the rate of decline of this cost. The firm produces one unit of output
per period, and wishes to minimize the sum of discounted expected costs over an infinite horizon.

For notational ease, let θ represent the parameter vector (d0, d1, d2). When the vector θ is
known with certainty, the resulting optimization problem facing the firm is a simple one: since
costs are declining under the new technology and are constant under the old, if ever it becomes
optimal to switch to the new technology remaining with this choice forever must also be optimal.
Thus, the firm only needs to calculate the discounted expected cost of using the old technology
forever, which is c/(1 − δ), and compare it with the cost of switching to the new technology
forever, which is ∞

t=0 g(θ, t, ζ)dZ(ζ). The smaller of the two then is the firm’s optimal choice.
The choice problem becomes non-trivial, however, if some or all of these parameters are not
known with certainty. Moreover, the problem cannot be solved by putting it into the classical
bandit framework, since the firm’s belief (denoted, say F ) regarding the vector θ is not sufficient
to describe the state of the problem at any point. Rather, it is also important to know the number
of periods τ the new technology has been used so far. Indeed, even the current marginal cost of
production g(θ, τ, ζ)dF (θ)dZ(ζ) cannot be calculated without this piece of information.

Nonetheless, the problem can be cast as a bandit problem in the framework of subsection
2.1. To do so, let arm 1 be defined by X1 = {c}, r1(c) = −c, and q1({c}|c) = 1. This
denotes the fact that arm 1 is in a constant state c, from which the rewards are −c. As regards
arm 2, let F denote the space of all possible beliefs regarding the parameter vector θ, and let
X2 = F × { ,∞,∈, . . .} be the state space of arm 2. The expected reward r2(F, τ) from using
arm 2 at the state (F, τ) can be written as

r2(F, τ) = − g(θ, τ, ζ)dF (θ)dZ(ζ).

Finally, suppose F{w} represents the posterior belief regarding the value of θ given the prior
F and the observation w = −g(θ, τ ; ζ). Then, given the current state (F, τ ), if the reward
w is witnessed from this arm, the new state of the arm is given by (F{w}, τ + 1). Since the
distribution of w is completely specified by knowledge of F and τ , this implicitly defines the
transition probabilities q2 on arm 2.

The vectors (X1, r1, q1) and (X2, r2, q2) complete the specification of this problem as a bandit
problem.

2.4.4 Agency Problems

The framework of bandit problems can also be thought of as representing a problem of pure
agency, in which each arm of the bandit represents an agent and the different distributions in
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the support of that arm represent the different types the agent can be. The problem facing the
decision-maker is then to select an agent whose type is “best” (from the decision-maker’s point
of view) subject to the implicit search costs involved.

On interpretation arises from treating the decision-maker as the median voter in some con-
stituency, the arms as the various candidates offering themselves for election, and the payoffs
from an arm as the government-controlled benefits that become available to the constituency.
Thus, a candidate’s type is an index of that candidate’s ability to divert funds to his constituency.
More generally, by expanding the state space to include variables apart from beliefs (as in the
subsection above), the impact of features such as term-limits and incumbency effects could also
be studied.

Alternatively, a different labor-market interpretation of the bandit problem from that presented
above is obtained by treating the decision-maker as a firm or employer searching over workers
(arms). Here, once again, the generalized bandit framework is particulary useful, since the state
of an arm (i.e., the characteristics of the worker) could be used to incorporate a variety of detail
apart from the worker’s expected productivity.

3 Optimal Strategies and the Gittins Index

The existence of optimal strategies in the bandit problem–in fact, the existence of Markovian
strategies that are optimal–is easily ascertained using standard arguments from dynamic pro-
gramming. These arguments are briefly outlined in subsection 4.1 below. Following this, we
describe in subsection 4.2 the construction of the Dynamic Allocation Index (better known today
as the Gittins Index) of Gittins and Jones (1974), and state their powerful theorem that a strategy
in a bandit problem is an optimal strategy if, and only if, it is an index strategy with respect to
the Gittins Index.

3.1 Markovian Optimal Strategies

The description of the bandit problem as a dynamic programming problem, and the obtaining of
the value function and an optimal strategy using a contraction mapping argument, are wholly
routine. Our exposition in this section is correspondingly brief.

As a first step, recall that since rewards are bounded, the value V (x) = supσ∈ΣW (σ)(x) is
well defined from any x. A standard argument establishes that at any x ∈ X, V must satisfy the
time-consistency principle embodied in the “Bellman Equation” for this problem:

V (x) =
i∈I
LiV (x) (3.1)
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where,

LiV (x) = ri(xi) + δ V (x−i, x̂i)qi(dx̂i|xi). (3.2)

(Here, in obvious notation, (x−i, x̂i) refers to the vector x, but with xi replaced by x̂i.)

To recover the function V , we use the following procedure. Let M(X) be the space of all
bounded measurable functions on X, endowed with the sup-norm. Define the map T :M(X)→
M(X) as follows: for w ∈M(X), let

Tw(x) =
i∈I
Liw(x) (3.3)

where

Liw(x) = ri(xi) + δ w(x−i, x̂i)dqi(x̂i|xi). (3.4)

Let v, w ∈ M(X) and a ∈ R. If v ≥ w, then Liv ≥ Liw for all i, so certainly Tv ≥ Tw.
Moreover, it is evident that T (v + a) = Tv + δa. Since δ < 1, it follows from Blackwell (1965)
that T is a contraction on the complete metric spaceMi(X), and hence has a unique fixed point
w∗. Since V also meets this equation, we must have w∗ = V .

Finally, let g denote any measurable selection from the correspondence of maximizers of
(3.1)-(3.2).3 It follows easily from the recursive nature of these equations that the total worth
of the stationary Markovian strategy defined using g (and denoted simply by g) is, in fact,
V . Thus, any measurable selection defined in this manner is a Markovian optimal strategy,
establishing simultaneously the existence of optimal strategies, and the existence of Markovian
optimal strategies.

3.2 The Gittins Index

The Theorem of Gittins and Jones (1974) is perhaps the single most powerful result in the
literature on bandit problems. It asserts that in all independent-armed bandit problems under
geometric discounting, the set of all optimal strategies may be recovered by solving a family
of optimal stopping problems, that associate with each arm an index known as the Dynamic
Allocation Index, or, more popularly, as the Gittins Index. The feature which gives this result
especial power is that the index on an arm depends solely on the characteristics of that arm, and
not on any other feature of the problem.

The Gittins index is constructed as follows. Let a bandit problem (I, (Ci)i∈I , δ) be given,
where, of course, Ci = (Xi, ri, qi). Select any arm i. Consider the following optimal stopping

3The existence of such a selection can be shown by appealing to standard selection theorems.
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problem involving arm i. In each period (conditional on the termination option not having been
accepted yet) the decision-maker is given the choice between (a) terminating the problem and
accepting a fixed terminal reward of m ∈ R, or (b) continuing with playing arm i for one more
period. Standard techniques from the theory of dynamic programming show that this problem is
well defined from any initial state xi ∈ Xi, and that the value of the problem V (xi, Ci,m) from
the initial state xi is a measurable function on Xi that satisfies at each xi:

V (xi, Ci,m) = max{m, ri(xi) + δ Vi(x̂i, Ci,m)dqi(x̂i|xi)}. (3.5)

The Gittins Index µ(xi, Ci), on an arm i, whose characteristics are given by Ci and which is
currently in the state xi, is then defined as

µ(xi, Ci) = inf{m | V (xi, Ci,m) = m}. (3.6)

Since ri is a bounded function by hypothesis, it is easy to see that for m sufficiently large we
must have V (xi, Ci,m) = m for all xi ∈ Xi; while, for −m sufficently large it must be the case
that V (xi, Ci,m) > m at all xi. It follows that the Gittins Index is well defined. The following
result establishes the importance of this index:

Theorem 3.1 (Gittins and Jones (1974)) The optimal selections in the bandit problem (I, δ, (Ci)i∈I)
at the state (x1, . . . , xn) are those arms i which are Gittins index maximal at that state, i.e.,
which are such that

µ(xi, Ci) =
j∈I
µ(xj, Cj). (3.7)

Equivalently, a strategy σ for a bandit problem (I, δ, (Ci)i∈I) is an optimal strategy for that
problem if, and only if, the set of histories on which its recommendations differ from the set of
Gittins Index maximal arms following that history has probability zero.

4 Infinite-Armed Bandits and the Gittins Index

In many economic applications (such as the literature on matching models mentioned above), it
is natural to allow for an infinite number of available arms, to leave open the possibility that there
is at least one untried arm available each period. It would, therefore, be interesting to know if
the Gittins-Jones Theorem can be extended to cover this case also.

Increased applicability is only one reason why one might wish to allow for an infinite number
of arms in the bandit problem. Perhaps a deeper one is the intuitive feeling that, as an expression
of the independence between arms, the “correct” statement of the Gittins-Jones Theorem should
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not depend on the cardinality of the set of available arms. More precisely, consider the statement
given in section 2.2 that in an independent-armed bandit problem, if is is optimal to switch from
arm i to arm j after the history h (on arm i), and to switch to arm k after the history h , it
“should” be optimal to switch to j after h also. The Gittins-Jones Theorem shows that this
statement is indeed correct when the number of arms is finite; but it is unclear why finiteness of
the set of available arms should matter for the truth of this statement.4

We examine the optimality of Gittins index strategies in bandits with a (possibly) infinite
set of arms in this section. As before, we denote a bandit problem by (I, (Ci)i∈I), but, for the
purposes of this section alone, we will no longer assume that I is a finite set. Rather, I will be
allowed to be of arbitrary cardinality. Notation is otherwise largely unchanged. The index i will
continue to denote a generic member of I, and Ci = (Xi, ri, qi) will denote the characteristics
of a generic arm i. In addition, the following assumption will be maintained throughtout this
section to ensure that total discounted rewards under an arbitrary strategy are finite:

Assumption 1: There is A ∈ R such that supxi∈Xi,i∈I |ri(xi)| ≤ A.

For expostional reasons, we break up the discussion in this section into two parts. In subsection
4.1, we present a simple example to show that when the cardinality of the set of available arms
is allowed to be infinite, the Gittins index strategy need not be well-defined: there could exist a
set of histories of positive probability under any of which there is no longer an arm attaining the
supremum of the indices. We then identify a set of conditions that are necessary and sufficient
for the index strategy to be well defined from a given initial state. Subsection 4.2 then focusses
on the optimality of Gittins index strategies when there are an infinite number of arms.

4.1 The Gittins Index Strategy

Any strategy in the bandit problem must prescribe the continuation arm to be picked after any
history. Thus, if we are to examine the optimality of the Gittins index strategy, we must first
ensure that it is really a “strategy,” i.e., that after any history, there is at least one arm that
attains the supremum of the set of indices. It is a simple matter to construct seemingly well-
behaved bandit problems with a compact set of arms in which this is not the case. Consider the
following:

Example 4.1 Let I = [0, 1]. For each i ∈ I, letXi = [0, 1], and let ri(xi) = xi for all
xi ∈ Xi. Finally, define the transition probabilities by qi({1}|xi) = 1− qi({0}|xi) =
xi/i. Since the characteristics of all arms are the same, we denote the index on arm

4In Banks and Sundaram (1992, Theorem 4.1) it is shown that the Gittins index strategies continue to identify
all the optimal selections at every point, when the number of available arms is allowed to be countably infinite.
While sufficient for most applications, this result still begs the question of whether the intuition given here has a
validity that is independent of the cardinality of the set of available arms.
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i at the state xi by simply µ(xi). Suppose now that the initial state is given by
xi = i/2 for all i. A straightforward calculation shows that

µ(
i

2
) =

i

(1− δ)(2− 2δ + δi)

so that arm 1 has the highest index at the initial state. However, after the 1-history
in which the state of arm 1 moves to 0 (a 1-history which occurs with probability
1/2), the index on arm 1 drops to zero; it is a trivial matter to see that there is no
longer an arm that attains the supremum of the indices at this new state.

In the rest of this subsection, we focus on identifying a set of conditions which guarantee that
the Gittins index strategy will be well-defined from a given fixed initial state x̄ = (x̄i)i∈I . The
Gittins index of arm i at the fixed initial state x̄i is denoted µ̄i.

Consider the following strategy in the optimal stopping problem used to define the Gittins
index on arm i, when m is the terminal reward:

Select arm i initially. In each subsequent period, stay with arm i if the index µi on
arm i at the begining of the period satisfies µi ≥ m. At the first point where µi < m,
accept the terminal reward m.

Denote this strategy by σi[m]. For t = 1, 2, . . . , let Hi(t,m) denote the set of t-histories in this
stopping problem (from the fixed initial state x̄i) under which σi[m] accepts the terminal reward
in period t. Also, denote by pi(t,m) the probability of the set Hi(t,m), and by Ri(t,m) the
total expected discounted reward from arm i over this period.

Theorem 4.1 The Gittins index strategy is well defined from the initial state x̄ = (x̄i)i∈I if, and
only if, either

(a) there are infinitely many arms i ∈ I such that µ̄i ≥ m∗, or
(b) there is i ∈ I such that µ̄i ≥ m∗ and pi(t,m∗) = 0 for all t,

where m∗ = sup{m | µ̄i ≥ m∗ for infinitely many i ∈ I}.

Remark Under the convention that the supremum of the empty set is −∞, this result applies
when I is finite also.

Proof We begin by proving that under (a) or (b), the Gittins index strategy is well defined. First
suppose (a) holds. Define the sequencesmt, It and Jt inductively as follows. Let m1 = supi∈I µ̄i,
and set I1 = {i ∈ I|µ̄i = m1} and J1 = I − I1. For t ≥ 1, let mt+1 = sup{µ̄i|i ∈ Jt},
It+1 = {i ∈ Jt|µ̄i = mt+1}, and Jt+1 = Jt − It+1.
It is obvious from the definition of m∗ and the hypothesis that (a) holds that I1 is non-empty.

If I1 contains an infinite number of elements, the Gittins index strategy is evidently well defined.
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Suppose I1 contains only a finite number of elements. Then, we claim, I2 must be non-empty,
and, in fact, that It+1 must be non-empty whenever

t
τ=1 Iτ contains only a finite number of

elements. For, suppose the contrary. Clearly, we must then have m∗ < mt+1, for if m
∗ ≥ mt+1

and ∃i such that µ̄i = mt+1, (a) would be violated. On the other hand, since there is no i
such that µ̄i = mt+1, it also follows that for any > 0, there are infinitely many i such that
µ̄i ∈ (mt+1 − ,mt+1]. For sufficiently small, m∗ is not in this interval, implying that there
exists m̂ > m∗ such that µ̄i ≥ m̂ for infinitely many i. This violates the definition of m∗, and
establishes the claim. It trivially follows from this claim that the Gittins index strategy is well
defined from the initial state x.

On the other hand, suppose (b) holds; assume without loss that (a) does not. The set
I∗ = {j ∈ I|µ̄j ≥ m∗} contains at least i, and since (a) is violated contains at most a finite
number of elements. Moreover, after any history, the index on arm i will always be at least as
large as m∗ with probability one, so in following the Gittins index strategy, there will never be a
call to play an arm not in I∗. It follows that, since I∗ is finite, the Gittins index strategy is well
defined.

Now suppose both (a) and (b) are false. If the set I∗ of the previous paragraph is empty, then
it follows from the definition of m that there is also no j such that µ̄j = supi∈I µ̄i. So suppose
that I∗ is non-empty. Since (a) is violated, I∗ can contain at most a finite number of elements.
By (b) being false, for each arm j in this set, there is a positive probability that when j is played,
the index on j falls strictly below m∗ in finite time. Thus, with non-zero probability, the indices
on all these arms will fall below m∗ in finite time. From the definition of m∗, it follows that there
is no longer any i attaining the supremum of the indices.

4.2 Optimality of the Gittins Index Strategy

The first result of this subsection shows that whenever the Gittins index strategy is well-defined,
a strategy in the bandit problem is an optimal strategy if, and only if, it always recommends
picking an arm that is Gittins index maximal (except, possibly, after a set of histories of collective
probability zero). As usual, W (σ)(x) will denote the total discounted reward to the decision-
maker under the strategy σ from the initial state x. Observe that since Assumption 1 holds, the
value function V (x) = supσW (σ)(x) is well-defined from every initial state x, even if an optimal
strategy does not exist from that state. Given an initial state x, and the history ht from x, let
x(ht) = (xi(ht))i∈I represent the resulting new vector of states.

Theorem 4.2 Suppose that the Gittins index strategy is well defined from the initial state x ∈ X,
i.e., that after any t-history ht from x, there exists i ∈ I such that µi(xi(ht)) = j∈I µj(xj(ht)).
Then, a strategy σ satisfies W (σ)(x) = V (x) if, and only if,

σt(ht) ∈ {i ∈ I | µi(xi(ht)) =
j∈I
µj(xj(ht))}

except possibly after a set of histories of probability zero.
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Remark The proof of this theorem actually follows from a close repetition of arguments in
the original Gittins-Jones proof. It appears a plausible conjecture that the reason this has gone
unnoticed is that much of the recent literature (including Berry and Fristedt, 1985) uses the
shorter and more elegant proof of the Gittins-Jones Theorem due to Whittle (see Whittle, 1982).
However, unlike the Gittins-Jones proof, Whittle’s arguments rely in an essential way on the
finiteness of the set of available arms.

Proof See Appendix A.

Theorem 4.2 establishes that provided the Gittins index strategy is well-defined, only strategies
coinciding with it almost surely can be optimal. However, this result leaves unanswered the
question of what happens if the Gittins index strategy is not well defined. In particular, is it the
case that if the Gittins index strategy is not well defined, optimal strategies no longer exist? The
following theorem establishes that in a large class of problems, this is indeed the case:

Theorem 4.3 Suppose that for each i ∈ I and each xi ∈ Xi it is the case that q(·|xi) has
countable support, i.e., there is a countable subset Yi of Xi (possibly depending on xi) such that
q(Yi|xi) = 1. Then, a strategy is optimal in the bandit problem if, and only if, it is a Gittins
index strategy. In particular, optimal strategies fail to exist whenever the Gittins index strategy
is not well defined.

Proof Under the stated hypothesis, any strategy in the bandit problem will involve only the use
of (at most) a countable number of arms, since with probability one, there are only a countable
number of distinct t-histories for any t. Given any countable subset J of I, a strategy σJ is
optimal in the bandit problem (J, (Cj)j∈J) if, and only if, it is a Gittins index strategy. Theorem
4.3 follows.

On the other hand, the assumption of countable support seems restrictive, and it appears a
strong conjecture that Theorem 4.3 is valid even without this restriction. I have not been able
to prove this conjecture or to provide a counterexample. However, the following related–but
simpler–conjectures, which pertain to -optimal strategies rather than fully optimal ones, would
help provide an answer if true. (Recall that a strategy σ∗ is -optimal from the initial state x if
it is the case that W (σ∗)(x) ≥W (σ)(x)− for all σ ∈ Σ.)

Conjecture 4.4 For all > 0, there is η > 0 such that if a strategy σ always picks an arm
whose index is within η of the supremum of the indices, then σ is -optimal.

Conjecture 4.5 For all > 0, there is η > 0 such that if σ is -optimal, then it always picks an
arm whose index is within η of the supremum of the indices at that point.
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5 Multiple Plays

We return now to the framework of section 2 where the set of arms I is finite, I = {1, . . . , n}.
As discussed in the Introduction, one somewhat restrictive feature of this framework is that only
one arm may be activated by the decision-maker at any point in time. In this section we consider
a situation where the decision-maker is allowed to play k arms each period, where 1 ≤ k < n is
a given, fixed number, and examine whether it is the case (as intuition would suggest) that the
optimal strategy consists of playing the arms with the k highest Gittins indices in each period.

Thus, the action space for the decision-maker in this set-up consists of the set of all possible
combinations of k of the n arms. Let C denote this set. A typical action will be denoted
C = (c1, . . . , ck) where ci ∈ I for each i (and, of course, ci = cj if i = j. Given an action C ∈ C,
the reward R(x, C) from taking the action C at the state x = (x1, . . . , xn) ∈ X = ×i∈IXi is
given by:

R(x, C) =
i∈C

ri(xi)

When the action C is taken at a state x, the state of all untried arms (i.e., arms j /∈ C) remain
frozen, while the state of arm i ∈ C moves to a new state according to the distribution qi(.|xi).
More formally, let qi(.|xi, C) be the measure qi(.|xi) if i ∈ C, and let qi(.|xi, C) be the measure
χi(xi) that places point-mass on xi if i /∈ C. Then, the transition probability Q(.|x, C) from
taking the action C at the state x in this modified bandit problem is simply given by the product
measure

Q(.|x, C) = q1(.|x1, C)× · · · × qn(.|xn, C).

The tuple {X, C, R,Q} then represents the decision-maker’s optimization problem as a Markovian
dynamic programming problem with state space X, action space C, reward function R, and
transition probability Q.

In subsection 6.1, we establish the existence of Markovian optimal strategies in this problem.
Subsection 6.2 then turns to the central question of this section: is it the case that at all points
it is optimal to select the k arms with the highest Gittins indices at that point?

5.1 Markovian Optimal Strategies

As in previous sections, the existence of Markovian optimal strategies follows from a straightfor-
ward application of dynamic programming results:

Theorem 5.1 The dynamic programming problem {X, C, R,Q} is well defined. The value func-
tion V :X → R is a measurable function that satisfies the Bellman Principle of Optimality at

16



each x ∈ X :

V (x) =
C∈C

LCV (x) (5.1)

where

LCV (x) = r(x, C) + δ V (x̂)dQ(x̂|x, C)

=
i∈C

ri(xi) + δ V (x̂1, . . . , x̂n)dq1(x̂1|x1, C) · · · dqn(x̂n|xn, C).

Any Markovian strategy defined through a measurable selection from the correspondence of
optimizers of equation (5.1) defines a optimal strategy.

5.2 Optimality of Gittins-Index Strategies

When k = 1, the Gittins-Jones theorem shows that any optimal strategy involves (almost) always
picking an arm with the highest current value of the Gittins index. In this section we provide
a counter-example which shows that it is not necessarily optimal to play the arms with the k
highest values of the Gittins index when k > 1.

The example has 3 arms: I = {1, 2, 3}, and C = {(1, 2), (1, 3), (2, 3)}. The state space
Xi of each arm i is the unit interval [0, 1]. The reward functions ri:Xi → R are given by
ri(xi) = ixi, xi ∈ [0, 1], i = 1, 2, 3. Finally, the transition probabilities qi(.|xi) are given by
qi({1}|xi) = 1− qi({0}|xi) = xi, xi ∈ [0, 1], i = 1, 2, 3.
Some simple calculation shows that the indices on the three arms are given by the following

expressions:

µ1(x1) =
x1

(1− δ)(1− δ + x1δ)
(5.2)

µ2(x2) =
2x2

(1− δ)(1− δ + x2δ)
(5.3)

µ3(x3) =
3x3

(1− δ)(1− δ + x3δ)
(5.4)

Let (x̄1, x̄2, x̄3) ∈ [0, 1]3 denote the initial state of this bandit problem. We begin by identifying
a set of conditions under which, conditional on optimal continuations in either case, it is strictly
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preferable to choose arms 1 and 3 in the first period, rather than arms 2 and 3. Then we will
show that it is possible to choose the initial state to satisfy these conditions and simultaneously
also have µ̄1 < µ̄2 < µ̄3, where µ̄i = µi(x̄i) is the Gittins index of arm i at this initial state.

Consider first the case where arms 2 and 3 are used in the first period at the initial state.
Then, there are four possible continuation states that could result at the begining of the second
period: (x̄1, 1, 1), (x̄1, 0, 1), (x̄1, 0, 1), and (x̄1, 0, 0), with respective probabilities x̄2x̄3, (1−x̄2)x3,
x2(1− x̄3), and (1− x̄2)(1− x̄3). Since all arms yield a reward of zero when they are in the state
0, and strictly positive rewards when they are not, the optimal continuation strategy is obvious
in each case: continue with arms 2 and 3 forever if the new state is (x̄1, 1, 1); switch to arms
1 and 3 forever if the new state is (x̄1, 0, 1); switch to arms 1 and 2 forever if the new state is
(x̄ − 1, 1, 0); and play either 1 and 2, or 1 and 3, if the new state is (x̄1, 0, 0). The expected
continuation payoffs are:

V (x̄1, 1, 1) = 5/(1− δ)

V (x̄1, 0, 1) = (3 + x̄1)/(1− δ)

V (x̄1, 1, 0) = (2 + x̄1)/(1− δ)

V (x̄1, 0, 0) = x̄1/(1− δ)

Thus, the total value L(2,3)V (x̄1, x̄2, x̄3) of starting with arms 2 and 3 is:

L(2.3)V (x̄1, x̄2, x̄3) = 3x̄3 + 2x̄2 + δ[x̄2x̄3V (x̄1, 1, 1) + x̄3(1− x̄2)V (x̄1, 0, 1)
+x̄2(1− x̄3)V (x̄1, 1, 0) + (1− x̄2)(1− x̄3)V (x̄1, 0, 0)]

= 3x̄3 + 2x̄2 + δ(1− δ)−1[5x̄2x̄3
+(3 + x̄1)x̄3(1− x̄2) + (2 + x̄1)x̄2(1− x̄3) + x̄1(1− x̄2)(1− x̄3)]

Now suppose instead that arms 1 and 3 were used in the first period. The the four possible
second period states are (1, x̄2, 0), (0, x̄2, 1), (0, x̄2, 0), and (1, x̄2, 1), which occur with the
respective probabilities x̄1(1−x̄3),(1−x̄1)x̄3, (1−x̄1)(1−x̄3), and x̄1x̄3. The optimal continuation
in three of these cases is obvious: if (1, x̄2, 0) occurs, the optimal continuation is to play arms 1
and 2 forever; if (0, x̄2, 1) occurs, the optimal action is to play 2 and 3 forever; while if (0, x̄2, 0)
occurs, any continuation is optimal that involves playing arm 2 forever. The case where the state
at the begining of the second period is (1, x̄2, 1) is a little more complicated. There are two
possibilities here.5 One option is to play arms 1 and 3 at this state; if this is an optimal choice,
it must remain optimal forever, since all the states remain frozen, and the continuation reward
from employing this choice forever is 4/(1− δ). A second option is to play arms 2 and 3, and to
switch to arms 1 and 3 forever if, and only if, the state on arm 2 moves to 0; the continuation

5There are more, but these are the only two relevant possibilities.

18



reward from this option is (3 + 2x̄2 + δ(1− x̄2))/(1− δ). It is easily seen that the first option is
strictly preferable as long as x̄2 < (1− δ)/(2− δ). Assuming this to be the case (we will ensure
it later), the four continuation values that result are

V (0, x̄2, 1) = (3 + 2x̄2)/(1− δ)

V (1, x̄2, 0) = (1 + 2x̄2)/(1− δ)

V (0, x̄2, 0) = 2x̄2/(1− δ)

V (1, x̄2, 1) = 4/(1− δ)

So, the value of begining with arms 1 and 3 is:

L(1,3)V (x̄1, x̄2, x̄3) = 3x̄3 + x̄1 + δ(1− δ)−1[4x̄1x̄3 + x̄3(1− x̄1)(3 + 2x̄2)
+x̄1(1− x̄3)(1 + 2x̄2) + 2x̄2(1− x̄1)(1− x̄3)].

Subtracting L(1,3)V from L(2,3)V and cancelling common terms results in the following:

L(2,3)V (x̄1, x̄2, x̄3)− L(1,3)V (x̄1, x̄2, x̄3) = 2x̄2 − x̄1 + δ

1− δ
x̄2x̄3 (5.5)

This difference is negative provided:

x̄1 > x̄2 2 +
δ

1− δ
x̄3 . (5.6)

Thus, as long as (5.6) holds (and x̄2 < (1− δ)/(2− δ)), it is the case that begining with arms
2 and 3 is dominated by the situation where the decision-maker begins with arms 1 and 3.

Now consider the following parametrization. Let δ = 1/2, x̄1 = 7/12, x̄2 = 1/4, and
x̄3 = 1/6. At these values, using the expressions (5.2)-(5.4) for the indices on the three arms, it
is readily calculated that µ̄1 = 28/19, µ̄2 = 8/5, and µ̄3 = 12/7, so we have µ̄1 < µ̄2 < µ̄3. In
particular, the two arms with the highest Gittins indices are arms 2 and 3.

Note that at the given values of the parameters, we have (1− δ)/(2− δ) = 1/3 > 1/4 = x̄2.
Thus, (5.5) applies and we have

L(2,3)V (x̄1, x̄2, x̄3)− L(1,3)V (x̄1, x̄2, x̄3) = 1

2
− 7

12
+
1

24
= − 1

24
< 0

so that begining with arms 1 and 3 and continuing optimally is strictly preferable to begining
with arms 2 and 3 and continuing optimally.
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6 Switching Costs in the Bandit Framework

Another variant of the basic bandit framework that is of considerable interest concerns the intro-
duction of costs for switching between arms. Indeed, it is difficult to imagine a relevant economic
decision problem in which the decision-maker may costlessly move between alternatives. Unfor-
tunately, Banks and Sundaram (1993) show that it is not possible, in the presence of switching
costs, to define an index on the arms such that the resulting strategy is invariably optimal. We
provide in this section an alternative proof of their non-existence result.

Recall that in our current framework, the tuple Ci = (Xi, ri, qi) completely describes arm
i. We introduce switching costs by including in this tuple two real numbers ci and di with the
interpretation that ci is the cost of switching to arm i (from any other arm), and di is the cost
of switching away from arm i (to any other arm). Thus, the characteristics of arm i are given by
the quintuple (Xi, ri, qi, ci, di). To distinguish this from the case of no switching costs, we will
denote this quintuple by C∗i . Note that in this scenario, the total cost of a switch from arm i to
arm j is given by di + cj.

6

When switching costs are allowed to be non-zero, the attractiveness of an arm evidently
changes depending on whether or not that arm is the one “currently in use” (i.e., whether or not
it is the arm that was used in the previous period by the decision-maker). For it is obvious that
in comparing two otherwise identical arms, of which one was used in the previous period, the one
that was in use must be more attractive than the one that was idle. This motivates the following
modification in our definition of an “index” on the arms:

Definition An index in the presence of switching costs is any function λ which specifies for a
generic arm i a value λ(xi, C

∗
i , si), where C

∗
i denotes the characteristics of arm i, xi is the current

state of arm i, and si ∈ {0, 1} is a variable that denotes whether (si = 1) or not (si = 0) i is
the arm currently in use.

An index λ will be said to be optimal in the presence of switching costs if the strategy it
induces is optimal in every bandit problem {I, (C∗i )i∈I , δ}, in which switching costs are possibly
non-zero.

6.1 Markovian Optimal Strategies

Let a bandit problem {I, (C∗i )i∈I , δ} be given. As in the previous sections, the existence of
Markovian strategies that are optimal in the bandit problem can be ascertained using standard
arguments from the theory of stationary dynamic programming. Indeed, the only modification
in the arguments that is required from those used in section 4 lies in the definition of the state
space to be used.

6It is apparent that the framework described here is the most general framework of switching costs in which
the existence of an optimal index may reasonably be expected. Under more inclusive situations (such as, say,
where the cost of switching from arm i to arm j is given by cij), it is clearly not possible to have an optimal index
strategy if the index on arm i is to depend solely on the characteristics of arm i.

20



When switching costs are allowed to be non-zero, the state of the bandit problem cannot
be adequately described by just the vector of current states (xi)i∈I of the individual arms (i.e.,
optimal continuations cannot be calculated with just this knowledge); rather it is also important
to know the arm that was in use in the previous period. Thus, in the representation of the bandit
problem as a dynamic programming exercise, the state space is given by ∆ = X × I, where as
always X = ×i∈IXi. Routine arguments now show that

Theorem 6.1 The value function V :∆ → R of the problem {I, (C∗i )i∈I} satisfies the Bellman
optimality equation at all (x, j) ∈ ∆:

V (x, j) =
i∈I
LiV (x, j), (6.1)

where, for i = j, we have

LiV (x, j) = ri(xi)− ci − dj + δ V ((x−i, x̂i), i)dqi(x̂i|xi), (6.2)

while

LjV (x, j) = rj(xj) + δ V (x−j, x̂j)dqj(x̂j|xj). (6.3)

The Markovian strategy defined through any measurable selection from the correspondence of
maximizers of (6.1) is an optimal strategy.

6.2 Optimal Index Strategies

The following result, the main result of this section, shows that optimal index strategies no longer
exist when switching costs are allowed to be non-zero:

Theorem 6.2 There is no index λ such that the strategy induced by λ is optimal in every bandit
problem {I, (C∗i )i∈I}.

The proof of this theorem occupies the rest of this section, and comes in two stages. In the
first stage a simple argument is used to show that any bandit problem in which there are both
costs of switching “to” and costs of switching “from” is equivalent to another bandit problem in
which there are only costs of switching “to.” In the second stage, we consider bandit problems
with only costs of switching “to,” and use a reductio ad absurdum method to show that an
optimal index strategy cannot exist on this class of bandit problems.
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Let a bandit B = {I, (C∗i )i∈I} be given. Define the bandit B̃ = {I, (C̃∗i )i∈I} from B as
follows. For each i ∈ I, let X̃i = Xi; r̃i(xi) = ri(xi) + (1 − δ)di for all xi ∈ Xi; q̃i = qi;
c̃i = ci + di; and, finally, d̃i = 0. Note that B̃ only has costs of switching “to.”

The only difference between the bandits B and B̃ is that in the bandit B, a cost of di is paid
every time a switch away from arm i occurs, while in bandit B̃, di is paid “in advance” when the
switch to i occurs, but an additional reward of (1− δ)di is received in each period that arm i is
in use. It follows that if arm i is used for t continguous periods, the present value of the total
switching cost paid in the bandit B is ci+ δ

tdi. In bandit B̃, this total cost is (ci+ di); however,
an additional reward of (1− δ)di is received in each of these t periods, so that the net cost paid
under B̃ is ci+di(1− t−1

s=0 δ
s(1−δ)) = ci+δtdi, which is exactly the same cost as in the bandit

B. The equivalence of B and B̃ is immediate now, completing the first stage of the proof.

We proceed to the second stage of our proof. Suppose that an optimal index did exist on the
class of bandit problems with only costs of switching “to.” Denote this index by λ. We will show
the presence of a contradiction.

Some new notation will help simplify exposition since all the arms we consider here involve
similar characteristics. For a, b ∈ R, x ∈ [0, 1], and c ≥ 0, let {xχ(a) + (1− x)χ(b), c} denote
the arm with state space [0, 1] and initial state x; reward function r(x) = xa+(1−x)b; transition
probabilities q({1}|z) = 1− q({0}|z) = z for all z ∈ [0, 1]; and switching cost c.7 As a further
simplification, let {χ(a), c} denote an arm with switching cost c that pays a reward of a in each
period with certainty. In this notation, λ({xχ(a)+(1−x)χ(b), c}; s) will denote the value of the
hypothetical optimal index on the arm {xχ(a) + (1− x)χ(b), c} at the state s ∈ {0, 1}. (Recall
that s = 1 signifies that the arm is currently in use.)

We proceed in a series of claims that establish properties that any optimal index λmust satisfy.
Then we show that these properties are not mututally consistent. The intuition underlying this
construction is quite straightforward: if there is any possibility of switching back to the arm
currently in use after a switch away from it (say, the switch back depends on the realizations
from the other arms), then the index on the incumbent arm must be increasing in the cost of
switching to it, since a higher cost of switching back ought to make the decision-maker more
reluctant to leave the arm. On the other hand, if switching back is a zero-probability event (say,
because the worst observations on the other arms would still dominate the one currently in use),
the arm’s index must be independent of the cost of switching back to it. Thus, the index must
depend in a non-trivial way on the characteristics of the other arms, and this is not possible.

Claim 6.1 For any a ∈ R, we have λ({χ(a), 0}; 1) = λ({χ(a), 0}; 0).

Proof Consider a two-armed bandit in which both arms are specified by {χ(a), 0}. Then, re-
gardless of the arm currently in use, either arm is an optimal continuation, so the claim follows
by the presumed optimality of λ.

7That is, (xχ(a) + (1 − x)χ(b), c) is an arm which pays (xa + (1 − x)b) in the first period of its use, and
thereafter either pays a forever (which happens with probability x) of b forever (which happens with probability
(1− x)).
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Claim 6.2 For any a ∈ R and > 0, we have λ({χ(a+ ), 0}; 0) > λ({χ(a), 0}; 0).

Proof Pick any b < a, and consider a three-armed bandit in which arm 1 is {χ(b), 0}, arm 2 is
{χ(a), 0}, and arm 3 is {χ(a+ ), 0}, Suppose arm 1 is the one currently in use. It is immediate
that selecting arm 3 is the uniquely optimal continuation, from which the claim follows.

Claim 6.3 For any c ≥ 0, > 0, and a ∈ R, λ({χ(a+ ), 0}; 0) > λ({χ(a), c}; 1).

Proof Consider a two-armed bandit in which arm 1 is given by {χ(a), c} and arm 2 is given by
{χ(a + ), 0}. Suppose arm 1 is the one currently in use. The uniquely optimal continuation
strategy is obviously to play arm 2 forever, and the claim obtains.

Claim 6.4 For any c > 0, it is the case that for almost every a ∈ R, we have λ({χ(a), 0}; 1) ≥
λ({χ(a), c}; 1).

Proof Pick any c > 0. By claim 6.2, λ({χ(a), 0}; 0) is a strictly increasing function of a, and
so is continuous almost everywhere. Pick any continuity point â. From claim 6.3, we have
λ({χ(â + ), 0}; 0) > λ({χ(â), c}; 1) for every > 0, so taking limits as → 0, we obtain
λ({χ(â), 0}; 0) ≥ λ({χ(â), c}; 1). By claim 6.1, λ({χ(â), 0}; 0) = λ({χ(â), 0}; 1), and the
result follows.

The claims leading upto claim 6.4 relied on a series of comparisons in which coming back to
the incumbent arm (if a switch away from it occured) was a zero-probability event. The next
two claims now use another series of comparisons, in which there is a non-zero chance of coming
back to the incumbent arm (depending on the observations from the other arms). This leads to
a contradiction to claim 6.4, by showing that λ({χ(a), c); 1} must be strictly increasing in c for
c ≥ 0.

Claim 6.5 Suppose a > b. Then, λ({xχ(a) + (1− x)χ(b), c}; 0) must be increasing in x.

Proof Let x1, x2 ∈ [0, 1] with x1 > x2. Pick α ∈ R to satisfy

[ax1 + b(1− x1)− (1− δ)c] > [ax2 + b(1− x2)− (1− δ)c].

For c∗ ∈ R, consider a two-armed bandit in which arm 1 is given by {χ(α), c∗} and the second
arm is given by {xiχ(a) + (1− xi)χ(b), c}. Suppose also that arm 1 is the one currently in use.
When c∗ is sufficiently large, it is uniquely optimal to switch to the second arm and stay there
forever if i = 1; and to stay with arm 1 forever if i = 2. Since λ is optimal by hypothesis, we
must have:

λ({x1χ(a) + (1− x1)χ(b), c}; 0) > λ({χ(α), c∗}; 1) > λ({x2χ(a) + (1− x2)χ(b), c}; 0),

so we indeed have λ({x1χ(a)+(1−x1)χ(b), c}; 0) > λ({x2χ(a)+(1−x2)χ(b), c}; 0), as required.
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Claim 6.6 For and a ∈ R, λ({χ(a), c}; 1) must be increasing in c.

Proof Let c1 > c2. Pick α, β ∈ R to satisfy

α > a

β < (a− (1− δ)c1).

Since c1 > c2, we also have β < (a− (1− δ)c1) < (a− (1− δ)c2). Define xi ∈ [0, 1] by:

xi =
(1− δ)(a− β + δci)

α(1− δ)β − δa+ δ(1− δ)ci

Note that 1 > x1 > x2 > 0. Consider the two-armed bandit in which arm 1 is given by {χ(a), ci}
and arm 2 by {xiχ(α) + (1− xi)χ(β), 0}. Suppose also that arm 1 is the one currently in use.
A simple calculation shows that the choice of xi implies either arm is an optimal continuation in
this problem. It follows that we must have

λ({χ(a), ci}; 1) = λ({xiχ(α) + (1− xi)χ(β), 0}; 0).

This establishes the result by claim 6.5, since x1 > x2.

Claims 6.4 and 6.6 are in evident contradiction, completing the proof of the theorem.
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A Proof of Theorem 4.2

The proof takes the form of several lemmata leading to the key Lemma A.4 which asserts that if
arm i attains the supremum of the indices at the initial state and j does not, then begining with
i and continuing with the index strategy is strictly superior to begining with j and continuing
with the index strategy. We employ the notation of Theorem 4.3 throughout. Fix an initial state
x at which the conditions of the Theorem are satisfied, and denote by µ̄i the initial values of the
Gittins indices µi(xi).

Recall the definition of the strategy σi[m] in the stopping problem defining the Gittins index
on arm i, and of the expressions Hi(t,m), pi(t,m), and Ri(t,m). Let Hi(∞,m) be the set
of histories under which σi[m] never accepts the terminal reward (i.e., on which the index stays
above m forever), and let pi(∞,m) be the probability of Hi(∞,m). Finally, let Ri(∞,m) be
the total expected discounted reward from arm i conditional on Hi(∞,m).

Lemma A.1 For any i ∈ I and m ∈ R, it is the case that
∞

τ=1

pi(τ,m)Ri(τ,m) + pi(∞,m)Ri(∞,m) > m 1−
∞

τ=1

δτpi(τ,m) (1.4)

if m < µ̄i; that equality holds in (4.1) if m = µ̄i; and that the reverse strict inequality holds if
m > µ̄i.

Proof The total discounted reward associated with the strategy σi[m], denoted Ai[m], is evi-
dently given by the following:

Ai[m] =
∞

τ=1

pi(τ,m) (Ri(τ,m) + δτm) + pi(∞,m)Ri(∞,m) (1.5)

Since it is uniquely optimal to select arm i initially when m < µ̄i, we have Ai[m] > m when
m < µ̄i; rearranging this inequality yields precisely the first inequality in the statement of the
lemma. The other two are obtained similarly: since either arm is an optimal initial choice when
m = µ̄i, we have Ai[m] = m in this case; and finally, since accepting the terminal reward right
away is the unique optimal action when m > µ̄i, we have Ai[m] < m when m > µ̄i.

Some further notation is unfortunately required for the next two lemmata. For any j ∈ I,
denote by σ(j) the strategy in the bandit problem that begins by selecting arm j initially, and
after the first period proceeds by choosing the arm with the highest Gittins Index in each period.
Additionally, let σ(ij) be the strategy that begins with arm i, stays with arm i until the first point
where the index on arm i drops below its original value of µ̄i, then switches to arm j and stays
with arm j until the index on arm j falls below the original index µ̄i of arm i, and then proceeds
by choosing the arm with the highest Gittins index in each period. Recall that W (σ)(x) denotes
the worth of the strategy from the initial state x. Since x is fixed, we suppress dependence on it.

25



Lemma A.2 W (σ(ij)) =W (σ(ji)) if µ̄i = µ̄j .

Proof A little algebra shows that

W (σ(ij)) = pi(∞, µ̄i)Ri(∞, µ̄i) +
∞

t=1

pi(t, µ̄i)Ri(t, µ̄i)

+
∞

t=1

δtpi(t, µ̄i) pj(∞, µ̄i)Rj(∞, µ̄i) +
∞

τ=1

pj(τ, µ̄i)Rj(τ, µ̄i)

+
∞

t=1

∞

τ=1

pi(t, µ̄i)pj(τ, µ̄i)E
∗
ij(t, τ, µ̄i)

= Ai[µ̄i] +
∞

t=1

δtpi(t, µ̄i)Aj[µ̄i] +
∞

t=1

∞

τ=1

pi(t, µ̄i)pj(τ, µ̄i)E
∗
ij(t, τ, µ̄i)

where E∗ij(t, τ, µ̄i) is the continuation value of the strategy σ(ij) conditional on the arm i having
fallen below µ̄i for the first time in t periods, and arm j having fallen below µ̄i for the first time
in τ periods. Similarly, we also have

W (σ(ji)) = Aj[µ̄i] +
∞

τ=1

δτpj(τ, µ̄i)Ai[µ̄i] +
∞

τ=1

∞

t=1

pj(τ, µ̄i)pi(t, µ̄i)E
∗
ji(τ, t, µ̄i)

where E∗ji is defined in the same way as E
∗
ij with the obvious changes. It is easy to see that, by

the independence of the arms, and the assumption that µ̄i = µ̄j, we must have E
∗
ij = E

∗
ji. In

turn, this gives us the following:

W (σ(ij))−W (σ(ji)) = Ai[µ̄i] 1−
∞

τ=1

δτpj(τ, µ̄i) − Aj [µ̄i] 1−
∞

t=1

δtpi(t, µ̄i)

Substituting for Ai[m] and Aj[m] and appealing to Lemma A.1 completes the proof.

Lemma A.2 establishes in particular that if two arms have the same index, the order in which
they are used does not matter in evaluating the index strategy. We will now show that if arm i
attains the supremum of the indices while arm j does not, the strategy σ(ij) is strictly preferable
to the strategy σ(j).

Lemma A.3 W (σ(ij)) > W (σ(j)) whenever µ̄i = supk∈I µ̄k > µ̄j .

26



Proof Under the stated hypothesis that µ̄i = supk∈I µ̄k, W (σ(j)) can be thought of as the
strategy that begins with arm j, switches to i at the first time t = 1, 2, . . . , at which the index
on j drops below µ̄i, then stays with i until the index on i also drops below µ̄i, and proceeds
by picking at each subsequent stage the arm with the highest Gittins index at that point. Thus,
after some algebra, we obtain,

W (σ(j)) = Aj[µ̄i] +
∞

τ=1

δτpj(τ, µ̄i)Ai[µ̄i] + E
∗
ji

where E∗ji is defined exactly as previously. So,

W (σ(ij))−W (σ(j)) = Ai[µ̄i] 1−
∞

τ=1

δτpj(τ, µ̄i) − Aj[µ̄i] 1−
∞

t=1

δtpi(t, µ̄i)

By Lemma A.1, Ai[µ̄i] = µ̄i(1 − ∞
t=1 δ

tpi(t, µ̄i)), while since µ̄i > µ̄j by hypothesis, an-
other appeal to Lemma A.1 gives Aj[µ̄i] < µ̄i(1− ∞

τ=1 δ
τpj(τ, µ̄i)). Substituting these in the

expression above, we obtain W (σ(ij))−W (σ(j)) > 0, as required.

In words, Lemma A.3 establishes that if arm i is the maximum of the indices at the initial
state while arm j is not, then there is a strategy begining with i that does strictly better than
the strategy that begins with j and proceeds by picking in each subsequent period, one of the
arms with the highest Gittins index at that point. It is now relatively easy to show that:

Lemma A.4 If µ̄i = supk∈I µ̄k, and µ̄i > µ̄j , then W (σ(i)) > W (σ(j)).

Proof Under the stated hypotheses, the previous lemma shows that σ(ij) strictly improves on
σ(j). Of course, σ(ij) initially selects arm i, which has the highest of the Gittins indices at the
initial state. We first claim that if, at any point, σ(ij) recommends continuing with an arm that
does not have the highest index at that point, then there is an alternative continuation strategy
which recommends continuing with one of the arms with the highest index at that point, and
which does strictly better in the continuation than σ(ij).

To see this, note that under σ(ij) the decision-maker always picks the arm with the largest
Gittins index at each point in time, at least until the first time a state is reached where the strategy
recommends that arm j be selected. For notational ease, call this new state x̄ = (x̄i)i∈I . (Of
course, x̄ differs from the initial state x only in the value of the i-th coordinate xi.) At this point
carrying on with σ(ij) amounts to using σ(j) from the new initial state barx. If, however, arm
j is not the arm with the maximal index at x̄ (say there is k ∈ I such that µk = supl∈I µl > µj ,
where all the indices are evaluated at x̄), then Lemma A.3 shows that it is strictly better to use
the strategy σ(kj) in the continuation, where, of course, σ(kj) is defined with respect to the
new state x̄. This proves the claim.
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Iterating on the claim shows that the Gittins index strategy of picking the arm with the highest
Gittins index at each point is strictly superior to picking j initially and continuing with the Gittins
index strategy, if j is not the arm with the highest Gittins index.

To complete the proof of Theorem 4.2, let σ be any strategy in the bandit problem. Consider
the strategy σT which imitiates σ upto period T , and then proceeds with the Gittins index
strategy. It is easy to see that σT is well defined: after any T -history, at most T of the arms
have had their initial states altered. Since the Gittins index strategy was well defined at the initial
state x, it continues to be well defined at this resulting new state which differs from x in at most
T coordinates. And since this last statement is true for any T -history, σT itself is well defined.

For any > 0, the total discounted expected rewards under σ and σT can be made to differ by
less than by choosing T sufficiently large. (This follows since rewards are uniformly bounded.)
Now consider any (T − 1)-history in which in period (T − 1), σ (and, therefore σT ) picks an arm
j that does not have the highest index at that point. Since σT continues from period T on with
the Gittins index strategy, Lemma A.2 shows that the total reward conditional on this history can
be strictly improved over σT , by instead picking an arm with the highest index at this point, i.e.,
by continuining from period (T − 1) with the Gittins index strategy. It easily follows that σ(T−1)
strictly improves over σT , unless σT almost surely picks only arms with the highest index at all
points from period (T − 1) onwards, i.e., unless effectively σT and σ(T−1) are the same. In turn,
this implies W (σ)−W (σ(T−1)) < , also.

Iterating back to zero, we obtain W (σ) −W (σ0) < , where, of course, σ0 is the Gittins
index strategy. Since is arbitrary, we finally see that the Gittins index strategy does no worse
than the strategy σ. Finally, since σ is also arbitrary, this shows that the Gittins index strategy
is, indeed, an optimal strategy.

To see the other part of Theorem 4.2–that every optimal strategy is also a Gittins index
strategy–consider any optimal strategy σ, and suppose it is not a Gittins index strategy. Let
t ∈ {0, 1, 2, . . .} denote any date such that with positive probability σ fails to use a Gittins
index maximal arm for the first time at time t. (Since σ is not a Gittins Index strategy, such
a date t must exist.) Consider the strategy σ̂ that imitates σ upto, and including, period t,
and then proceeds according to the Gitttins index strategy. Since the Gittins index strategy
is also an optimal strategy, and σ is optimal by hypothesis, it follows that σ̂ must also be an
optimal strategy. But by Lemma A.4, the Gittins index strategy stictly improves upon σ̂ in the
continuation reward from period t onwards, since σ uses arms that are not Gittins index maximal
with positive probability in period t. This implies σ̂, and therefore σ, cannot be optimal strategies,
a contradiction, completing the proof.
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