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Abstract

We survey four proofs that the Gittins index priority rule is optimal for
alternative bandit processes. These include Gittins’ original exchange argument,
Weber’s prevailing charge argument, Whittle’s Lagrangian dual approach, and a
proof based on generalized conservation laws and LP duality.
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1. Introduction

Consider a system consisting of a family of N alternative bandit processes, where
at time t the state of the system is given by the vector Z(t) = (Z1(t), . . . , ZN (t)) of
the states Zn(t) of the bandit processes n = 1, . . . , N . We assume that these bandits
move on countable state spaces En, so Zn(t) ∈ En, n = 1, . . . , N .

At any point in time, t = 0, 1, 2, . . . , we need to take one of N possible actions,
namely choose to activate one of the bandit processes, which will then yield a reward
and undergo a Markovian state transition, while all the other bandit processes are
passive — they yield no reward, and their states remain frozen. More precisely,
if we choose at time t action n(t) = n, then bandit n in state Zn(t) = i will be
activated. This action will yield a reward Rn(i), where Rn is the reward function for
bandit n, and bandit n will undergo a transition, from state i to state j according to
pn(i, j) = IP(Zn(t+ 1) = j|Zn(t) = i). For all other bandits, m 6= n(t), there will be
no change in state, so Zm(t+ 1) = Zm(t), and no reward, so the reward for period t
will be given by R̃(t) = Rn(t)(Zn(t)(t)) = Rn(i).

We will assume that |Rn(i)| ≤ C uniformly for all states and bandits. The objective
is to choose a policy π for activating the bandits so as to maximize total discounted
reward

Vπ(i) = IE π

{ ∞∑
t=0

αtR̃(t)|Z(0) = i

}
,
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where Z, i denote the state vector, and 0 < α < 1 is the discount factor.
This problem, introduced by Bellman [2] as the multiarmed bandit problem, is

clearly a dynamic programming problem, with a countable state space, a finite action
space, bounded rewards and discounted infinite horizon objective. As such, by the
theory of dynamic programming [13] it has an optimal solution given by a stationary
policy, which can be calculated using various general schemes. However, such a direct
approach to the problem is impractical due to the high dimensionality of the state
space.

What makes the problem tractable is Gittins’ discovery that the problem is solved
by a priority policy — one needs only to calculate a priority index for each of the
bandits (independent of all the other bandits), and activate the bandit with the
highest index. Formally

Theorem 1 (Gittins, 1976) There exist functions, Gn(Zn(t)), n = 1, . . . , N such
that for any state Z(t) the policy π∗ which will activate a bandit process (arm) n(t) = n
which satisfies Gn(Zn(t)) = max1≤m≤N Gm(Zm(t)) is optimal. The function Gn(·)
is calculated from the dynamics of process n alone.

This is a deep result, and as such it has many different aspects and implications,
and can be proven in several very different ways. Proofs of this result have been
emerging over the past 25 years, and have motivated much further research. In this
paper we give 4 different proofs of Gittins’ result. Our purpose is twofold: We feel
that having these proofs together will be useful to the general reader, in particular in
view of the fact that some of the original proofs were never compacted or simplified,
and as a result the topic of Gittins index acquired an unjustified reputation of being
difficult. More important, when several proofs exist for the same theorem it is difficult
to avoid mixtures of ideas or even circular arguments in some of the papers which
develop these proofs. We have tried here, from the hindsight advantage of twenty
five years, to present the proofs in a ‘pure’ form, that is use complete self contained
arguments for each of the proofs, and highlight the differences between them.

The proofs follow a common structure: They start with the study of a single bandit
process and the solution of a one dimensional dynamic programming problem. Next,
some properties of the single arm solution are derived. These are then used to study
the behavior of the controlled multi-armed system, and to prove that Gittins’ policy
is optimal. In Section 2 we study the single bandit process, and derive the properties
needed for the four proofs.

The four proofs are presented next in Section 3. They include: Gittins’ pairwise
interchange argument (Section 3.1), Weber’s fair charge argument (Section 3.2),
Whittle’s dual Lagrangian approach (Section 3.3), and a proof based on a more
recent approach, of achievable regions and generalized conservation laws, as proposed
by Tsoucas, Bertsimas and Niño-Mora, and others (Section 3.4).

We will for ease of notation and without loss of generality assume that all the
bandits move on the same state space E, with a single reward function R and a single
transition matrix P. It may be the case that in the original problem the bandits are
indeed i.i.d.. Otherwise one can artificially introduce E =

⋃N
n=1En, in which case

the Markov chain given by E and P will be reducible, with a noncommunicating class
of states for each of the bandits.
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bibliographic note: The Gittins index idea was put forward by Gittins as early as
1972 [5, 6, 7]. It was also indicated in several other papers of the time, notably in
Klimov’s paper [10], and also in Harrison [8], Sevcik [14] Tcha and Pliska [15] and
Meilijson and Weiss [11]. This is a survey paper and our original contribution here is
modest — throughout the paper the form of address ‘we’ is meant conversationally
to suggest us and the reader.

2. Preliminary: Studying the single bandit

We start this section with the study of the Gittins index (Section 2.1), from first
principles. Next we present 3 closely related formulations of single arm dynamic
programming problems (Section 2.2). We then (in Section 2.3) derive properties of
the solutions, as are needed for the later proofs.

2.1. The Gittins index Gittins defined his dynamic allocation index, now known
as the Gittins index, as follows:

ν(i) = sup
σ>0

ν(i, σ) = sup
σ>0

IE
{∑σ−1

t=0 α
tR(Z(t))|Z(0) = i

}
IE
{∑σ−1

t=0 α
t|Z(0) = i

} .(1)

Here ν(i, σ) is the expected discounted reward per expected unit of discounted time,
when the arm is operated from initial state i, for a duration σ, and σ is a Z(t) positive
stopping time. The value ν(i) is the supremum of ν(i, σ) over all positive stopping
times. By the boundedness of the rewards, ν(i) is well defined for all i, and bounded.

Starting from state i we define the stopping time (≤ ∞):

τ(i) = min {t : ν(Z(t)) < ν(i)}(2)

An important property of the Gittins index is that the supremum (1) is achieved,
and in fact it is achieved by τ(i). The following is a ‘first principles’ proof of this
fact — the proof is quite long, but it is instructive in that it is independent of all the
ideas which led to the later proofs. We shall see in the next section that Theorem 2
can be derived more easily from the single arm dynamic programs, using the theory
of dynamic programming.

Theorem 2 The supremum of (1) is achieved by (2). It is also achieved by any
stopping time σ which satisfies:

σ ≤ τ and ν(Z(σ)) ≤ ν(i)(3)

Proof. Recall the inequality: For a, b, c, d > 0,

a

c
<
a+ b

c+ d
<
b

d
⇐⇒ a

c
<
b

d
(4)

Step 1: Any stopping time which stops while the ratio is > ν(Z(0)) does not achieve
the supremum. Assume that Z(0) = i, fix j such that ν(j) > ν(i), and consider a
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stopping time σ such that:

IP(Z(σ) = j|Z(0) = i) > 0(5)

By the definition (1) there exists a stopping time σ′ such that ν(j, σ′) > ν(j)+ν(i)
2 .

Define σ′ = 0 for all initial values 6= j. Then:

ν(i, σ + σ′) =
IE{∑σ−1

t=0 α
tR(Z(t))|Z(0)=i}+IE

{∑σ+σ′−1
t=σ αtR(Z(t))|Z(0)=i

}
IE{∑σ−1

t=0 α
t|Z(0)=i}+IE

{∑σ+σ′−1
t=σ αt|Z(0)=i

} >

ν(i, σ),

by (4,5).
Step 2: Any stopping time which continues when the ratio is < ν(Z(0)) does not

achieve the supremum. Assume that Z(0) = i, fix j such that ν(j) < ν(i), and let
σ′ = min{t : Z(t) = j}. Consider any stopping time σ such that:

ν(i, σ) > ν(j) and IP(σ > σ′|Z(0) = i) > 0(6)

(clearly if ν(i, σ) ≤ ν(j), then σ does not achieve the supremum, hence we need only
consider ν(i, σ) > ν(j)). Then:

ν(i, σ) =
IE
{∑min(σ,σ′)−1

t=0 αtR(Z(t))|Z(0)=i
}

+IE{∑σ−1
t=σ′ α

tR(Z(t))|Z(σ′)=j}
IE
{∑min(σ,σ′)−1

t=0 αt|Z(0)=i
}

+IE{∑σ−1
t=σ′ α

t|Z(σ′)=j} <

ν(i,min(σ, σ′)),

by (4,6).
Steps 1,2 show that the supremum can be taken over stopping times σ > 0 which

satisfy (3), and we restrict attention to such stopping times only.
Step 3: The supremum is achieved. Assume that the supremum is not achieved.

Consider σ > 0 which satisfies (3), with:

IP(σ < τ(i)|Z(0) = i) > 0, ν(i, σ) = ν < ν(i)(7)

Assume that σ stops at a time < τ(i) when the state is Z(σ) = j. By (3), ν(j) = ν(i).
We can then find σ′ such that ν(j, σ′) ≥ ν+ν(i)

2 . Define σ′ accordingly for the value
of Z(σ) whenever σ < τ(i), and let σ′ = 0 if σ = τ(i). Let σ1 = σ + σ′. Clearly we
have (repeat the argument of step 1):

σ ≤ σ1 ≤ τ(i), ν(i, σ) < ν(i, σ1) = ν1 < ν(i)(8)

We can now construct a sequence of stopping times, with

σn−1 ≤ σn ≤ τ(i), ν(i, σn−1) < ν(i, σn) = νn < ν(i)(9)

which will continue indefinitely, or will reach IP(σn0 = τ(i)) = 1, in which case we
define σn = τ(i), n > n0.
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It is easy to see that min(n, σn) = min(n, τ(i)), hence σn ↗ τ(i) a.s. It is then
easy to see (use dominated or monotone convergence) that ν(i, σn)↗ ν(i, τ(i)). But
this implies that ν(i, σ) < ν(i, τ(i)). Hence the assumption that the supremum is
not achieved implies that the supremum is achieved by τ(i), which is a contradiction.
Hence, for any initial state Z(0) = i the supremum is achieved by some stopping
time, which satisfies (3).

Step 4: The supremum is achieved by τ(i). Start from Z(0) = i, and assume that
a stopping time σ satisfies (3) and achieves the supremum. Assume

IP(σ < τ(i)|Z(0) = i) > 0, ν(i, σ) = ν(i)(10)

and take the event that σ stops at a time < τ(i) when the state is Z(σ) = j. By (3)
ν(j) = ν(i). We can then find σ′ which achieves the supremum, ν(j, σ′) = ν(j) = ν(i).
Define σ′ accordingly for the value of Z(σ) whenever σ < τ(i), and let σ′ = 0 if
σ = τ(i). Let σ1 = σ + σ′. Clearly we have:

σ ≤ σ1 ≤ τ(i), ν(i, σ) = ν(i, σ1) = ν(i)(11)

We can now construct an increasing sequence of stopping times, σn ↗ τ(i) a.s., and
all achieving ν(i, σn) = ν(i). Hence (again use dominated or monotone convergence)
ν(i, τ(i)) = ν(i).

Step 5: The supremum is achieved by any stopping time which satisfies (3). Let
σ satisfy (3). Whenever σ < τ(i) and Z(σ) = j, we will have τ(i) − σ = τ(j), and
ν(j, τ(i)− σ) = ν(i). Hence:

ν(i) = ν(i, τ(i)) =
IE{∑σ−1

t=0 α
tR(Z(t))|Z(0)=i}+IE

{∑τ(i)−1
t=σ αtR(Z(t))|Z(0)=i

}
IE{∑σ−1

t=0 α
t|Z(0)=i}+IE

{∑τ(i)−1
t=σ αt|Z(0)=i

} =

ν(i, σ).

This completes the proof.

Theorem 2 is indicated by Gittins [6], but we are not aware of a complete proof
which is readily available in the literature.

2.2. Dynamic programming for a single arm We now present 3 closely related
dynamic programming problems, for a single bandit process. These were posed in
some of the papers developing the various proofs.

Playing against a standard arm (Gittins): Assume that you have a single arm
(bandit process) Z, and an alternative arm which is fixed (never changes state) and
yields a fixed reward γ whenever it is played. Consider this as a multiarmed bandit
problem, this was referred to as the 1 1

2 bandits problem, and the fixed arm is called
by Gittins a standard arm. Because the standard arm is fixed the state of the system
is described by the state of the bandit Z. The optimality equations for this problem
are

V (i) = max
{
R(i) + α

∑
p(i, j)V (j), γ + αV (i)

}
(12)
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The fixed charge problem (Weber): Assume that you have a single arm Z,
and at any time t you need to choose whether to play the arm for a fixed charge γ
and collect the reward from this play, or not to play at time t but wait for t+ 1. The
optimality equations for this problem are:

W (i) = max
{
R(i)− γ + α

∑
p(i, j)W (j), αW (i)

}
(13)

The fixed charge problem pays at every time t a reward smaller by γ than that of
the standard arm problem. Hence the two problems have the same optimal policy,
and W (i) = V (i)− γ

1−α .
Clearly, once it is optimal to play the standard arm (in the standard arm problem)

or not pay the fixed charge (in the fixed charge problem) at some time t, then it is
optimal to continue not to play the arm Z forever.

The retirement option problem (Whittle): Assume that you can play the
arm for as long as you want, then retire for ever and receive a terminal reward M .
The optimality equations for this problem are:

V (i,M) = max
{
R(i) + α

∑
p(i, j)V (j,M),M

}
(14)

We shall take M = γ
1−α and then the retirement problem has the same solution as

the standard arm problem.
By the theory of dynamic programming, these problems have an optimal solution

given by a stationary policy, and we have:
• Optimal policies: Let

Strict continuation set CM = {i : V (i,M) > M}
Strict stopping set SM = {i : M > R(i) + α

∑
p(i, j)V (j,M)}

Indifferent states ∂M = {i : M = R(i) + α
∑
p(i, j)V (j,M)}

then any policy which continues to activates the arm while in CM , acts arbitrary in
∂M and stops in SM is optimal.
• Stopping time τ(i,M) which is the first passage time from i into SM .
• Optimal value function:

V (i,M) = IE


τ(i,M)−1∑

t=0

αtR(Z(t)) + ατ(i,M)M |Z(0) = i

 ,(15)

where we can also write alternatively ατ(i,M)M =
∑∞
t=τ(i,M) α

tγ.
• Clearly, ∂M is non-empty only for a discrete set of M , and as M increases CM
decreases, SM increases, and τ(i,M) decreases. In particular, CM = E and τ(i,M) =
∞ for M < −C

1−α and CM = ∅, τ(i,M) = 0 for M > C
1−α .

2.3. Properties of the single arm solutions Define now:

M(i) = sup{M : i ∈ CM} = inf{M : V (i,M) = M}(16)
γ(i) = (1− α)M(i)(17)
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2.3.1. Properties related to the Gittins Index

Lemma 1 The quantity γ(i) equals the Gittins index,

ν(i) = γ(i)(18)
τ(i) = τ(i,M(i)−)(19)

Proof. step 1: We show that ν(i) ≤ γ(i). Consider any y < ν(i), let M = y
1−α . By

definition (1) there exists a stopping time τ for which ν(i, τ) > y.
Hence, a policy π which from state i will play up to time τ and then stop and

collect the reward M , will have:

Vπ(i,M) = IE

{
τ−1∑
t=0

αtR(Z(t)) +
∞∑
t=τ

αty|Z(0) = i

}

> IE

{
τ−1∑
t=0

αty +
∞∑
t=τ

αty|Z(0) = i

}
=

y

1− α = M.

Hence V (i,M) > M , and i belongs to the continuation set, for standard arm reward
y, (or fixed charge y, or terminal reward M). Hence, M(i) ≥ M , and γ(i) ≥ y. But
y < ν(i) was arbitrary. Hence, γ(i) ≥ ν(i).

step 2: We show that ν(i) ≥ γ(i). Consider any y < γ(i). Let M = y
1−α , and

consider τ(i,M) and V (i,M). Writing (15), and using the fact that for M < M(i)
we have i ∈ CM and V (i,M) > M :

V (i,M) = IE


τ(i,M)−1∑

t=0

αtR(Z(t)) +
∞∑

t=τ(i,M)

αty|Z(0) = i


>

y

1− α.

But this means that ν(i, τ(i,M)) > y. Hence, ν(i) > y. But y < γ(i) was arbitrary.
Hence, ν(i) ≥ γ(i).

step 3: Identification of τ(i,M(i)−) as achieving the supremum in (1). Clearly,
starting from state i, τ(i,M(i)−) will continue for the continuation set of CM(i)−
which includes all j with γ(j) ≥ γ(i). But we have shown that γ(i) = ν(i), hence
clearly τ(i,M(i)−) is identical to τ(i) as defined in (2).

Note: by (15) it is clear that τ(i,M(i)−) achieves ν(i, τ(i,M(i)−) = γ(i) = ν(i),
and therefore we have a free proof for the fact that the supremum in (1) is achieved,
and we can forego the detailed proof of Theorem 2. The key point here is that instead
of a first principles proof, we use the theory of dynamic programming to guarantee
the existence and identity of τ(i,M(i)−) as the optimal stopping time for terminal
reward M .
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2.3.2. Definition of fair charge and prevailing charge Consider the fixed charge
Problem (13). If the arm is in state i and the value of the charge is γ(i) it is optimal
to either play or stop, and in either case the expected optimal revenue (rewards minus
charges) is W (i) = 0. Hence we call γ(i) the fair charge for the arm in state i. Define
the fair charge stochastic process

g(t) = γ(Z(t))

Note that g(t) is observable (can be calculated for each t from values of the process
Z(·) up to time t; more formally, it is measurable with respect to Z(s), s ≤ t).

As we said, in state i for the fair charge γ(i) it is optimal to either play or stop.
However, if one does play one needs to continue playing optimally. Let Z(0) = i, and
the fixed charge be γ(i). If one plays the arm at time 0, one needs to continue to play
it as long as g(t) > γ(i). Consider to the contrary that one starts playing and then
stops at a stopping time σ > 0 such that P{g(σ) > γ(i)} > 0. Then the expected
revenue up to time σ is < 0. This is clear from the solution of Problem (13). It is
also exactly what was shown in step 1 of the proof of Theorem 2.

In particular it is optimal to play for the duration τ(i). At the time τ(i) one has
g(τ(i)) < γ(i) = g(0), i.e. the fair charge is less than the fixed charge, and it is
optimal to stop. The expected revenue from this play is 0.

Consider now lowering the fixed charge, at the time τ(i) to the new fair charge
value g(τ(i)). Then it will again be optimal to either stop or play, and if one plays
one would need to continue to the next appropriate stopping time.

Define the prevailing charge stochastic process

g(t) = min
s≤t

g(s),

note that it is also observable.
Note also that the fair charge and the prevailing charge processes remain well

defined and observable if the bandit process is not played continuously, but is played
intermittently, with some stoppings and later continuations.

Assume now that instead of a fixed charge, the charge levied for playing at time t
equals the prevailing charge g(t). It is then optimal to continue to play forever, and
the expected total revenue is 0. On the other hand, at time 0, at the time τ(i), and in
fact at all successive times at which g(t) = g(t) it is also optimal to stop. In contrast,
it is strictly not optimal to stop when the fair charge exceeds the prevailing charge.

We summarize these results in the following lemma:

Lemma 2 If arm Z(t) is played up to a stopping time σ then:

IE (
σ−1∑
t=0

αtR(t)|Z(0) = i) ≤ IE (
σ−1∑
t=0

αtg(t)|Z(0) = i)

Equality holds if and only if g(σ) = g(σ) a.s.

Suppose now that the bandit process is played at a sequence of nonnegative integer
times t(s), s = 1, 2, . . . , and t(s) are strictly increasing in s for all s or increasing up
to t(s̄) and infinite for s > s̄. Let Z(t) be the state (frozen at times t 6∈ {t(s)}∞s=1,
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changing at times t ∈ {t(s)}∞s=1). Note that {t(s)}∞s=1 will typically be random, but
we assume that t(s) is measurable with respect to Z(t), t ≤ t(s).

Corollary 1

IE (
∞∑
s=0

αt(s)R(Z(t(s)))|Z(0) = i) ≤ IE (
∞∑
t=0

αt(s)g(t(s))|Z(0) = i)

with equality if and only if g(t) = g(t) for all t 6∈ {t(s)}∞s=1 a.s.

We will require a technical point here: Corollary 1 remains valid if t(s) are measur-
able with respect to the cartesian product of the sigma field generated by Z(t), t ≤ t(s)
with a sigma field Σ which is independent of it.

2.3.3. Investigating the retirement option We now consider V (i,M), the optimal
value to the single arm retirement option problem (14) for initial state i and terminal
reward M . We examine this as a function of M . We already noted that it is bounded.
We further state:

Lemma 3 (a) V (i,M) = V (i) for M ≤ − C
1−α .

(b) V (i,M) = M for M ≥ C
1−α .

(c) V (i,M) is nondecreasing and convex in M .

Proof. The only nontrivial part is the convexity. For any fixed policy π let τπ denote
the (possibly infinite) random retirement time. Then:

Vπ(i,M) = IE π(reward up to τπ + ατπM)(20)

which is linear in M . Hence V (i,M), as the supremum of these linear functions over
all π is convex.

As a convex function V (i,M) is differentiable at all but a countable number of
points, at which it has subgradients. A glance at (15) or (20) suggests the form of
the derivative.

Lemma 4 Let τM denote the optimal retirement time for terminal reward M . Then
IE (ατM ) is a subgradient of V (i,M) (the line through (M,V (i,M)) with slope IE (ατM )
is below the curve V (i, ·)), and at every M for which ∂V (i,M)

∂M exists,

∂

∂M
V (i,M) = IE (ατM | Z(0) = i)(21)

Proof. Fix M and i, and let π̄ be an optimal policy for M ; let ε > 0. Utilizing the
policy π̄ for M + ε,

Vπ̄(i,M + ε) = IE π̄(reward up to τM ) + IE (ατM )(M + ε)

Hence,

V (i,M + ε) ≥ Vπ̄(i,M + ε) = V (i,M) + εIE (ατM )
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Similarly,

V (i,M − ε) ≥ V (i,M)− εIE (ατM )

Hence IE (ατM ) is a subgradient of V (i,M). By definition it is equal to the derivative
wherever such exists.

2.3.4. First passage times Let i ∈ E be a state and S ⊆ E a subset of states.
Consider an arm which is initially in state i, it is played once, and is then played
until it reaches a state in S. Let:

TSi = min{t : t > 0, Z(t) ∈ S|Z(0) = i},(22)

we call TSi an i to S first passage time. Let:

ASi = IE


TSi −1∑
t=1

αt|Z(0) = i

 ,(23)

we call ASi the i to S expected discounted first passage time. These quantities are
needed in the achievable region proof (Section 3.4).

3. The proofs

3.1. First Proof: Interchange Argument This proof follows Gittins [5, 6, 7]. We
wish to show that any priority policy which activates at time t an arm

n(t) ∈ arg max{ν(Zn(t)) : n = 1, . . . , N}

is optimal. To avoid trivial complications we will assume that there are never any
ties. Any problem can be changed into one in which ties never occur by arbitrarily
small perturbations, so this assumption can be made. Once the unique theorem is
proved for all perturbed problems, we can let the perturbations approach zero, and
obtain the optimality of arbitrary tie breaking.

Let π∗ denote the priority policy, let n be an arbitrary fixed bandit, and let π(0)

be the policy which starts at time 0 by activating bandit n and proceeds from time
1 onwards according to the stationary policy π∗. To prove the optimality of π∗ it
suffices to show that Vπ∗(i) ≥ Vπ(0)(i) for every starting state i. To show this we will
define a sequence of additional policies, π(s), s = 1, 2, . . . , such that

Vπ(s)(i) −→ Vπ∗(i)(24)

Vπ(s)(i) ≥ Vπ(s−1)(i)(25)

We define π(s) inductively. For initial state i let n∗, ν∗, τ∗ be the bandit with the
highest index, the index, and the stopping time achieving the index. Then π(s) will
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activate n∗ for duration τ∗, and will then proceed from time τ∗ and state j = Z(τ∗)
as π(s−1) would from time 0 and initial state j.

By their construction, π(s) and π∗ agree for the initial τ∗, τ∗ ≥ 1. Furthermore,
they continue to agree after τ∗ for as long as π(s−1) and π∗ agree, from the state
reached at τ∗. Hence inductively π(s) agrees with π∗ for at least the first s time
units, hence π(s) → π∗, and the convergence in (24) is proved.

Also, for s > 1, π(s) and π(s−1) agree for the initial τ∗ and so

Vπ(s)(i)− Vπ(s−1)(i) = IE
{
ατ
∗
IE {Vπ(s−1)(Z(τ∗))− Vπ(s−2)(Z(τ∗))|Z(τ∗)}

}
and so to prove (25) by induction, and to complete the proof, it remains to show that
Vπ(1)(i) ≥ Vπ(0)(i) which is done by the following pairwise interchange argument:

If n = n∗ there is nothing to prove since then π(1) = π(0) = π∗. Assume then that
n 6= n∗ for the initial state i. Define the stopping time σ of the bandit process Zn(t)
as the earliest time t ≥ 1 at which ν(Zn(t)) < ν∗. One sees immediately that π(0)

will start by activating n for duration σ — since following activation of n at time 0,
n remains the bandit with highest index until σ − 1. At time σ the highest index is
ν∗ of bandit n∗, and so π(0), which continues according to π∗, will activate n∗ for a
period τ∗, up to time σ+ τ∗ − 1. At time σ+ τ∗ the state will consist of Zn∗(τ∗) for
bandit n∗, of Zn(σ) for bandit n, and of Zm(0) for all other bandits, m 6= n, n∗. π(0)

will proceed according to π∗ from then onwards.
Policy π(1) will start by activating n∗ for a time τ∗ then at time τ∗ it will activate

n, and thereafter it will proceed according to π∗. One sees immediately that π(1) will
activate n for at least a duration σ from the time τ∗ at which it starts to activate n.
This is because after n is activated at τ∗, it will retain an index higher or equal to ν∗

for the duration σ, while the index of bandit n∗, following its activation for duration
τ∗, is now ≤ ν∗, and all other bandits retain their time 0 states, with indexes ≤ ν∗.

To summarize, π(0) activates n for duration σ followed by n∗ for duration τ∗,
followed by π∗; π(1) activates n∗ for duration τ∗ followed by n for duration σ followed
by π∗. The state reached at time τ∗+σ by both policies is the same. Note that given
n and n∗, the processes Zn(t) and Zn∗(t) are independent and so the stopping times
τ∗ and σ are independent. The difference in the expected rewards is:

IE

{
σ−1∑
t=0

αtR(Zn(t)) + ασ
τ∗−1∑
t=0

αtR(Zn∗(t)) + ασ+τ∗
∞∑
t=0

αtR̃(σ + τ∗ + t) | Z(0) = i

}

−IE

{
τ∗−1∑
t=0

αtR(Zn∗(t)) + ατ
∗
σ−1∑
t=0

αtR(Zn(t)) + ασ+τ∗
∞∑
t=0

αtR̃(σ + τ∗ + t) | Z(0) = i

}

= IE (1− ατ
∗
)IE

{
σ−1∑
t=0

αtR(Zn(t))

}
− IE (1− ασ)IE

{
τ∗−1∑
t=0

αtR(Zn∗(t))

}

=
1

1− α IE (1− ατ
∗
)IE (1− ασ) (ν(in, σ)− ν(in∗))

≤ 1

1− α IE (1− ατ
∗
)IE (1− ασ) (ν(in)− ν(in∗)) ≤ 0.(26)

This completes the proof of the theorem.
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3.2. Second Proof: Interleaving of Prevailing Charges This proof follows Weber
[18]. Similar ideas were also used by Mandelbaum [12] and by Varaiya et al. [17, 9].
We now consider N bandit processes, with initial state Z(0) = i. We let t(n)(s), s =
1, 2 . . . indicate the times at which bandit n is played, with t(n)(s) strictly increasing
in s, or t(n)(s) = ∞, s > s̄ if the bandit is only played a finite s̄ number of times.
Furthermore,

{
t(n)(s)

}∞
s=1

are disjoint sets whose union includes all of {1, 2 . . . }, as
it should be under any sample path of any policy. We assume t(n)(s) is measurable
with respect to Z(t), t ≤ t(n)(s). We let gn(t), g

n
(t) denote the fair and the prevailing

charges of bandit n.
By Corollary 1, the technical note following it, and the independence of the arms

we have:

Expected total discounted reward = IE

{
N∑
n=1

∞∑
s=1

αt
(n)(s)R(Zn(t(n)(s)))|Z(0) = i

}

≤ IE

{
N∑
n=1

∞∑
s=1

αt
(n)(s)g

n
(t(n)(s))|Z(0) = i

}
= IE

{ ∞∑
t=0

αtg(t)|Z(0) = i

}
(27)

where we define

g(t) = g
n
(t) if t ∈

{
t(n)(s)

}∞
s=1

Define now for each sample path

g∗(t) = The pathwise nonincreasing rearrangement of g(t)

Note that while both g(t) and g∗(t) depend on the sample path of the bandits, the
latter does not depend on the policy but only on the sample paths of the individual
bandits.

By the Hardy Litlewood Polya inequality:

∞∑
t=1

αtg(t) ≤
∞∑
t=1

αtg∗(t)(28)

with equality holding if and only if g(t) is nonincreasing.
The proof is now completed by noting the following two points:

(i) Under the Gittins index policy g(t) is nonincreasing, so (28) holds as a pathwise
equality.
(ii) Under the Gittins index policy an arm is never left unplayed while its fair charge
is greater than the prevailing charge, hence the inequality in (27) holds as equality.

3.3. Third Proof: Retirement Option Following Whittle [19] we consider the mul-
tiarmed bandit problem with retirement option. We have N arms in initial state
Z(0) = i and a retirement reward M . Using the definition (16) for arm n we let:

Mn(in) = inf{M : Vn(in,M) = M}
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Theorem 3 (Whittle) For the multiarmed problem with retirement option the opti-
mal policy is:

(a) If M ≥Mn(in) for all n = 1, . . . , N , retire.
(b) Otherwise activate n∗ for which Mn∗(in∗) = maxn=1,... ,N{Mn(in)}.

Proof. The optimality equations for the multiarmed bandit problem with retirement
option are:

V (i,M) = max
n=1,... ,N

M,R(in) + α
∑
j∈E

p(in, j)V (i1, . . . , j, . . . , iN ,M)

(29)

If (a) and (b) are followed one can speculate on the form of V (i,M). Let τn(in,M)
denote the retirement time (could be infinite) for the single bandit n with terminal
reward M . Denote by T (M) the retirement time for the entire multiarmed bandit
system. Then (a) and (b) imply

T (M) =
N∑
n=1

τn(in,M)(30)

We now speculate that

∂

∂M
V (i,M) = IE (αT (M)) = IE (α

∑N
n=1 τn(in,M)) =

N∏
n=1

IE (ατn(in,M)) =
N∏
n=1

∂

∂M
Vn(in,M)

(31)

where the first equality might hold by analogy to (21), the second is (30), the third is
true because the random variables τn(in,M) are independent, and the fourth is true
by (21).

We also have that V (i,M) = M for M ≥ C
1−α . Integrating (31) we get the following

conjectured form for the optimal value function:

V̂ (i,M) =
C

1− α −
∫ C

1−α

M

N∏
n=1

∂

∂m
Vn(in,m) dm(32)

For each n define

Qn(i,M) =
∏
n′ 6=n

∂

∂M
Vn′(in′ ,M)(33)

By Lemma 3, Qn is nonnegative nondecreasing, ranging from 0 at M ≤ − C
1−α to 1

at M ≥ C
1−α .

Substituting (33) in (32) and integrating by parts we obtain for each n:

V̂ (i,M) = Vn(in,M)Qn(i,M) +
∫ C

1−α

M

Vn(in,m)dQn(i,m)(34)
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To complete the proof we need to show that V̂ = V by showing that V̂ satisfies the
optimality equation (29), which we do in 3 steps.

Step 1: We show that V̂ (i,M) ≥M : From the monotonicity of Vn(in,m) in m we
obtain, using (34)

V̂ (i,M) ≥ Vn(in,M)Qn(i,M) + Vn(in,M)
∫ C

1−α

M

dQn(i,m)

= Qn(i,
C

1− α )Vn(in,M) = Vn(in,M) ≥M(35)

Step 2: We show that ∆n ≥ 0 for any n where:

∆n = V̂ (i,M)−R(in)− α
∑
j∈E

p(in, j)V̂ (i1, . . . , j, . . . , iN ,M).(36)

We note that Qn(i,m) does not depend on the value of in, i.e.

Qn(i,m) = Qn(i1, . . . , in−1, j, in+1, . . . , iN ,m)

Substituting (34) in (36), ∆n is seen to be:

∆n = Qn(i,M) (Vn(in,M)−R(in) − α
∑
j∈E

P (in, j)Vn(j,M))(37)

+
∫ C

1−α

M

(Vn(in,m)−R(in) − α
∑
j∈E

P (in, j)Vn(j,m)) dQn(i,m)

≥ 0

where

Vn(in,m) ≥ R(in) + α
∑
j∈E

P (in, j)Vn(j,m)(38)

by the optimality equation (14) for Vn(in,m).
Step 3: Equality holds in (35,37), exactly under the Whittle policy: Consider

M,m > Mn∗(in∗), then Qn(i,M) = 1 and dQn(i,m) = 0. Looking at (34) we
see that (35) holds as equality for M ≥Mn∗(in∗).

Consider next M ≤ m ≤Mn(in), for which (38) holds as an equality. Substituting
this in (37), we have that for such M :

∆n =
∫ C

1−α

Mn(in)

(Vn(in,m)−R(in) − α
∑
j∈E

p(in, j)Vn(j,m)) dQn(i,m).(39)

In particular if we take n∗, we have

∆n∗ =
∫ C

1−α

Mn∗ (in∗ )

(Vn∗(in∗ ,m)−R(in∗) − α
∑
j∈E

P (in∗ , y)Vn∗(j,m)) dQn∗(i,m) = 0

(40)

since dQn∗(i,m) = 0 for m ≥Mn∗(in∗).
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3.4. Fourth Proof: The Achievable Region Approach This proof follows the ideas
of Tsoucas et al. [16, 1] and of Bertsimas and Niño-Mora [3]. Remarkably enough it
is actually quite close to the pioneering proof of Klimov [10].

3.4.1. Generalized conservation laws Consider the N bandit system with initial
state Z(0) = i, and an arbitrary policy π. Let Iπi (t) be the indicator that policy π
plays an arm which is in state i at time t. Define:

xπi = IE

{ ∞∑
t=0

Iπi (t)αt|Z(0) = i

}
,

to be the total expected sum of discounted times at which the activated arm is in
state i.
Note: The value of the objective function for π is

∑
i∈E R(i)xπi .

Recall the definitions (22,23) of TSi , ASi , S ⊆ E. For initial state Z(0) = {i1, . . . , iN},
denote TSZ(0) =

∑
n:in 6∈S T

S
in

, and let:

b(S) =
IE {αTSZ(0)}

1− α .(41)

We also use the following notation: If a policy π gives priority to states outside S
over states in S, we write: π : Sc → S.

Theorem 4 For initial state Z(0), for every policy π and every S ⊆ E∑
i∈S

ASi x
π
i ≥ b(S).

Equality holds if and only if π : Sc → S.

Proof. Consider a realization (single sample path) under policy π. Then TSZ(0) is the
total time necessary to get all the arms not initially in S into S. We can divide the
time axis according to what we do at each time into three parts:

Let s0(1) < · · · < s0(TSZ(0)), be the times at which we operate on arms which were
initially in Sc, before they have entered a state in S. We take these times in
increasing order, and it is possible that s0(l) =∞ from some point onwards.

Let si(1) < · · · < si(l) < · · · be the times at which we activate arms in state i,
where i ∈ S. Again we write these in increasing order, and it is possible that
si(l) =∞ from some point onwards.

Let si,l(1) < · · · < si,l(TSi (i, l)−1) be the times at which, following the l’th activation
of an arm in state i (where i ∈ S) we activate that same arm, until it returns
to S. We let TSi (i, l) denote the number of steps from when an arm was in i on
that l’s occasion, until following some plays it returns to S. Again we write the
times in increasing order, and it is possible that si,l(k) = ∞ from some point
onwards.
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Clearly, at any time that we play any arm we are doing one of the above three things.
Hence:

1
1− α =

TSZ(0)∑
k=1

αs0(k) +
∑
i∈S

∞∑
l=1

αsi(l) +
TSi (i,l)−1∑
k=1

αsi,l(k)


which is a conservation law, in that it holds for every policy.

We now obtain an inequality:

∑
i∈S

∞∑
l=1

αsi(l)
(

1 + α+ · · ·+ αT
S
i (i,l)−1

)
≥
∑
i∈S

∞∑
l=1

αsi(l) +
TSi (i,l)−1∑
k=1

αsi,l(k)


=

1
1− α −

TSZ(0)∑
k=1

αs0(k) ≥ 1
1− α −

(
1 + α+ · · ·+ αT

S
Z(0)−1

)
=
αT

S
Z(0)

1− α

where the first inequality can hold as equality if and only if si,l(1), . . . , si,l(TSi (i, l)−
1) = si(l)+1, . . . , si(l)+TSi (i, l)−1, for every i, l, and the second inequality can hold
as equality if and only if s0(1), . . . , s0(TSZ(0)) = 0, 1, . . . , TSZ(0) − 1. But that happens
exactly whenever π : Sc → S.

This proves a pathwise version of the theorem. The theorem now follows by taking
expectations on the two sides of the inequalities.

According to the generalized conservation law, the following linear programming
problem is a relaxation of the multiarmed bandit problem:

max
∑
i∈E

R(i)xi

s.t.
∑
i∈S

ASi xi ≥ b(S), S ⊂ E,

∑
i∈E

AEi xi = b(E) =
1

1− α,(42)

xi ≥ 0, i ∈ E.

It is a relaxation in the sense that any performance measure given by a policy π has
to satisfy the constraints of the linear program.

3.4.2. The Linear Program To complete the proof we investigate the linear pro-
gram (42). For the continuation of the proof we need to restrict ourselves to the case
of a finite number of states, |E|.

Let ϕ(1), . . . , ϕ(|E|) be a permutation of the states 1, . . . , |E|, and denote by ϕ the
priority policy which uses this permutation order (i.e. ϕ(1) has highest priority, ϕ(2)
2nd highest etc.). Denote Si = [ϕ(i), . . . , ϕ(|E|)], i = 1, . . . , |E|. Then ϕ : Sci → Si.
Consider the upper triangular matrix (which is part of the coefficient matrix of the
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LP (42)):

D =


AS1
ϕ(1) AS1

ϕ(2) · · · AS1
ϕ(|E|)

0 AS2
ϕ(2) · · · AS2

ϕ(|E|)
...

. . .
...

0 0 · · · A
S|E|
ϕ(|E|)

 .
By Theorem 4, the performance measures xϕ are the unique solution of the triangular
set of equations:

D


xϕ1
xϕ2
...
xϕ|E|

 =


b(S1)
b(S2)
...
b(S|E|)

 .
and are a basic feasible solution to the LP (42). Thus, the vector of performance
measures of each priority policy is an extreme point of the LP.

Consider now the complementary slack dual solution corresponding to xϕ. It is of
the form yS = 0, S 6= S1, . . . , S|E| while the remaining dual variables solve:

D′


yS1

yS2

...
yS|E|

 =


R(1)
R(2)
...
R(|E|)


which gives recursively, for S1, . . . , S|E|:

ySi =
R(i)−

∑i−1
j=1A

Sj
i y

Sj

ASii
,

For xϕ to be optimal it is necessary that yS2 ≤ 0, . . . , yS|E| ≤ 0. We can now
use R(1), . . . , R(|E|) to construct such a permutation ϕ. The following algorithm,
known as Klimov’s algorithm will do it. Starting from S1 = E, calculate recursively
for i = 1, . . . , |E|,

ySi = maxk∈Si
R(k)−

∑i−1
j=1 A

Sj
k ySj

A
Si
k

, ϕ(i) = arg maxk∈Si
R(k)−

∑i−1
j=1 A

Sj
k ySj

A
Si
k

Si+1 = Si\ϕ(i).

Because xϕ is optimal, the priority policy based on this permutation is optimal. It
is easy to see that this coincides with the Gittins policy, and in fact the index is
ν(ϕ(i)) =

∑i
j=1 y

Sj . This completes the proof.
Note: If we let R vary over all possible |E| vectors, the solutions of (42) vary

over all the extreme points of the feasible polyhedron of the LP. But for each such
R the above algorithm finds an optimal permutation priority policy which has that
extreme point as its performance vector. Hence: The achievable performance region
coincides with the feasible region of the LP, and its extreme points coincide with the
performance vectors of the priority policies.
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3.4.3. Extended polymatroides Polyhedral sets of the form:

M =

{
x ∈ IR|E|+ :

∑
i∈S

xi ≥ b(S), S ⊆ E
}

where b is a supermodular function, i.e. b(S1) + b(S2) ≤ b(S1 ∪ S2) + b(S1 ∩ S2),
are called polymatroids [4], and are of great importance in combinatorial optimiza-
tion because of the following property: Let ϕ(1), . . . , ϕ(|E|) be a permutation of
1, . . . , |E|, and let S1, . . . , S|E| be the nested subsets Si = {ϕ(i), . . . , ϕ|E|)}. Then
M has exactly |E|! extreme points given by the the solutions of:

1 1 · · · 1
0 1 · · · 1
...

. . .
...

0 0 · · · 1

xϕ =


b(S1)
b(S2)
...
b(S|E|)

 .
This property implies that the optimization of any objective function linear in x is
achieved by a greedy solution.

Tsoucas [1, 16] and Bertsimas and Niño-Mora [3] define extended polymatroids as
a generalization to polymatroids as a polyhedral set:

EM =

{
x ∈ IR|E|+ :

∑
i∈S

aSi xi ≥ b(S), S ⊆ E
}

which satisfies: For every permutation and nested sets as above, the solution to
aS1
ϕ(1) aS1

ϕ(2) · · · aS1
ϕ(|E|)

0 aS2
ϕ(2) · · · aS2

ϕ(|E|)
...

. . .
...

0 0 · · · a
S|E|
ϕ(|E|)

xϕ =


b(S1)
b(S2)
...
b(S|E|)

 ,

is in EM.
The discussion in Section 3.4.2 shows that extended polymatroids share the prop-

erty of polymatroids: The above solutions are the |E|! extreme points of the poly-
hedral set, and the optimization of any objective function linear in x is achieved
by a greedy solution, which constructs the optimal permutation. The proof of the
generalized conservation laws in Section 3.4.1 shows that the achievable region of the
multiarmed bandit problem is an extended polymatroid.
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