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AN ELEMENTARY PROOF
OF THE GROTHENDIECK INEQUALITY

RON C. BLEI

ABSTRACT. An elementary proof of the Grothendieck inequality is given.

Since its appearance in |2, pp. 59-64] and reformulation in [3, pp. 277-280],
Grothendieck’s fundamental inequality has enjoyed several restatements and proofs
within various frameworks of analysis (detailed accounts of which appear in [4]).
The purpose of this note is to give an elementary and self-contained proof of the
inequality: the argument below, an adaptation of the proof given in [1], requires
knowing only that the expectation of a product of independent random variables
equals the product of their expectations.

Let RN denote the space of sequences of real numbers with finitely many nonzero
terms. RN will be equipped with the usual inner product,

(z,y) =) z(n)y(n), z,yeRN,

and Euclidean norm,
Iz = (z,2)'/?,  zeRN.
B will denote the unit ball in RN, ie. B={z € RN: ||z| < 1}.

THEOREM ( GROTHENDIECK'S INEQUALITY). Let (Gmn)ps =1 be an array of
complex numbers which satisfies

>

m,n=

(1)

<
lamnsmtn = 1S2%N|3m| Itnl

for all sequences of complex numbers (s, )o0_;, (tn)5,, and all integers N > 1.

Then, for all sequences of vectors in RN, (2,)_;, (yn)3 4,

N
(2) m%;lamn<xm,yn> <K ISITE%XSN ”xm” ”yn“

for all N > 1 and some universal constant K.

To start, define a real-valued function on RN x RN by
(3) A(z,y) = [[( +2(n)y(n)),  =z,y RN,

n
and estimate
(4) |A(z, y)| < e mHz(y(m)]) < X lemum] < elel-lvll,
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LEMMA 1. Suppose (amn)pmn=1 Satisfies the hypothesis of the theorem above.
Then, for all sequences of vectors (Tm)_;, (yn)S2, n the unit ball of RN,

N

Z amnA(zm, yn)

m,n=1

<e

for all N > 1.

PROOF. Let (Z,)2, be a sequence of independent real-valued random variables
on some probability space so that

(5) E(Z,) =0, E(Z})=1, and |Z,]=1 aus. forall n.

(E denotes expectation; (Z,)32, could be taken as the usual system of Rademacher
functions.) Given z € RN, define a random variable

F(z) =[] +iz(n)Z,)  (i=v~-1),

n

and estimate (by (4))

1/2
(6) |F(z)| < (H(l + z(n)2)) <el=l*/2 almost surely.

For any 7,y € RN,
F(z)F(y) H E(1+z(n)Z,)(1 —1y(n)Z,) (by independence)

= H 1+ z(n)y(n)) (by (5))

= A(z,9).
Therefore, for any (z,,)_;, (yn)S2,; C Band all N > 1,

N N
Z amnA(zmnyn) = Z amnE(F(zm)F(yn))

N ——
Z amnF (Tm) F (yn)

m,n=1
<e (by (1) and (6)). Q.E.D.
Next, expand the product on the right-hand side of (3):

(0 Ay)=1+(zy)+---+ > z(m)-z(ng)y(ny)-ylng) +--

ny>->ny

<E

Let {E;}32, be an infinite partition of the natural numbers N, so that each
E; C N is infinite. Let W be the J-dimensional wedge in N7 given by

W; = {(nl,...,nJ) e N’ ny> .- >nJ}’
and set up a one-to-one correspondence between E; and W;, J > 2:

nGEJH(nl,...,nJ)EWJ.
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Given an arbitrary z € B, define a vector ¢(z) = (¢(z)(n))nen in RN by
o(z)(n) = z(n1) - - - z(ny), neky; J=2,...,

and estimate

-~ 1/2
(8) l¢(@)]l = (Z > (w(nl)-“l‘(m))?)
J=2n€E;
o o 7 1/2
< Z%(Zx(nﬁ) <(e-2Y?=6<1.
J=2 neN
Write

¢s(x) = d(x)/9, z € B,
and, by the estimate above, note that ¢s is a map from B into B. Solving for (z, y)
in (7), z,y € B, we obtain
9) (z,y) = Az, y) — 1 — §%(¢s (), 95 (y))-
Therefore, applying (9) recursively, we obtain for each J > 0
J

(10)  (z,y) = D (~6°V[A(#5(2), 85 () — 1 + (=6%)" {85+ (), 65 T (v)

3=0
(q&f; denotes the jth iterate of ¢s). Finally, letting J — oo in (10), we deduce
LEMMA 2. For allz,y€ B

[e o]
(@,y) = > (~8*)[A(¢} (=), 4} (y)) — 1.
7=0
PROOF OF GROTHENDIECK’S INEQUALITY. It suffices to establish (2) for
(Zm)So_1,(yn)2; C B. By Lemmas 1 and 2, we estimate

N () N
Y tmn(@moyn)| Y67 D amalA($(2m), 63 () — 1]
m,n=1 7=0 m,n=1

< i 6%(e+1)=(e+1)/(3—¢). QE.D.
=0
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