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Introduction. This is an expository account of work we have carried out 
jointly with some of our students and associates, notably E. Rodemich, H. 
Taylor, C. Preston, C. Greenhall, S. Milne, T. Park and P. DeLand. 

We shall be concerned with classes of functions f(X) measurable on the 
d -dimensional unit cube 

ld = [ 0 , l ] x [ 0 , l ] x . - . x [ 0 , l ] 

and satisfying conditions of the type 

K K V p(XY) / 
where ^ and p are restricted as follows: 

(a) ^P(u) is defined and continuous on (-00, +00), 

(b) ^ ( u ) = ^ ( -u ) tooas |u | foo , 
and 

(a) p(u) is defined and continuous on (-Vd, Vd), 

(b) p(u) = p ( - u ) | 0 as | u | | 0 . 

In most of our work we have been concerned with the one-dimensional 
case, but here we shall be able to say something about the general case. 

Roughly speaking, our aim has been to use the finiteness of Iv,P(f) to 
derive a priori bounds for other important functionals of ƒ, such as its 
modulus of continuity or other high order norms. The bounds we have 
obtained involve, of course, M* and p but they depend on ƒ only through the 
value of I*,pCf). 

1. Sample of results. To get across at least the flavor of our work we 
shall give a sample of our results in the one-dimensional case. 

THEOREM 1.1. Let 
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and suppose 

(1.1) ^ " 1 ( B / u 2 ) d p ( u ) < o o ; 3 

then f is essentially continuous and, in fact, for all x and y in the Lebesgue set 
of f we have 

(1.2) |/(x)-/(y)|^8Jo'
X \-\B/u2) dp(u). 

Several interesting applications of this theorem have been found since its 
discovery. (See [6], [7] and [1].) Indeed, our initial motivation for proving 
such a result came from a study of path continuity of Gaussian processes 
where the particular case ^F(u)=exp u2 turns out to be very useful. 

Theorem 1.1 has been the first result and our further work was stimulated 
by the puzzling question of what we could say about ƒ when I*,P (ƒ)<<» and 
Jo ^_ 1(B/u2) dp(u)=oo V B. It can be easily shown by examples that the f's 
satisfying (1.1) need not be continuous in this case. Nevertheless, it is 
reasonable to ask how much smoothness is still present. 

During the last few years we have put together a certain number of results 
in this direction (see [1], [5] and [2]). As an example in point we state an 
inequality which is true in general and implies (1.2) when condition (1.1) is 
satisfied. 

To this end we recall that to each ƒ we can associate what is commonly 
called its "monotone rearrangement", denoted by ƒ *, which is defined as the 
unique nonincreasing function on [0, 1] such that 

m{x :f(x) ^ A} = m{x :ƒ*(x) ^ A} V real A. 

The basic inequality can be stated as follows: 

THEOREM 1.2. If U,p(f)^B<c° and V(ex) is convex, then for 0 < x ^ i 

A certain number of interesting inequalities can be derived from (1.3). In 
addition, Theorem 1.2 implies Theorem 1.1 at least when ^(e x ) is convex. 

However, the crucial fact which is responsible for (1.3) as well as several 
remarkable inequalities is that the functional Iv,P(f) decrease when we 
replace ƒ by ƒ*. Namely we always have 

(i.4) wn^w/). 
Thus we can systematically reduce the study of ƒ to that of ƒ* and the 

latter is simpler since ƒ* is monotone. 
We cannot escape the temptation to state here at least two of the most 

curious consequences of (1.4) which do not follow from (1.3). 

3 ̂ ~x denotes the inverse function of ¥ in (0, °°). 
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THEOREM 1.3. Let 

Jo Jo |x - y | 
then 

|;expjc„Jfiii^!M}(ix(iyS2V2, 
where 

Ca = (log 2/2)p, 0 = a / (o t - l ) . 
THEOREM 1.4. If 

then f is essentially Lipschitzian and, indeed, 

(1.5) | / ( x ) - / ( y ) | S B | x - y | 

must hold for all x, y in the Lebesgue set of f. 

REMARK. SO far the only proof we know of (1.5) is via the inequality in 
(1.4). We are offering a bottle of Scotch for the first proof of (1.5) which 
does not use (1.4).4 

The basic inequality which implies the monotonicity of our functionals 
Iv,P(f) in the one-dimensional case can be stated as follows: 

LEMMA 1.1. Let 4>(u) = <ï>(-u)t as |u|f; then for 0 < o < l we have 

(1.6) | J <*>(f*(x)-f*(y))dxdy^ J J <!>(f(x)-f(y))dxdy. 
| x - y | â 8 |x-y|âÔ 

Quite recently we have discovered some very interesting consequences of 
this inequality. But we shall postpone stating these until the end. Let us just 
say here that the d -dimensional version of (1.6) implies some rather 
remarkable new and classical Sobolev type inequalities. These inequalities 
have something to do with the fact that (1.6) enables us to estimate the 
growth of f*(x) as x—»0+ or x—»1~ in terms of the behavior as 8-»0 of a 
given integral modulus of continuity of ƒ (such as, for instance, the Lp 
modulus of continuity cop(ô, ƒ)). But it is more exciting at this point to get 
first an idea of the type of combinatorial results that are responsible for 
(1.6). 

2. The combinatorial inequalities. To show (1.6) we need only establish 
a discretized version, namely 

THEOREM 2.1. Let <ï>(u) = <ï>(-u)î a s NT- Then for all real numbers 
Ai<A2<- • -<An and for all l ^ M ^ n we have 

(2.1) I ^ ( A i - A i ) ^ I *(f(i) -ƒ(/)) 
\i-j\kM \i-j\kM 

where f is any function on (1, 2, • • • , n) which takes the values Ai, A2, * • * , An. 

4 The bottle of Scotch was won by L. Nirenberg who solved this problem a day after the talk. 

file:///i-j/kM
file:///i-j/kM
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To understand the significance of this inequality let us rewrite it in a form 
which can be easily extended to the higher-dimensional case as well as to 
more general situations. 

Let (ft, 8) be a discrete metric space. For instance: 
(1) In the one-dimensional case we want to take 

ft=(l,2,---,n), 8 ( Î , J ) = | Î - J | . 

(2) In the two-dimensional case 

ft = (1, 2, • • • , n) x (1, 2, • • • , n), 8(P, Q) = PQ (Euclidean), 

etc. 
Let N = |ft| = cardinality of ft. This given, we can define a function ƒ on ft 

starting from its values Ai<A2<- • *<AN (we can assume without loss that 
they are all different) by saying where in ft we put the smallest (i.e. Ai), 
where we put the next smallest (i.e. A2) etc. 

In other words, each function on ft can be considered made up of its 
values Ai, A2, • • • , AN together with an assignment or rule for putting these 
numbers on ft. Such an assignment can be given simply as a map 
i r : ( l , 2 , - - - , N H > f t . 

Keeping this in mind, for a given function f(P) defined on ft, the 
expression 

(2.2) I Mf(P)-f(Q)) 
8(P,Q)ëM;P,Oeft 

can be written in the form 

(2.3) I <D(À«-À,) 
8(ir(i),ir(j))SM 

where this sum is carried out over all couples (i, j)e 
[1, 2, • • • , N] x [1, 2, • • • , N] such that 8(77(1), ir(j)) ^ M. 

We can better visualize the situation if we introduce a directed graph 
which we shall call G(N) and which is defined as follows. Its vertices are the 
couples a-(i,j), l ^ i < j ^ N , and between a = (i,j) and a' = (i',j') we put an 
arrow going from a to a' if and only if 

(a) i ' = i - l , j ' = j 

or 

(b) ï=u r = j + i . 

In the figure below we have illustrated G (6). 
Furthermore we make the vertices of G(N) into a partially ordered set by 

setting 

(2.4) a = ( i , j ) < a ' = (i',j') 

if and only if i'^i<j^jf. 
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AAAAA 
1 2 3 4 5 6' 

That is a<a' if and only if we can go from a to a' in G(N) along a path 
which follows the arrows. 

Now, given the A's and <I> as in Theorem 2.1 let us set for a = (i,j), 
cp(a) = <&(Ai-Aj). Note that this function is nondecreasing with respect to the 
partial ordering we have just introduced. This given, we rewrite (2.3) in the 
form 

(2.5) X <p(a) 
aeaM(Tr) 

where we have set 
3 M 0 T ) = {a = (i, j): 8(TT(0, *(])) ^ M}. 

The question then is: What is the smallest possible value that the 
expression in (2.5) can take when cp(a) = 4>(Ai~A,) and TT varies amongst all 
possible ways of distributing Ai, A2, • • • , AN in £1? 

In the one-dimensional case, i.e. when ft=(l, 2, • • • , n), there are two 
natural assignments, namely, Tr(i) = i or ir(i) = n-i. Indeed, Theorem 2.1 
simply says that the smallest possible value of (2.5) is obtained for any one 
of these two choices of IT. 

The proof of this fact, although at first sight it may seem to have to 
involve <ï> and Ai, A2, • • •, An, can actually be obtained by purely combina
torial considerations. 

To see this, let us introduce one further notation. For two given subsets A 
and B of G(N) we set A < B if and only if A is "below" B in G(N). By this 
we mean that there exists a one-to-one map 0 of A into B which is 
increasing with respect to the partial order we introduced in (2.4). This 
given, we have the following crucial fact: 

LEMMA 2.1. If A and B are two subsets of vertices of G(N) then 
ZaeA<p(a)^XaeB cp(a) holds for all <p(a) = <I>(Ai-Aj) if and only if A<B. 

This is not difficult to prove if we use the P. Hall theorem on the selection 
of distinct representatives (the "marriage" theorem). Indeed, all we need to 
show is that our functions <p(a) contain all the extreme points of the cone of 
increasing functions on G(N). A proof of Lemma 2.1 along these lines is 
given in [5]. 
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Set then for convenience 

ftM = {a = (i,j): l^j-i^M}. 

If e denotes the identity mapping from [1, 2, • • •, n] to [1, 2, • • • , n] we see 
that 

From Lemma 2.1 we get that our inequality (2.1) is equivalent to the 
combinatorial inequality 

(2.6) a M ( e ) < a M ( i r ) VTT 
or, which is the same, 

(2.7) » M O M ( T T ) VTT. 

A proof of (2.1) via (2.6) can be found in [5]. In that paper quite a 
number of analytic inequalities are derived from (2.6) including Theorems 
1.2, 1.3 and 1.4. But let us see next how all these results can be extended to 
the higher dimensional case. 

For instance, let ft=[l, 2, • • • , n ]x[ l , 2, • • • , n] and 

8(Pi, P2) = P1P2 (Euclidean). 

That is, if Pi = (ii,ji), P2=(*2,j2) then 

8(Pi, P2) = V(ii-i2)2 + (/i-j2)2 . 

In this case N=\Cl\ = n2, so we want to represent our sum 

s=j: «>(f(Pi)-/(p2)) 
P l P 2 â M 

as a sum over a subset of the vertices of G(n2). With our notation, letting 
Ai<A2<- • -<kn2 be the values taken by f(P) in H, and assuming that f(P) 
takes the value Ai at the point 77(1) of ft, then 

S= Z 9(a) 
ae2>M(ir) 

where 

Q)M(TT) = {a = (i, j):<7r(iMj)^M}. 

If we proceed in the most naive way, using the one-dimensional case as a 
guide, we might be tempted to ask whether or not there is a special map 

e : [ l , 2 , • • • , n2]«->fî = [ l , 2 , • • • , n ] x [ l , 2, • • • , n] 

such that 

X 9 ( a ) ^ £ 9(a) VTT, 9 & M. 
a(E9)M(e) aeQ)M(Tr) 

In view of Lemma 2.1 this is equivalent to 

(2.8) 3M(e)<3M(ir) VTT&M. 
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Going back to our sums, this would mean that given any function f(P) on 
ft=[l, 2, • • •, n ]x[ l , 2, • • •, n] there exists a special rearrangement f*(P) of 
f(P) such that 

I * ( / * ( P i ) - / *(P2))^ Z *(f(Pi)-f(P2)) VM. 

This would imply that for each function f(x, y) on the square 
I2=[0, l ]x[0 ,1] there is a rearrangement f*(x, y) such that 

J J <£>(ƒ *(xi, y i) - ƒ *(x2, y2)) dxi dy i dx2 dy2 

( 2 . 9 ) V(x1-x2)2+(y1-y2)2âô 

il *(ƒ(*!, yO-/(X2, y2)) dxi dyi dx2 dy2 V 0 < 0 < V2. 
V(x 1 -x 2 ) 2 +(y 1 -y 2 ) 2 S8 

Now, it requires little familiarity with the realities of higher dimensions to 
suspect that no such privileged rearrangements do exist, and to conclude that 
our search for the special map e in the inequality (2.8) is doomed to failure. 

There is however, one further natural approach to extending our inequal
ity (1.6) to the higher-dimensional case. That is, if we drop trying to 
rearrange f(x, y) within the square, we might still try to see if an inequality 
similar to (2.9) may hold between f(x, y) and its one-dimensional rearrange
ment. This rearrangement is defined as the nonincreasing function f*(s) in 
[0,1] such that 

(2.10) m { s € [ 0 , l ] : / * ( s ) S A } = m { ( x , y ) € [ 0 , l ] x [ 0 , l ] : / ( x , y ) ^ A } . 

But here we run into yet another problem. Namely, what to put for " ? " in 

i\ <t>(f*(s)-f*(t))dsdt 

(2.11) | s ' t | s ? 

<E>(/(xi, yi) - f(x2, y2)) dxi dyi dx2 dy2. 

^ ( x i - x 2 ) 2 + ( y i - y 2 ) 2 â ô 

From this viewpoint this approach appears even more hopeless, since it is 
hard to see how there can be any relation between distances in the square 
[0, l ] x [ 0 , 1 ] and distances in [0,1] that we could use to make sense out of 
(2.11). 

Surprisingly enough, both approaches can be pushed through, and believe 
it or not they both lead to the same final inequality. 

To see how this comes about let us go back to our inequality (2.8). 
Indeed, better yet, let us see what conditions a subset A of vertices of G(n2) 
of the proper cardinality has to satisfy so that we may have 

(2.12) A O M ( I T ) 

for all one-to-one maps IT of [1, 2, • • •, n2] into the two-dimensional lattice 

22(n) = [ l , 2 , - - - , n ] x [ l , 2 , - - - , n ] . 
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To this end note that given any 0 ^ i 0 ^ n 2 - M 2 / 2 we can find a map 
7T0:[1, 2, • • •, n2]<-*££2(n) which sends all the points io+1, io+2, • • • , i0+M2/2 
into a fixed subsquare of £i{n) whose diagonal is equal to M. 

Clearly for such a map TTO, the set SMCTTO) will necessarily contain the 
triangle <#of vertices of G(n2) given by 

« = {a = (i, j) : io + 1 ^ i < ƒ ^ io + M2/2}. 

We claim that if (2.12) is to hold for 7r = 7To, in the sense that there is a 
point of A below euery point of 2JM(TTO), then A must also contain % 

The reason for this is that there is no subset of vertices of G(n2) which has 
the same cardinality as <g and lies below % other than ^ itself. 

This reasoning carried out for every i0 implies that if there is a map 
e :[1, 2, • • • , n2]«-».S£2(n) such that (2.8) holds VTT, then 2)M(e) must contain 
the set 0W2/2, and therefore we must also have 

0U2/2<2}M(-n-) VTT. 
Conversely, suppose that for some constant c (independent of n) we have 

(2.13) ^IM-/C<^M(TT) VTT & M. 

Then from Lemma 2.1 we get 

(2.14) Y <&(Ài-À,)si j ; <&(ƒ(?)-f(Q)) VM 
|i-j|siM2/c PQgM 

for every function f(P) on i£2(n) taking the values Ai, A2, • • • , An
2. 

It is not difficult to deduce, by passing to the limit, that the continuous 
version of the discrete inequality in (2.14) is 

(2.15) J f*(f*(s)-/*(0) dsdt^ J J <D(/(P)-/(Q))dPdQ V0^8^V2, 

where f*(s) is the one-dimensional rearrangement of f(P). So we see that 
this reasoning leads us to the value 82/c for " ? " in (2.11). 

This should shed some light upon the riddle concerning "the relation 
between distances in [0, l]x[0, 1] and distances in [0 ,1]" we were wondering 
about. The relation between 8 and " ? " has a purely combinatorial origin. As 
we might easily guess at this point the d-dimensional analogue of (2.15) is 

(2.16) jj<I>(f*(s)-f*(t))dsdt^ j j <P(f(P)-f(Q))dPdQ, O^Ô^iVd, 
|s-t|S8d/cd PQ^S 

and this, just like (2.15), can be derived from the combinatorial inequality 

(2.17) &M<Vcd<2)M(7r) VTT,M 

where, of course, now 2ft,Md/cd and ^M(TT) denote subsets of vertices of G(nd) 
and TT denotes a one-to-one map of [1,2, • • • , nd] onto the lattice 
2 d (n) = [ l , 2 , . . - , n ] d . 

Now, it is not difficult to reinforce our belief in (2.16) by deriving from it 
inequalities we can prove by other methods. 

Indeed, as we shall soon see, by setting 4>(w) = |w|p (p>0) in (2.16) we can 
very quickly derive from it all the classical Sobolev inequalities which state 
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the integrability or smoothness of a function in terms of integrability 
conditions on its gradient. 

Bearing in mind all these facts, (2.13) as well as its d -dimensional 
analogue (2.17) now appear very plausible. 

Now, it turns out that when n is a power of 3 we can prove (2.17) with 
cd = 3d(d+3)d/2. 

The proof has an element of surprise in it and it stems from the insistence 
of my student S. Milne in trying to find a special mapping 
e :[1, 2, • • •, n2]-»«££2(n) for which (2.8) may hold true for all IT. 

From the considerations above we see that if such a map e exists then the 
set 2Jjvi(e) must contain SftM

2/2. This means that every couple a = (i,j), such 
that | i - j | ^ M 2 / 2 , must belong to 2)M(e) or, which is the same, we must have 
that 

(2.18) | i - j | ^ M 2 / 2 = > 8 ( i ) e ( j ) ^ M . 

Now it turns out that maps e :[1, 2, • • • , n2]<-»££2(n) satisfying a condition 
similar to (2.18) are not difficult to find. In fact, all we need to do is produce 
a "parametrization of ^ ( n ) " or better "a curve describing ^ ( n ) " which is 
Lipschitzian of order i That is, a one-to-one map e of [1, 2, • • • , n2] onto 
S82(n) which is such that 

(2-19) I Ö M l ) S c | i - j r . 

Assuming that H is such a curve, the considerations above suggest that the 
minimum of the expression X P Q ^ M ( Ï ) ( / ( P ) - / ( Q ) ) will be obtained when we 
rearrange ƒ to be increasing (or decreasing) along H. 

It turns out that this is "almost" true. Indeed, using this idea we can put 
together a very simple proof of (2.13). And, at any rate, as we have seen, 
the latter is all we need to derive our desired inequalities (2.14) and (2.15). 
We can state this result in the following manner: 

THEOREM 2.2. Let e be a one-to-one map of [1, 2, • • • , n2] onto ^2(,n) 
such that 

(2.20) e(i)e(j)^c\i-j\m V l ^ i , j ^ n 2 ; 

then we have 

(2.21) » M * / C * O M ( I T ) 

for all TT and for all l ^ M ^ V z n . 

PROOF. Given a map TT:[1, 2, • • • , n2]<->5£2(n) set cr = e~17r. 
From the one-dimensional result, as expressed by (2.7), we get 

(2.22) ^M^/c2<2)M2/c<cr). 

Now, from the definition, 

3M>/C<CT) = {a = (i', ƒ') : | e " W ) ) ~ e"VO"))! ^ M2/c2}. 
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However, setting i = e 1(TT(V)) and j-e 1(TT(J')) in (2.20), we get that 

| i - j1 = | e " V ( n ) - e - V O 0 ) | ^ M V c 2 = > i r ( i V U ' ) ^ M . 
That is we must have 

(2.23) 9M>/c»(a)c3M(ff). 

Combining (2.22) and (2.23) we immediately obtain (2.21) as desired. 
This result combined with Lemma 2.1 yields inequality (2.14) with c 

replaced by c2. 
To derive (2.14), and hence (2.15), we need then exhibit for each n (or at 

any rate for a sequence of n's) a map e :[1, • • •, n2)<-»5£2(n) satisfying 
inequalities (2.20) for some fixed constant c. 

Now, in [4] we show that this can be done in many ways. However, it is 
good to point out here that if we put together these maps in a systematic 
manner, then they can be made to converge as n—><*> to a Peano type curve 
E(t):[0, l]-»[0, l]x[0, l ] which has the following two remarkable proper
ties: 

(a) H is a measure preserving map of [0,1] onto [0, l ] x [ 0 , 1], 
(2.24) 

(b) 3 is Lipschitzian of order \. That is H(ti)E(t2)^c |ti-f2|1/2. 
By a "systematic manner" we mean that we start with a fixed model for 

n = n0 and then produce the corresponding model for n-nï (fc = l, 2, • • •) in 
a "multiplicative" fashion. 

For instance, if we start for n 0=3 with the model 

(2.25) , * J 

. ^ . ̂  . 

then the corresponding model for n = 32 is obtained by ordering first the nine 
3x3 subblocks according to (2.25), that is: 
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then ordering the points within the blocks according to (2.25) in a manner 
which is economical with distances, that is: 

1 1 

H0~ 
[E]_ 

-HL]*" 

1^-
-\B\~ 

~\B\ 

-\É\ 
~[Ë] 

For each successive power of 3 we proceed in an analogous fashion. This is 
indeed Peano's original scheme for the construction of his famed curves. 

In [4] we show that this scheme leads to a map e:[0, 1]—>[0, l ]x[0,1] 
which satisfies not only (2.24)(a) but also (2.24)(b) with C = 3 N / 5 . This fact 
seems to have passed unnoticed in the literature so far. 

To sum things up, we see that, roughly speaking, the combinatorial facts 
underlining inequality (2.15) can be broken up into the combinatorial 
inequality in (2.6) and the existence of Peano curves satisfying (2.24). 

3. Applications: Sobolev type inequalities and convergence of Fourier 
series. Let f(X) be a measurable function on the d -dimensional cube 
Id = [0, l ]x- • -x[0, 1] (d times). Let f*(s) denote the one-dimensional nonin-
creasing rearrangement of f(X), that is, the unique, right continuous nonin-
creasing function on [0, 1] such that 

m{se[0, l]:f*{s)^k}=m{XeId:f(X)^k} VA. 

The end product of the combinatorial considerations of the previous 
section is the following 

THEOREM 3.1. If 4>(u)=4>(-u)t as |u|f then 

(3.1) I! <b(f*(s)-f*(t))dsdti <S>(f(X)-f(Y))dXdY 
|s-t|^8d/cd 

holds for all O^Ô^Vd where cd = 3d(d+3)d/2. 

A complete proof of this result for every dimension can be found in [4]. 
The inequality in (3.1) has a number of very useful consequences. Indeed 

it applies in a wider class of situations than the Pólya and Szegö symmetriza-
tion principle and it is much more elementary to prove in a rigorous manner. 

To give an idea of this, suppose that f(X) is defined in Rd and is periodic 
of period one in each of its arguments. Let cop(ô, ƒ) denote the Lp modulus of 
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continuity of ƒ. That is 
l i / p 

p(8,/) = ff [ |/(X + pÔ)-/(X)|pdXdPr 

Let QP(A, ƒ*) denote the Lp modulus of continuity of ƒ*; that is 

[ - i i / p 

I \\ \f*(s)-f*(t)\pdsdt\ . 
|s-t|SA J 

Then (3.1) for <D(u) = |u|p yields 

(3.2) Qp(ôd/cdJ*)^cd,pa)p(ô,/) 

where cd,P is a constant depending only on d and p. 
In [2] we show that for any nonincreasing function ƒ *(x) on [0,1] we have 

(3-3) fQ?i£%}*]&fa*n?& V0<*^ 
Combining (3.2) and (3.3) we derive the following remarkable inequality 

(3.4) fQ-ra-x)}=Cd* 1 1 f t , p ( s ' / } A ° <x -*• 
This is useful insofar as it delivers us an estimate of the growth of ƒ* as 

x—»0+ or x-»l~ in terms of the behavior of (op(8, f) for small 8. For instance, 
if we know that 

(3.5) <oP(Ô,/) = 0 (ô ) 

then (3.4) gives that for p<d, ƒ* is in LqVq<dp/(d-p). Of course, since 
f*eLq<£>feLq and grad/eLp=>(3.5), we see that (3.4) extends one of the 
classical results of Sobolev. (See [10].) 

But we are not through yet. Indeed, when the integral on the right-hand 
side of (3.4) is convergent as x—»0, a change of scale argument (see [5]) 
yields that f(X) is essentially continuous and VX and Y in the Lebesgue set 
of ƒ we have 

p X Y lev 

(3.6) |/(X)-/(Y)|^Cd.pJo M 8 J ) g i ^ . 

This implies that when (op(8, f) = 0 (8 ) and p>d, then f(X) is essentially 
Holder continuous with exponent=(p-d)/p, and this extends another one of 
the Sobolev results. 

The inequality in (3.6) can also be used to derive results about uniform 
convergence of Fourier series which seem to have passed unnoticed in the 
literature. 

We state one of these in the one-dimensional case. 

THEOREM 3.2. Let f(x) be periodic of period 2TT and such that 

J wp(ö,/)gïT17F<00; 

then the partial sums Sn(x, ƒ) of the Fourier series of f converge uniformly. 
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We can give a sketch of the argument and refer to [2] for further details. 
We start by applying (3.6) to Sn(x, ƒ) and get 

( 3 . 7 ) | S n ( x , / ) - S n ( y , / ) | ^ C p J o C 0 p ( ô , S n ) ^ 7 F . 

However, from M. Riesz' Lp estimate for the partial sums we derive that 

(3 .8) cop(Ô, S„)^CpCOp(Ô,f). 

Thus (3.7) and (3.8) give 

|Sn(x, ƒ) " Sn(y, f)\ ^ CP Jo <Op(ô, ƒ) -ffif. 

This gives that the sequence {Sn(x, ƒ)} is equicontinuous and therefore 
uniformly convergent, q.e.d. 

We should point out that Theorem 3.2 for K p i 2 can be also derived 
from a Bernstein-type inequality. Indeed, if 

then it can be shown (see [2]) that we also have 

(3.9) I I c v l S C p f c o p t S , / ) ^ V K p S 2 . 
v*Q JO O 

Thus the uniform convergence of {Sn(x, ƒ)} in this case follows for much 
better reasons. However (3.9) can be shown to be false for p > 2 and the best 
we can obtain from our methods for p > 2 is 

(3.10) \\f-c0\\^cP^co'P(ô,f)^. 

Similar results for higher dimensions and applications to path continuity 
of Lp processes can be found in [11]. 

Before closing we would like to point out that there are also some 
interesting applications of (3.1) when we take <É>(u)=exp u2. In fact, let ƒ be 
measurable in [0, 1] and set for each <É>, 

a>*(8,/) = i n f ]x : J J J $ ( ^ ^ ) dx dy S * ( l ) I. 

This might be thought of as the <ï>-modulus of continuity of ƒ. P. DeLand [3] 
showed that there are inequalities analogous to (3.3) and (3.6) for each 
convex <ï>. 

For the case <ï>(u) = exp u2 the following result holds: 

THEOREM 3.3. Let f be measurable in [0, 1] and such that 
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then f is essentially continuous and for a universal constant c, 

|,<x)^(»)|Sc{",.,„,,a,/)j^p 

holds at all points of the Lebesgue set of f. 

One of the consequences of this result is the following extension of a 
classical theorem of Paley-Zygmund-Salem on uniform convergence of 
random Fourier series. 

THEOREM 3.4. Let {cn} be a sequence of constants such that 

(2Jc„ surnS) — = = = < o o . 
Jo V / 8 Vlogô'1 

Then the random Fourier series £±cnemx converges uniformly with probability 
one. 

We should point out that this result was also obtained by Marcus and Jain 
[9] by entirely different methods. 
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