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The Evolution of Markov Chain
Monte Carlo Methods

Matthew Richey

1. INTRODUCTION. There is an algorithm which is powerful, easy to implement,
and so versatile it warrants the label “universal.” It is flexible enough to solve otherwise
intractable problems in physics, applied mathematics, computer science, and statistics.
It works in both probabilistic and deterministic situations. Best of all, because it was
inspired by Nature, it is blessed with extreme elegance.

This algorithm is actually a collection of related algorithms—Metropolis-Hastings,
simulated annealing, and Gibbs sampling—together known as Markov chain Monte
Carlo (MCMC) methods. The original MCMC method, the Metropolis algorithm,
arose in physics, and now its most current variants are central to computational statis-
tics. Along the way from physics to statistics the algorithm appeared in—and was
transformed by—applied mathematics and computer science. Perhaps no other algo-
rithm has been used in such a range of areas. Even before its wondrous utility had been
revealed, its discovers knew they had found

. . . a general method, suitable for fast electronic computing machines, of calcu-
lating the properties of any substance which may be considered as composed of
interacting individual molecules. [48]

This is the story of the evolution of MCMC methods. It begins with a single paper,
one with no antecedent. The original idea required the right combination of place, peo-
ple, and perspective. The place was Los Alamos right after World War II. The people
included the familiar—von Neumann, Ulam, Teller—along with several less familiar.
The perspective was that randomness and sampling could be used to circumvent insur-
mountable analytic roadblocks. There was also one last necessary ingredient present:
a computer.

The evolution of MCMC methods is marked by creative insights by individuals
from seemingly disparate disciplines. At each important juncture, a definitive paper
signaled an expansion of the algorithm into new territory. Our story will follow the
chronological order of these papers.

1. Equations of State Calculations by Fast Computing Machines, 1953, by Metro-
polis, Rosenbluth, Rosenbluth, Teller, and Teller [48], which introduced the
Metropolis algorithm.

2. Optimization by Simulated Annealing, 1983, by Kirkpatrick, Gelatt, and Vecchi
[45], which brought simulated annealing to applied mathematics.

3. Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Im-
ages, 1984, by Geman and Geman [28], which introduced Gibbs sampling.
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4. Sampling-Based Approaches to Calculating Marginal Densities, 1990, by Gel-
fand and Smith [25], which brought the power of MCMC methods to the statis-
tics community.

It is difficult to overstate the impact of these papers and the importance of MCMC
methods in modern applied mathematics. Collectively these four papers have been
cited almost 40,000 times. The original Metropolis algorithm has been called one of
the ten most important algorithms of the twentieth century [19].1

The goal here is not to provide a tutorial on how to use MCMC methods; there
are many resources for this purpose [8, 54, 27, 29, 10, 65, 61]. Rather, the goal is to
tell the story of how MCMC methods evolved from physics into applied mathematics
and statistics. Parts of this story have already been told. Much has been written about
the research at Los Alamos that led to the Metropolis algorithm; see, for example,
the Los Alamos publications [2, 46, 47, 32]. A very nice overview of the connections
between the Metropolis algorithm and modern statistics can be found in [36, 10, 63].
An unpublished work by Robert and Casella [55] also focuses on the history of MCMC
methods, mostly from a statistician’s perspective. Less has been said about the history
of simulated annealing and the role of MCMC methods in image restoration.

2. THE BEGINNING: METROPOLIS ET AL., 1953. Our story begins with the
Metropolis algorithm, the original Markov chain Monte Carlo method. But first we
take a brief look at the history of Monte Carlo methods and also recall some facts
about Markov chains.

2.1. Monte Carlo Methods. Shortly after World War II, Los Alamos was a hotbed of
applied mathematics and theoretical physics. Much of the work was motivated by the
intense focus on developing nuclear weapons. One particularly difficult problem was
to estimate the behavior of large (e.g., 1023) collections of atomic particles. The physi-
cal laws governing their behavior—thermodynamics, statistical physics, and quantum
mechanics—were inherently probabilistic and so complicated that traditional methods
were not sufficient for the sort of detailed analysis needed. In this setting a new idea
took hold; instead of searching for closed form, analytic solutions, one could simulate
the behavior of the system in order to estimate the desired solution. Producing sim-
ulations was a challenge. Before the late 1940s no device existed that could quickly
and accurately carry out large-scale random simulations. By the end of World War
II, things were different. Researchers at Los Alamos had access to such a device, the
ENIAC (Electronic Numerical Integrator and Computer) at the University of Pennsyl-
vania.

The use of probabilistic simulations predated the existence of a computer. The (per-
haps apocryphal) case of the 18th century Buffon’s needle is one example of how a
“manual” simulation can be used to estimate a parameter of interest, in this case π .
A more interesting, and better documented, example of simulation appears in Lord
Kelvin’s 1901 paper Nineteenth Century Clouds Over the Dynamical Theory of Heat
and Light2 [43], in which he described a method to estimate velocity distributions us-
ing simulated values obtained from a carefully constructed set of cards. There is also

1Others listed include the QR algorithm for eigenvalue calculation, the simplex method, quicksort, and the
fast Fourier transform.

2Aside from describing Monte Carlo-like simulations, this paper had a significant role in the history of
modern physics. Kelvin outlines the central problems of physics at the beginning of the twentieth century,
namely the so-called “ultraviolet catastrophe” and the Michelson-Morely “anomaly” regarding the speed of
light.
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evidence that Enrico Fermi [46, 58] used manual Monte Carlo-like methods during the
1930s in his early work on nuclear fission.3

At Los Alamos credit for introducing probabilistic simulation goes to Stanislaw
Ulam. As the story goes [20, 64], in 1946 Ulam was confined to bed to recover from
an illness. To pass the time he played Canfield Solitaire, a form of solitaire for which
the outcome is determined once the cards are shuffled and dealt. As he played, Ulam
wondered how to determine the probability of winning a game. Clearly, this was an
intractable calculation, but he imagined programming the ENIAC to simulate a random
shuffle and then apply the rules of the game to determine the outcome. Repeating this a
large number of times would give an empirical estimate of the probability of winning.
Analyzing solitaire did not justify using Los Alamos’s precious computing resources,
but Ulam saw that this new approach could be used in realistic and important settings.
He conveyed the idea to his friend John von Neumann.

In 1947, von Neumann and others were working on methods to estimate neutron
diffusion and multiplication rates in fission devices (i.e., nuclear bombs) [20]. Fol-
lowing Ulam’s suggestion, von Neumann proposed a simple plan: create a relatively
large number of “virtual” neutrons and use the computer to randomly simulate their
evolution through the fissionable material. When finished, count the number of neu-
trons remaining to estimate the desired rates. In modern terms, the scale was extremely
modest: a simulation of just 100 neutrons with 100 collisions each required about five
hours of computing time on the ENIAC. Nonetheless, the utility of this approach was
immediately apparent. From this point forward, randomized simulations—soon to be
called Monte Carlo methods—were an important technique in physics.

Apparently, Nicholas Metropolis was responsible for the name Monte Carlo meth-
ods.

. . . I suggested an obvious name for the statistical method—a suggestion not
unrelated to the fact that Stan (Ulam) had an uncle who would borrow money
from relatives just because he had to go to Monte Carlo. The name seems to
have endured. [46]

This new approach first appeared in Ulam and Metropolis’s 1949 paper The Monte
Carlo Method [49].

We want to now point out that modern computing machines are extremely well
suited to perform the procedures described. In practice, a set of values of param-
eters characterizing a particle is represented, for example, by a set of numbers
punched on a card. . . . It may seem strange that the machine can simulate the
production of a series of random numbers, but this is indeed possible. In fact, it
suffices to produce a sequence of numbers between 0 and 1 which have a uniform
distribution . . . 4

3In 1955, fellow Nobel laureate Emilio Segrè recalled

. . . Fermi acquired, by the combined means of empirical experience, Monte Carlo calculation, and more
formal theory, that extraordinary feeling for the behavior of slow neutrons . . . [58]

4A standard approach of the era was the so-called “middle third” method. Let rk be an n-digit random num-
ber. Square it and extract the middle n digits to form rk+1. Linear congruential methods would be developed
shortly thereafter by Lehmer and others.
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From our perspective, it is perhaps difficult to appreciate the revolutionary nature of
simulation as an alternative to analytical methods. But at the time, few mathematicians
or physicists had any experience with the computer, much less simulation.

In addition to sampling from the uniform distribution, there soon emerged ways
to sample from other probability distributions. For many of the standard distributions
(e.g., the normal distribution), mathematical transformations of the uniform distribu-
tion sufficed. For more general distributions, in particular ones arising from physical
models, more sophisticated techniques were needed.5 One early method, also due to
von Neumann, became what we now call acceptance-rejection sampling. These meth-
ods were far from universal and not well suited for higher-dimensional probability
distributions. MCMC methods overcame these limitations. The key was the use of a
Markov chain, which we now briefly review.

2.2. Markov Chains. Given a finite state (configuration) space S = {1, 2, . . . , N },
a Markov chain is a stochastic process defined by a sequence of random variables,
Xi ∈ S, for i = 1, 2, . . . such that

Prob(Xk+1 = xk+1 | X1 = x1, . . . , Xk = xk) = Prob(Xk+1 = xk+1 | Xk = xk).

In other words, the probability of being in a particular state at the (k + 1)st step only
depends on the state at the kth step. We only consider Markov chains for which this
dependence is independent of k (that is, time-homogeneous Markov chains). This gives
an N × N transition matrix P = (pi j ) defined by

pi j = Prob(Xk+1 = j | Xk = i).

Note that for i = 1, 2, . . . , N ,

N∑
j=1

pi j = 1.

The (i, j)-entry of the K th power of P gives the probability of transitioning from state
i to state j in K steps.

Two desirable properties of a Markov chain are:

• It is irreducible: for all states i and j , there exists K such that (P K )i, j �= 0.
• It is aperiodic: for all states i and j , gcd{K : (P K )i, j > 0} = 1.

An irreducible, aperiodic Markov chain must have a unique distribution π = (π1, π2,

. . . , πN ) on the state space S (πi = the probability of state i) with the property that

π = πP.

We say that the Markov chain is stable on the distribution π , or that π is the stable
distribution for the Markov chain.

MCMC methods depend on the observation:

If π is the stable distribution for an irreducible, aperiodic Markov chain, then we
can use the Markov chain to sample from π .

5See [15] for a thorough overview of modern sampling methods.
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To obtain a sample, select s1 ∈ S arbitrarily. Then for any k > 1, if sk−1 = i , select
sk = j with probability pi j . The resulting sequence s1, s2, . . . has the property that as
M → ∞,

|{k : k ≤ M and sk = j}|
M

→ π j (1)

with probability one.
Any large (but finite) portion of this sequence approximates a sample from π . Often,

one discards the first m terms of the sequence, and uses the “tail” of the sequence

sm+1, sm+2, . . . , sM

as the sample.
However they are obtained, samples from π provide a way to approximate proper-

ties of π . For example, suppose f is any real-valued function on the state space S and
we wish to approximate the expected value

E[ f ] =
N∑

i=1

f (i)πi .

To do so, select a sample s1, s2, . . . , sM from π and the ergodic theorem guarantees
that

1

M

M∑
i=1

f (si ) → E[ f ] (2)

as M → ∞ with the convergence O(M−1/2) [34].
Given the transition matrix for an irreducible, aperiodic Markov chain, it is a stan-

dard exercise to determine its stable distribution. We are keenly interested in the in-
verse problem:

Given a distribution π on a finite state space, find an irreducible, aperiodic
Markov chain which is stable on π .

The solution is the Metropolis algorithm.

2.3. Statistical Mechanics and the Boltzmann Distribution. The Metropolis algo-
rithm was motivated by the desire to discern properties of the Boltzmann distribution
from statistical mechanics, the branch of physics concerned with the average behavior
of large systems of interacting particles. Let us briefly develop some of the fundamen-
tal ideas behind the Boltzmann distribution.

A state of the particles is described by a configuration ω taken from the configura-
tion space �. The configuration space can be infinite or finite, continuous or discrete.
For example, we might start with N interacting particles, each described by its posi-
tion and velocity in three-dimensional space. In this case � is an infinite, continuous
subset of R

6N . Alternatively, � could be described by taking a bounded subset, �, of
the integer lattice in the plane and to each site attaching a value, say ±1. The value at
a site might indicate the presence of a particle there, or it might indicate an orientation
(or “spin”) of a particle at the site. If |�| = N , then the configuration space consists
of all 2N possible assignments of values to sites in �.
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The physics of a configuration space � is described by an energy function E : � →
R

+. We say that E(ω) is the energy of a configuration ω. For the continuous example
above, energy could reflect the sum of gravitational potential energies. For the discrete
example, the energy could reflect the total influence that neighboring particles exert on
each other, as in the Ising model, which we will look at shortly.

A fundamental principle of statistical physics is that Nature seeks low-energy con-
figurations. The random organization of molecules in a room is governed by this prin-
ciple. Rarely observed configurations (e.g., all of the molecules gathering in a corner
of the room) have high energies and hence very low probabilities. Common configura-
tions (e.g., molecules isotropically distributed throughout the room) have low energies
and much higher probabilities, high enough so that they are essentially the only con-
figurations ever observed.

For a system at equilibrium, the relative frequency of a configuration ω is given by
its Boltzmann weight,

e−E(ω)/kT , (3)

where T is the temperature and k is Boltzmann’s constant.
For any ω ∈ �, its Boltzmann probability, Boltz(ω), is

Boltz(ω) = e−E(ω)/kT

Z
. (4)

The denominator

Z =
∑
ω′∈�

e−E(ω′)/kT

is called the partition function. In any realistic setting, the partition function is analyti-
cally and computationally intractable. This intractability single-handedly accounts for
the dearth of analytic, closed-form results in statistical mechanics.

The relationship between energy and probability leads to expressions for many in-
teresting physical quantities. For example, the total energy of the system, 〈E〉, is the
expected value of the energy function E(ω) and is defined by

〈E〉 =
∑
ω∈�

E(ω)Boltz(ω) =
∑

ω∈� E(ω)e−E(ω)/kT

Z
. (5)

Many other physical quantities are defined similarly. In each case there is no avoiding
the partition function Z .

Expressions such as (5) could be naively approximated using Monte Carlo sam-
pling. To do so, generate a sample ω1, ω2, . . . , ωM uniformly from �, and estimate
both the numerator and denominator of (5) separately, resulting in

〈E〉 ≈
∑M

i=1 E(ωi )e−E(ωi )/kT∑M
i=1 e−E(ωi )/kT

.

Metropolis et al. understood the limitations of sampling uniformly from the config-
uration space and proposed an alternative approach.

This method is not practical . . . since with high probability we choose a con-
figuration where exp(−E/kT ) is very small; hence a configuration with very
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low weight. The method we employ is actually a modified Monte Carlo scheme
where, instead of choosing configurations randomly, then weighting them with
exp(−E/kT ), we choose configurations with probability exp(−E/kT ) and
weight them evenly. [48]

In other words, it would be much better to sample from � so that ω is selected with
probability Boltz(ω). If this can be done, then for any such sample ω1, ω2, . . . , ωM ,

1

M

M∑
i=1

E(ωi ) → 〈E〉

with, as noted earlier, O(M−1/2) convergence. The challenge is to sample from the
Boltzmann distribution.

2.4. The Metropolis Algorithm. The genius of the Metropolis algorithm is that it
creates an easily computed Markov chain which is stable on the Boltzmann distri-
bution. Using this Markov chain, a sample from the Boltzmann distribution is easily
obtained. The construction requires only the Boltzmann weights (3), not the full proba-
bilities (4), hence avoiding the dreaded partition function. To appreciate the motivation
for the Metropolis algorithm, let’s recreate Metropolis et al.’s argument from their 1953
paper.

The setting for the Metropolis algorithm includes a large but finite configuration
space �, an energy function E , and a fixed temperature T . Let �̃ be any sample of
configurations selected with replacement from �. It is possible, even desirable, to al-
low �̃ to be larger than �. By adding and removing configurations, we want to modify
�̃ so that it becomes (approximately) a sample from the Boltzmann distribution. Sup-
pose |�̃| = Ñ and let Nω denote the number of occurrences of ω in �̃. To say that the
sample perfectly reflects the Boltzmann distribution means

Nω

Ñ
∝ e−E(ω)/kT ,

or equivalently, for any two configurations ω and ω′,

Nω′

Nω

= e−E(ω′)/kT

e−E(ω)/kT
= e−�E/kT , (6)

where �E = E(ω′) − E(ω). Notice that this ratio does not depend on the partition
function.

To get from an arbitrary distribution of energies to the desired Boltzmann distri-
bution, imagine applying our yet-to-be-discovered Markov chain on � to all of the
configurations in �̃ simultaneously. Start by selecting a proposal transition: any irre-
ducible, aperiodic Markov chain on �. Denote the probability of transitioning from
a configuration ω to a configuration ω′ by Pω,ω′ . As well, assume that the proposal
transition is symmetric, that is, Pω,ω′ = Pω′,ω.

Consider configurations ω and ω′ where E(ω) < E(ω′). Allow transitions from
configurations with high energy E(ω′) to configurations with low energy E(ω) when-
ever they are proposed; the number of times this occurs is simply

Pω′,ω Nω′ .

By itself, this is just a randomized version of the steepest descent algorithm; any
“downhill” transition is allowed.
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In order to have any hope of reaching equilibrium, we must occasionally allow “up-
hill” transitions from configurations with low energy E(ω) to ones with high energy
E(ω′), that is, with some probability Prob(ω → ω′). The number of times such a move
is proposed is Pω,ω′ Nω and hence the number of moves that actually occur is

Pω,ω′ NωProb(ω → ω′).

Since Pω,ω′ = Pω′,ω, the net flux between configurations with energy E(ω) and those
with energy E(ω′) is

Pω,ω′
[
Nω′ − NωProb(ω → ω′)

]
. (7)

If (6) holds, that is, if the distribution of energies in �̃ perfectly reflects the Boltzmann
distribution, then the flux (7) should be zero. The result is what physicists call the
detailed balance. This implies that the uphill probability must be

Prob(ω → ω′) = e−�E/kT .

This choice of occasional “uphill” transitions provides the magic of the Metropolis
algorithm.

This process will also drive an arbitrary distribution of energies toward the Boltz-
mann distribution. Suppose there are too many configurations with high energy E(ω′)
relative to configurations with the low energy E(ω), that is,

Nω′

Nω

> e−�E/kT .

In this case, the flux (7) is positive and there will be more transitions from configura-
tions with energy E(ω) to those with energy E(ω′) than in the other direction. Accord-
ingly, the distribution of energies in �̃ will move toward the Boltzmann distribution.
Repeating this process a large number of times will produce a set of configurations
whose distribution of energies approximates the Boltzmann distribution.

Based on this argument and physical intuition, Metropolis et al. were satisfied that
their algorithm would produce samples from the Boltzmann distribution. More math-
ematically rigorous proofs of the convergence to the stable distribution would soon
appear [34, 35]. Other important practical considerations, particularly understanding
the rate of convergence, would have to wait longer.6

We now formally state the Metropolis algorithm. Assume a suitable proposal tran-
sition has been selected. For an arbitrary ω ∈ � define the transition to a configuration
ω∗ as follows.

Step 1. Select ω′ according to the proposal transition.
Step 2A. If E(ω′) ≤ E(ω), or equivalently, Boltz(ω′) ≥ Boltz(ω), let ω∗ = ω′. In
other words, always move to lower energy (higher probability) configurations.
Step 2B. If E(ω′) > E(ω), or equivalently, Boltz(ω′) < Boltz(ω), let ω∗ = ω′ with
probability

Boltz(ω′)
Boltz(ω)

= e−�E/kT . (8)

Otherwise, ω∗ = ω.
6Metropolis et al. knew the rate of convergence was an open question: “[Our] argument does not, of course,

specify how rapidly the canonical distribution is approached.” [48]
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Several observations are in order:

• This process defines an irreducible, aperiodic Markov chain on the configuration
space �.

• The ratio (8) is crucial to the computational utility of the Metropolis algorithm in
that it avoids the intractable partition function.

• The steps in the chain are easily computable, or at least as easily computable as the
proposal transition, E(ω), and, most importantly, �E = E(ω′) − E(ω). In many
settings, �E is extremely simple to compute; often it is independent of |�|.

• The Markov chain defined by the Metropolis algorithm can be implemented without
knowing the entire transition matrix.

The first application of the Metropolis algorithm in [48] was to analyze the so-
called hard spheres model, a simple model of nonoverlapping molecules (e.g., a gas).
Despite its apparent simplicity, the hard spheres model has proven to be a rich source
of insight for statistical physicists. Using their new algorithm on 224 two-dimensional
discs, Metropolis et al. allowed the system to evolve from an ordered state to a state
close to equilibrium. The results were encouraging; the physical values they estimated
agreed nicely with estimates obtained by traditional analytic methods. Best of all, the
calculation times were reasonable. A single data point (of which there were hundreds)
on a curve representing information about the hard spheres model only took about four
or five hours of computing time on Los Alamos’s MANIAC (Mathematical Analyzer,
Numerator, Integrator, and Calculator).

2.5. The Metropolis Algorithm and the Ising Model. For a more illustrative ap-
plication of the Metropolis algorithm, consider the two-dimensional Ising model. The
Ising model has been extensively studied in both physics and mathematics. For more
on the history and features of the Ising model, see [6, 11]. In addition to illustrating the
effectiveness of the Metropolis algorithm, the Ising model plays a fundamental role in
Geman and Geman’s work on image reconstruction.

The Ising model can be thought of as a simple model of a ferromagnet in that it
captures the tendency for neighboring sites to align with each other or with an external
magnetic field. Formally, the two-dimensional Ising model is defined on a bounded
planar lattice with N sites. At each lattice site, there is a “spin” represented by ±1. A
configuration is given by ω = (ω1, ω2, . . . , ωN ), where ωi = ±1 is the spin at the i th
site; hence |�| = 2N . The energy of a configuration is defined as

Eising(ω) = −J
∑
〈i, j 〉

ωiω j − H
N∑

i=1

ωi (9)

where J > 0 represents the nearest-neighbor affinity, H > 0 represents the external
field, and 〈i, j〉 indicates that sites i and j are nearest neighbors, that is, sites that
share either a horizontal or vertical bond. We will assume there is no external field
(i.e., H = 0) and that J = 1.

One reason that the Ising model has long interested statistical physicists is that it
exhibits a phase transition. Mathematically, a phase transition occurs when a quantity
undergoes a dramatic change as a parameter passes through a critical value. The most
familiar example of a phase transition occurs in water as it freezes or boils; in this
case, the density of water changes dramatically as the temperature T passes through
the critical value of Tc = 0 (or Tc = 100).
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An important phase transition for the two-dimensional Ising model occurs in the
magnetization. For a configuration ω, define

M(ω) =
N∑

i=1

ωi .

The magnetization 〈M〉T at a temperature T is the expected value of M(ω):

〈M〉T =
∑
ω∈�

M(ω)Boltz(ω)

= 1

Z

∑
ω∈�

M(ω)e−Eising(ω)/kT . (10)

At high temperatures, states are essentially uniformly distributed and hence 〈M〉T

is zero; in particular, there is almost no correlation between sites. However, as the tem-
perature is lowered, spontaneous magnetization occurs: there is a critical temperature,
Tc, below which sites influence each other at long ranges. One of the most celebrated
results of statistical physics is Osager’s exact calculation of the critical temperature for
the two-dimensional Ising model:7

kTc/J = 2

ln(1 + √
2)

≈ 2.269.

Let’s use the Metropolis algorithm to visualize the phase transition in the magne-
tization for an Ising lattice with N sites. To implement Step 1, we need a proposal
transition process between configurations ω and ω′. A simple way to do this is to pick
a lattice site i uniformly from 1, 2, . . . , N . At site i , with probability 1/2, flip the
spin ωi to its opposite value; otherwise keep its current value. Notice that ω′

j = ω j for
all j �= i ; that is, only the one site, ωi , is affected. This proposal transition between
configurations is irreducible, aperiodic, and symmetric.

For Step 2, we must decide whether to keep the proposed ω′. The important quantity
is the change in energy:

�E = Eising(ω
′) − Eising(ω)

= (ω′
i − ωi )

∑
〈i, j 〉

ω j ,

where the sum is over the four nearest neighbors of the i th site. Hence �E only de-
pends on the spins at the four sites neighboring the affected site and therefore the
computational cost of updating a site is both small and independent of the size of the
lattice. This dependence on the local structure, the so-called local characteristics, is a
recurring part of the Metropolis algorithm and MCMC methods in general.

Another recurring—but vexing—theme of MCMC methods is convergence. In gen-
eral, it is extremely hard to determine how many iterations of the algorithm are re-
quired to reasonably approximate the target distribution. Also, an unavoidable feature
of a Markov chain is sequential correlation between samples. This means it can take

7Surprisingly, there is no phase transition for the Ising model in one dimension. For a purely combinatorial
argument for the existence of a phase transition for the two-dimensional Ising model, see [44].
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a long time to traverse the configuration space, especially near the critical tempera-
ture where things are most interesting.8 See Diaconis [17] for a survey of convergence
results related to Ising-like models both near and far from the critical temperature.

2.6. An Application of the Metropolis Algorithm. Figure 1 shows two snapshots of
a 200 × 200 Ising lattice; black indicates a spin of +1 and white a spin of −1. The lat-
tice on the left is above the critical temperature for a phase transition, while the lattice
on the right is below it. In each case, the Metropolis algorithm ran long enough so that
the resulting sequence of states represented a sample from the Boltzmann distribution.
On the left it is visually evident that there is little correlation of spin values of sites
located some distance from each other. On the right there is a clear long-range correla-
tion between spins. This qualitative difference reflects two distinct phases of the Ising
model.

Figure 1. A 200 × 200 Ising model simulated using the Metropolis algorithm. The image on the left is above
kTc/J ≈ 2.269 and exhibits very little long-range correlation between sites. The image on the right is below
kTc/J ≈ 2.269 and shows a clear long-range correlation between sites.

2.7. Attribution. So who is responsible for the Metropolis algorithm? That there are
five co-authors of [48] (including two husband-and-wife teams) makes any claim of
“ownership” murky. Given the passage of time, the answer will probably never be
known. Perhaps the final word on the subject belongs to Marshall Rosenbluth, the last
survivor of the five co-authors, who commented on this question a few months before
his death in 2003. At a conference celebrating the 50th anniversary of the Metropolis
algorithm, he stated “Metropolis played no role in the development other than provid-
ing computer time” [32]. Rosenbluth went on to say that the idea to use Monte Carlo
methods came from conversations with Ulam and von Neumann and that Teller made
useful suggestions that led to replacing ordinary averages with averages weighted by
the Boltzmann distribution. As well, he claimed that he and his wife and co-author,
Arianna, did the important work.

There is evidence that essentially the same idea was independently proposed by
Bernie Alder, Stan Frankel, S. G. Lewinson, and J. G. Kirkwood working at California

8The Swendsen-Wang algorithm [60] provides a significant, and elegant, solution to the second problem.
This version of the Metropolis algorithm updates entire clusters of like spins. As a result, it traverses the config-
uration space much more rapidly, even at and below the critical temperature. The Swendsen-Wang algorithm is
particularly interesting in that it introduces “bond” variables, an idea that appears in the image reconstruction
work of Geman and Geman and also in Bayesian hierarchical models in statistics.
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Institute of Technology and the Lawrence Livermore National Laboratories in the late
1940s. When asked, Alder is quite clear about their role.

My guess is we did it first at Cal Tech. It’s not that difficult to come up with
that algorithm, which, by the way, I think is one of, if not THE, most powerful
algorithms. . . . The fact is, we never published—you can’t publish something
your boss doesn’t believe in! [50]

Support from their boss was not the only thing Alder and his colleagues lacked. They
also did not have easy access to the tool most crucial to an implementation of the
algorithm: a computer.

Interestingly, in 1947 Frankel and Metropolis had co-authored one of the first papers
demonstrating the usefulness of the computer to perform numerical (not Monte Carlo)
integration [22]. No doubt, the interplay between all these individuals during this era
makes a strong argument that credit for what we now call the Metropolis algorithm
should be shared among many.

2.8. Interlude. From the 1950s to the 1980s, most of the interest in the Metropo-
lis algorithm came from the physics community. One exception was Hammersley
and Handscomb’s 1964 classic Monte Carlo Methods [34]. This delightful—and still
relevant—monograph describes that era’s state of the art of Monte Carlo methods, in-
cluding a short survey of Markov chain Monte Carlo methods in statistical mechanics.

Physicists of this era were busy developing generalizations of the Metropolis algo-
rithm, many of which were applied to spin models such as the Ising model. One of
the first of these was the “heat bath” proposed by Glauber9 in 1963 [31]. Glauber’s
algorithm moves through the lattice sites sequentially. At the i th site, the spin ωi is
assigned according to the local Boltzmann weight

Prob(ωi = s) = e−(s
∑

〈i, j 〉 ω j)/kT ,

where the sum, as usual, is over the nearest neighbor sites of i . Interestingly, Glauber’s
motivation was to understand analytical properties of the time-dependent (nonequilib-
rium) dynamics of spin models, not to develop a new computational tool. A decade
later, Flinn [21] described a similar “spin-exchange” algorithm to computationally
investigate phase transitions in the Ising model. Creutz in 1979 [13] showed how
single-site updates could be applied to SU(2) (special unitary group of degree 2) gauge
theories.

Another generalization appeared in 1965 when A. A. Barker [3] introduced an al-
ternative to the Metropolis construction, resulting in one more Markov chain with the
Boltzmann distribution as its stable distribution. The existence of these variants raised
the questions: How many Metropolis-like algorithms are there? Among all the vari-
ants, which one, if any, is best?

Answers to these questions appeared in the 1970s, starting with the work of the
statistician W. K. Hastings. He was the first to see that the Metropolis algorithm was a
(perhaps, the) general-purpose sampling algorithm. In an interview, Hastings recalled
how he came across the algorithm.

9Glauber is also known for his contributions to the quantum theory of optical coherence, work for which
he shared the 2005 Nobel Prize.
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[The chemists] were using Metropolis’s method to estimate the mean energy of
a system of particles in a defined potential field. With six coordinates per par-
ticle, a system of just 100 particles involved a dimension of 600. When I learned
how easy it was to generate samples from high dimensional distributions using
Markov chains, I realised how important this was for Statistics and I devoted all
my time to this method and its variants which resulted in the 1970 paper. [57]

This 1970 paper was Monte Carlo Sampling Methods using Markov Chains and Their
Applications [35] in which Hastings was able to distill the Metropolis algorithm down
to its mathematical essentials. He also demonstrated how to use the Metropolis algo-
rithm to generate random samples from a variety of standard probability distributions,
as well as in other settings, such as from the group of orthogonal matrices. The impor-
tance of this paper was not immediately understood; recognition would have to wait
for Gelfand and Smith’s work twenty years later. In statistical circles, the Metropolis
algorithm is now often referred to as the Metropolis-Hastings algorithm.

Let’s briefly look at Hastings’s generalization of the Metropolis algorithm. Given
a distribution π from which we want to sample, select any Metropolis-like proposal
transition, Q = (qi j), on the state space S. Unlike in the original Metropolis algorithm,
it does not need to be symmetric. Define the transition matrix P = (pi j) by

pi j =
{

qi jαi j if i �= j,
1 − ∑

k �=i pik if i = j,
(11)

where αi j is given by

αi j = si j

1 + πi
π j

qi j

q j i

.

The values si j can be quite general, so long as (i) si j = s ji for all i, j and (ii) αi j ∈
[0, 1]. For any such choice of si j , it is easy to verify that π is the unique stable distri-
bution for P. For a symmetric Q, a simple choice of si j recovers the original Metropolis
algorithm.

For a given distribution π , different choices of the si j lead to qualitatively different
Metropolis-like algorithms, all of which produce a Markov chain stable on π . Why
does only the original Metropolis(-Hasting) algorithm live on? The reason was pro-
vided by Hastings’s student, P. H. Peskun. Peskun [52] showed that among all choices
of the si j , the variance of the estimate given in (2) is asymptotically minimal for the
choice that leads to the Metropolis algorithm. Whether by luck or intuition, the first
example of a Markov chain Monte Carlo method proved to be the best.

3. SIMULATED ANNEALING AND COMBINATORIAL OPTIMIZATION:
KIRKPATRICK ET AL., 1983. Despite the popularity of the Metropolis algorithm
in statistical physics and Hastings’s observation of its potential as a general-purpose
sampling tool, before 1980 the algorithm was little known in other circles. The situ-
ation changed with the appearance of Optimization by Simulated Annealing [45] by
Scott Kirkpatrick, C. D. Gelatt, and M. P. Vecchi in 1983. At almost the same time
V. Čerńy, a Czech applied mathematician, independently developed equivalent ideas
in his 1985 paper Thermodynamical Approach to the Traveling Salesman Problem:
An Efficient Simulation Algorithm [9]. Kirkpatrick et al.’s work is better known and
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rightfully so; they did more to develop the mathematics of annealing and applied it
to a larger collection of problems. Although we will focus primarily on their work,
Čerńy’s paper is significant in its own right and deserves to be more widely read.

Kirkpatrick et al. were part of IBM’s Thomas Watson Research Center. They were
working on problems in combinatorial optimization, a type of deterministic problem
for which the Metropolis algorithm was unexpectedly effective. Combinatorial opti-
mization problems share two features:

1. An objective (cost) function for which a global minimum value is sought.

2. A discrete (often finite, but large) search space in which one looks for the global
minimum. In practice, approximations to the global minimum are the best one
can expect.

A standard example of a combinatorial optimization problem is the traveling salesman
problem (TSP) where the goal is to minimize the distance of a tour through a set
of vertices. The search space consists of possible tours and the objective function is
the total distance of a tour. Like many combinatorial optimization problems, the TSP
(when recast as a decision problem) is NP-complete.

Kirkpatrick and the other authors were trained as statistical physicists, so it was
natural for them to think of the objective function as an energy function. Knowing that
Nature seeks low energy configurations, they considered ways to use the Metropolis
algorithm to select low energy configurations from the search space. The challenge,
they discovered, was to find a way to properly utilize temperature T , a quantity for
which there is no natural analog in a combinatorial optimization setting. For large
values of T , the Metropolis algorithm produced an essentially uniform distribution,
hence was nothing more than a random search. For small values of T , the Metropolis
algorithm was susceptible to becoming trapped near local minima far removed from
the desired global minimum. An understanding of how to properly utilize T required
insights from statistical mechanics. We will construct Kirkpatrick et al.’s original ar-
gument to see how this is done.

3.1. Circuit Design and Spin Glasses. The motivating question for Kirkpatrick et al.
was not the TSP, but how to place circuits (i.e., transistors) on computer chips effi-
ciently. Circuits on the same chip communicate easily, but there is a substantial com-
munication penalty for signals connecting circuits on different chips. The goal is to
place the circuits in a way that minimizes the total communication cost with the con-
straint that there must be a (roughly) equal number of circuits on each chip.

To formulate this problem mathematically, suppose there are N circuits that must
be placed on two separate chips. A configuration ω is given by the N -tuple

ω = (ω1, ω2, . . . , ωN ),

where ωi = ±1 indicates the chip on which the i th circuit is placed. The value ai j

indicates the number of signals (connections) between circuits i and j .
Following Kirkpatrick et al., represent the between-chip communication cost as

∑
i> j

ai j

4
(ωi − ω j )

2. (12)
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The cost of an imbalance between the number of circuits on each of the two chips can
be expressed as

λ

(∑
i

ωi

)2

, (13)

where λ > 0 is the imbalance “penalty.”
Expanding (12), combining it with (13), and dropping all constant terms results in

an objective function

C(ω) =
∑
i> j

(
λ − ai j

2

)
ωiω j . (14)

By the early 1980s, researchers at IBM had developed various algorithms to (ap-
proximately) minimize C(ω). As the number of transistors N grew from several hun-
dred to thousands (and beyond), these methods were proving less viable. As Kirk-
patrick recalls,

Previous methods were arcane, if you looked at them carefully they involved
solving for conflicting objectives one after another. We knew we could do better
than that. (Scott Kirpatrick, personal communication)

Fortunately, Kirkpatrick et al. knew of a model in statistical mechanics whose energy
function bore a striking resemblance to (14). This model is called a spin glass.

Spin glasses are much like the Ising model but with a slightly different energy func-
tion

E(ω) =
∑
i> j

(
U − Ui j

)
ωiω j .

The analogy to (14) is immediate. The values of Ui j represent local attractive (ferro-
magnetic) forces between neighboring states. These are in competition with long-range
repulsive (anti-ferromagnetic) interactions represented by U . Spin glasses are called
frustrated because they cannot have configurations which simultaneously satisfy both
the attractive and repulsive requirements. As a result, the low energy ground states do
not have extended regions of pure symmetry.

For spin glasses and other frustrated systems, Kirkpatrick knew that the Metropo-
lis algorithm had to be carefully applied in order to identify low-temperature ground
states. If the system is quenched, that is, the temperature is lowered too quickly, then
it can settle into a state other than a ground state. A better approach is to anneal, that
is, to slowly lower the temperature so the system can evolve gently to a ground state.
This observation led Kirkpatrick et al. to simulated annealing.

Using the cost function in place of the energy and defining configurations by
a set of parameters {xi j }, it is straightforward with the Metropolis procedure
to generate a population of configurations of a given optimization problem at
some effective temperature. This temperature is simply a control parameter in
the same units as the cost function. The simulated annealing process consists of
first “melting” the system being optimized at a high effective temperature, then
lowering the temperature by slow stages until the system “freezes” and no further
changes occur. At each temperature, the simulation must proceed long enough
for the system to reach steady state. The sequence of temperatures and number of
rearrangements of the {xi j } attempted to reach equilibrium at each temperature
can be considered an annealing schedule. [45]
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Kirkpatrick et al. applied this new technique to several realistic problems in circuit
design, along with a demonstration of its effectiveness on the TSP. The results were
impressive—clearly simulated annealing worked. As well, around the same time Čerńy
produced similar results applying his version of simulated annealing to the TSP.

3.2. After Kirkpatrick et al. Since 1983 simulated annealing has become a standard
technique in the applied mathematician’s toolbox. The range of problems to which it
has been applied is staggering. It works, to some degree, in both discrete and contin-
uous settings. It has been used in almost every area of applied mathematics, including
operations research, biology, economics, and electrical engineering. Combinatorial op-
timization is replete with algorithms that solve particular problems—or even special
cases of particular problems—quite well. However, most are customized to fit the par-
ticular nuances of the problem at hand. Simulated annealing’s popularity is due to a
combination of its effectiveness and ease of implementation: given an objective func-
tion and a proposal transition, one can almost always apply simulated annealing.

Perhaps because of the lack of a strong mathematical framework, it took some time
for simulated annealing to become accepted in the applied mathematics community.
The first thorough empirical analysis of simulated annealing appeared in 1989 in a
series of papers by Johnson, Aragon, McGeoch, and Schevon [41, 42]. See [66, 65] for
an excellent discussion of some of the theoretical issues, a survey of the applications of
simulated annealing (especially of the type considered by Kirkpatrick et al.), and more
analysis of its performance relative to other algorithms. For an accessible description,
along with a simple example of an application of simulated annealing, see [1].

The computational efficiency of simulated annealing depends on the relationship
between the proposal transition and the energy function. A good proposal transition
changes the energy function as little as possible, that is, �E is easily computed, often
in a manner that is independent of the problem size. In the original circuit design
problem the proposal transition consists of randomly selecting a circuit and moving it
to the other chip. The cost of computing the change in energy is therefore independent
of the problem size. The advantage of these efficient, local changes was demonstrated
in the work of Geman and Geman, who used ideas from both the Metropolis algorithm
and simulated annealing to attack problems in digital image reconstruction.

3.3. An Application of Simulated Annealing. The importance of local changes can
be seen in an application of simulated annealing to the traveling salesman problem. In
this setting a configuration ω is a tour of the n vertices and is specified by a permutation
of (1, 2, . . . , n).

A simple proposal transition is defined by randomly selecting two vertices 1 ≤ i <

j ≤ n and reversing the direction of the path between them. This means if

ω = (a1, . . . , ai−1, ai , ai+1, . . . , a j−1, a j , a j+1, . . . , an)

then

ω′ = (a1, . . . , ai−1, a j , a j−1, . . . , ai+1, ai , a j+1, . . . , an).

The change in distance (energy) is easily computed:

�E = (|ai−1 − a j | + |ai − a j+1|) − (|ai−1 − ai | + |a j − a j+1|).
Figure 2 illustrates this implementation of simulated annealing on a TSP graph

consisting of 500 vertices which were randomly placed in the unit square.
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Figure 2. Simulated annealing applied to a traveling salesman problem with 500 randomly placed vertices.
The figure on the left is the initial (T = 4.0) configuration with total distance of approximately 253. The
middle configuration is after several hundred iterations (T = 0.04) and has a total length of about 50. The
configuration on the right is near the global minimum of 17 (T = 0.002).

4. GIBBS SAMPLING AND A BAYESIAN PERSPECTIVE: GEMAN AND
GEMAN, 1984. The next chapter in our story takes place in 1984 when the brothers
Donald and Stuart Geman, in Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images [28], demonstrated that a variant of the Metropo-
lis algorithm could be applied to problems in digital image restoration. This paper
introduced a new MCMC method, Gibbs sampling.

4.1. Bayesian Digital Images. A simple model of a digital image consists of pixel
elements arranged on a rectangular lattice with N sites. Each pixel takes on a value
from a set S = {1, 2, . . . , K } of intensity levels (e.g., grayscale or color levels). A
configuration (image) ω ∈ � is an assignment of an intensity level to each of the
N sites, that is, ωi ∈ S for i = 1, 2, . . . , N . Even modestly sized images result in
immensely large configuration spaces; for a 100 × 100 binary image, |�| = 210000.

Images can be degraded in many different ways. The model Geman and Geman con-
sidered consisted of a combination of blurring, nonlinear transformations, and noise.
We will focus on only additive noise, which can be modeled with N independently and
identically distributed random values N = {η1, η2, . . . , ηN }. “White noise” is com-
mon; in this case the ηi are normally distributed with mean 0 and variance σ 2 (i.e.,
ηi ∼ N (0, σ 2)). Letting ωblurred indicate the degraded (noisy) image, we have

ωblurred = ω + N .

Note that the values ωblurred
i are real numbers; the resulting image is determined by

rounding each value to the nearest value in S . The two images in Figure 3 show a two-
color 200 × 200 image and a version degraded by the addition of N (0, 1.52) white
noise.

The relationship between the original image and its degraded version is inherently
probabilistic; given any ω, there is some probability that a particular ωblurred is the de-
graded version of ω. Image reconstruction looks at the problem the other way around;
given ωblurred, there is some probability that ω is the original image. This leads to an
application of Bayes’ rule10 and the formulation of the so-called posterior distribution
for ω conditioned on ωblurred:

Prob(ω | ωblurred) = Prob(ωblurred | ω)Prob(ω)

Prob(ωblurred)
. (15)

10We will interpret probability functions and probability density functions interchangeably. Hopefully, this
will not cause confusion.
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Figure 3. A two-color 200 × 200 image, ω, and a degraded version, ωblurred, obtained by the addition of
N(0, 1.52) noise.

The goal is to find the configuration ω which maximizes Prob(ω | ωblurred), often called
the maximum a posteriori estimate.

Despite the mathematical elegance of the Bayesian formalism, finding the optimal
ω ∈ � is an extremely challenging computational problem, reminiscent of difficul-
ties encountered in statistical physics and combinatorial optimization. Geman and Ge-
man’s response was to formulate a new version of the Metropolis algorithm—Gibbs
sampling.

To understand Gibbs sampling and its connection to statistical mechanics, let’s look
at how Geman and Geman constructed the posterior distribution (15). Consider the
three probabilities on the right-hand side of (15).

• Prob(ωblurred | ω): the likelihood function.
• Prob(ω): the so-called prior distribution for ω.
• Prob(ωblurred): the denominator.

The denominator is given by

Prob(ωblurred) =
∫

ω∈�

Prob(ωblurred | ω)Prob(ω) dω,

where the integral (or sum) is over all values of ω ∈ � and hence is independent of ω.
Remembering the partition function and what we know about the Metropolis algorithm
(and simulated annealing), it is not surprising that we can safely ignore it.

The likelihood function, Prob(ωblurred | ω), is easily handled. Since

ωblurred
i = ωi + ηi ,

where ηi ∼ N (0, σ 2), it follows that

Prob(ωblurred | ω) ∝
N∏

i=1

e
− (ωblurred

i −ωi )
2

2σ2 = e
− 1

2σ2
∑N

i=1(ωblurred
i −ωi )

2
,

where any constant of proportionality will be absorbed into the denominator above.
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Determining Prob(ω), the prior distribution, is a delicate issue and the heart of
the Bayesian approach. Probabilistically it asks: What is an image? Any collection of
pixel values could be an image, but some are more likely to be interpreted as images
than others. Broadly speaking, images have patterns, i.e., contiguous regions of similar
pixel values. On the other hand, if neighboring values are uncorrelated, then the result
is the visual equivalent of white noise. This brings to mind the Ising model. Consider,
for example, the Ising lattice at equilibrium in Figure 1. The image on the left is too
“noisy” to be considered a prototype of an image. In contrast, the image on the right has
image-like features, namely a high degree of long-range correlation between pixels.

This observation suggested to Geman and Geman that the Boltzmann probability
(4), using the Ising model energy function (9), could serve as the prior distribution on
images, that is,

Prob(ω) ∝ e−Eising(ω)/kT .

To retain the idea of correlated pixel values, they let kT/J = 1 < Tc, the critical tem-
perature below which a phase transition occurs.

Putting all the parts of (15) together, the posterior distribution, Prob(ω | ωblurred),

can be written as

Prob(ω | ωblurred) ∝ e
1

2σ2
∑N

i=1(ωblurred
i −ωi )

2
e−Eising(ω)

∝ e
−

[
1

2σ2
∑N

i=1(ωblurred
i −ωi )

2+Eising(ω)
]
. (16)

Viewing (16) from a statistical mechanics perspective leads to an analog of an energy
function

Eimage(ω | ωblurred) = 1

2σ 2

N∑
i=1

(ωblurred
i − ωi )

2 + Eising(ω)

= 1

2σ 2

N∑
i=1

(ωblurred
i − ωi )

2 +
∑
〈i, j 〉

ωiω j , (17)

where 〈i, j〉 indicates that sites i and j are nearest neighbors.
Finding the most probable original image ω given ωblurred is thus equivalent to min-

imizing Eimage(ω | ωblurred). The first term of (17) is a penalty for straying too far from
the data, ωblurred, while the second term represents the desire to align neighboring pixel
values, that is, making them conform to the prior notion of a generic image. The opti-
mal solution balances the tension between these two conflicting constraints.

It is interesting to compare the approach of Kirpatrick et al. to that of Geman and
Geman, both of whom borrowed ideas from statistical mechanics. Kirpatrick et al.
started with the objective function and interpreted it as energy, eventually using the
physicist’s notion of probability. Geman and Geman started with a probabilistic situa-
tion and introduced a Bayesian structure, eventually leading to an energy function.

4.2. Gibbs Sampling. Gibbs sampling is Geman and Geman’s version of the Metro-
polis algorithm. For an image site ωi , we identify its neighborhood system, namely, its
nearest neighbors. The probability of ωi conditioned on all the other sites depends on
only the sites in the neighborhood system. Suppressing the conditional dependence on
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ωblurred, this means that

Prob(ωi | ω j such that j �= i) = Prob(ωi | ω j such that 〈i, j〉)
∝ e−Ei (ωi |ω j such that 〈i, j 〉)

Ei (ωi | ω j such that 〈i, j〉) = 1

2σ 2
(ωblurred

i − ωi )
2 +

∑
〈i, j 〉

ωiω j .

In general, a probability distribution whose conditional probabilities depend on only
the values in a neighborhood system is called a Gibbs distribution and is part of a
structure called a Markov random field, a notion introduced by the Russian statisti-
cal physicist R. L. Dobrushin [18]. The fact that the probability of the state of site i
conditioned on all the other sites depends on only the sites in a small neighborhood is
crucial to the computational efficiency of Gibbs sampling.

To implement Gibbs sampling, use any method that guarantees all sites are vis-
ited infinitely often. For example, a sequence of raster scans (in order, by rows and
columns) of the sites will suffice. At a selected site i , select ωi = k with probability

Prob(ωi = k) ∝ e
− 1

2σ2 (k−ωblurred
i )2−k

∑
〈i, j 〉 ω j . (18)

This is Gibbs sampling. Repeating this for a large number of raster scans will result in
a sequence of images that approximates a sample from the posterior distribution (16).

This method seems to differ from the Metropolis(-Hastings) algorithm in that there
is no proposal transition. Actually, Gibbs sampling fits nicely into the Hastings gen-
eralization of the Metropolis algorithm where the proposal transition probabilities are
given by (18). In the second step of the Metropolis-Hastings algorithm, the probabili-
ties αi j of (11) are all equal to one. Therefore, Gibbs sampling will produce a sequence
representing a sample from Prob(ω | ωblurred).11

Bayesian formulations of image degradation predate Geman and Geman’s work.
For example, in 1972 Richardson [53] used Bayes’ rule to define an alternative to the
standard Fourier transform methods of image reconstruction. His approach foreshad-
owed the iterative ideas that Geman and Geman developed more fully. Around the
same time others [38, 33, 51] used the Bayesian perspective in a variety of ways. As
well, earlier we noted that by 1980 Gibbs-like algorithms (often called “spin-flip” algo-
rithms) were a standard tool in statistical mechanics. Around this time, the Metropolis
algorithm was being used to generate digital textures [14].

Geman and Geman’s insight was to merge a Bayesian formulation—which provided
a richer model for describing the relationship between the original and the degraded
image—with the power of the Metropolis algorithm. The key to the computational
efficiency was the local neighborhood system, that is, the local characteristics. This
meant that calculation of �E was independent of the image size.

. . . the computational problem is overcome by exploiting the pivotal observation
that the posterior distribution is again Gibbsian with approximately the same
local neighborhood system as the original image . . . [28]

There is a second part to Geman and Geman’s Gibbs sampling that has been mostly
lost to history. They included a “temperature” parameter T and used a simple form of

11Because the transitions are no longer time-independent (as they depend on the site choice), the proof is
somewhat more involved than the straightforward original algebraic treatments given by Hastings and others.
See [34, 25, 27, 8] for proofs of the convergence of this form of Gibbs sampling.

402 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117



simulated annealing.12 The resulting probability distribution is

Prob(ω | ωblurred) ∝ e−E(ω|ωblurred)/T .

Geman and Geman’s annealing schedule used just one Gibbs sampling step at each
value of T . They not only rigorously demonstrated that this algorithm converges to the
maximum of the posterior distribution (15) as T → 0, but they also provided the first
quantitative results concerning the rate of convergence of an MCMC method.

Theorem 4.1 (Geman and Geman [28]). Consider an image with N pixels. Let Tk

be any decreasing sequence of temperatures such that
• Tk → 0 as k → ∞.
• Tk ≥ N�/ ln k for all sufficiently large k and constant �.

Then, starting at ω0 = ωblurred the Gibbs sampling sequence ωk for k = 0, 1, . . . con-
verges in distribution to the distribution which is uniform on the minimum values of
Eimage(ω) and zero elsewhere.

In other words, following the prescribed annealing schedule, Gibbs sampling must,
in theory, produce a maximum a posterori estimate of Prob(ω | ωblurred).

Even though this result guarantees convergence to the most likely image, the rate
of convergence is excruciatingly slow. For a 100 × 100 lattice (N = 104 sites), using
the theorem requires e20000 steps to go from T = 4 to T = 0.5. In practice, Geman and
Geman found that 300–1000 raster scans would produce acceptable results.

An application of Gibbs sampling is seen in the two-color images shown in Fig-
ure 4. For a two-color image Gibbs sampling (with annealing) is straightforward to
implement. At the pixel ωi , define

Ek = 1

2σ 2
(k − ωblurred

i )2 + k
∑
〈i, j 〉

ω j . (19)

Set ωi = k with probability

e−Ek/T

e−E0/kT + e−E1/kT
.

In Figure 4, on the left is the original two-color 200 × 200 image. The center image
is the result of adding N (0, 1.52) noise. The rightmost image is the result of applying
Gibbs sampling with the annealing schedule defined by Tk = 3/ ln(1 + k) for k = 1 to
k = 300. There was one complete raster scan of the image for each temperature in the
annealing schedule.

Despite the discrepancy between the theory and practice of convergence rates,
Gibbs sampling had arrived. Its effectiveness and ease of implementation within a
solid theoretical framework certainly hastened the acceptance of MCMC methods into
other areas of applied mathematics, especially computational statistics.

Geman and Geman also considered models with edges between contiguous regions
of the same color. As opposed to “observable” pixels, edges are “unobservable” quan-
tities. These sorts of models appealed to Bayesian statisticians because they are related
to hierarchical models, an idea we will describe in more depth in the next section.

12Geman and Geman were aware of the idea of simulated annealing independently of the work of Kirk-
patrick et al. (Stuart Geman, personal communication).
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Figure 4. Image restoration of a two-color 200 × 200 image using Gibbs sampling on an image degraded with
N(0, 1.52) noise. The leftmost image is the original, the rightmost image is the restoration.

5. MCMC METHODS ENTER STATISTICS: GELFAND AND SMITH, 1990.
The final chapter of our story takes place in 1990 with the appearance of Alan Gelfand
and Adrian Smith’s Sampling-Based Approaches to Calculating Marginal Densities
[25], which heralded the arrival of MCMC methods in statistics. Ostensibly, Gelfand
and Smith’s goal was to compare three different sampling-based approaches: Gibbs
sampling, Tanner and Wong’s data augmentation,13 and Rubin’s importance-sampling
algorithm (originally proposed in the discussion of Tanner and Wong’s work) [62].
Even though in 1970, Hastings saw that the Metropolis algorithm was a general pur-
pose sampling tool, it wasn’t until two decades later that Gelfand and Smith convinced
the statistics community of the power of MCMC methods.

5.1. From Gibbs to Gelfand. The emergence of Gibbs sampling in the statistics
community can be traced to a single conference—the 1986 meeting of the Royal Sta-
tistical Society. At this meeting, Julian Besag presented the suggestively entitled paper
On the Statistical Analysis of Dirty Pictures [4], in which he discussed the state of the
art in the reconstruction of degraded images (i.e., of dirty pictures) to an audience of
leading statisticians, including many leading Bayesians, along with the Geman broth-
ers. He described not only the virtues of Gibbs sampling, but also how it compared to
other techniques for image reconstruction. Interestingly, Besag appreciated Gibbs sam-
pling for its simplicity and effectiveness, but was critical of its computational demands.

In the vigorous discussion that followed the paper, it was clear that a new era in
computational statistics was about to begin. As one participant said, “ . . . we are of-
fered no alternative, as statisticians, to the route of the vast computing power being
pioneered by the Gemans” [4]. Stuart Geman made a particularly poignant comment
about the universality of Gibbs sampling, one reminiscent of Metropolis et al.’s earlier
comment about the potential universality of their original algorithm.

We are able to apply a single computer program to every new problem by merely
changing the subroutine that computes the energy function in the Gibbs repre-
sentation of the posterior distribution. [4]

Around this time, personal computing was becoming available and the effects of
Moore’s law on computational speed and memory were apparent. Besag’s concerns
about the computational demands of Gibbs sampling would soon be swept aside.

13Tanner and Wong’s work also played an important role in the introduction of Gibbs sampling to the
statistics community. In [62] they identified Gibbs sampling as a means of data augmentation but failed to
realize the full potential of its use as a way of generating samples from arbitrary probability distributions.
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Although not at the 1986 meeting, Gelfand and Smith soon became aware of Ge-
man and Geman’s work. They saw that Gibbs sampling could be “mapped” onto many
probability distributions common to statistical models, especially those arising from
a Bayesian approach. Their work was mostly a rearticulation of Geman and Geman’s
Gibbs sampling, although without annealing. The importance of their paper was how
clearly they demonstrated the effectiveness of Gibbs sampling as a statistical tech-
nique.

Gelfand and Smith’s version of Gibbs sampling in statistics can be described as
follows. Start with a joint probability distribution f (x1, x2, . . . , xN ) in which the vari-
ables represent parameters of a statistical model. The goal is to obtain (point and in-
terval) estimates for these parameters.

To fit this into the Gibbs sampling framework, assume that all the single-variable
conditional probability densities

f (xi | x j , j �= i)

are available, that is, are a type for which samples can be obtained using standard
algorithms. Examples of available distributions include the uniform, the normal, the
gamma, the Poisson, and any finite distribution. From Geman and Geman’s perspec-
tive, these are the Gibbs distributions, though with potentially large local neighbor-
hoods. To generate a sequence of samples, select �x 0 = (x0

1 , x0
2 , . . . , x0

N ) arbitrarily
and then create �x 1 = (x1

1 , x1
2 , . . . , x1

N ) as follows.

Generate a sample x1
1 from f (x1 | x0

2 , x0
3 , . . . , x0

N ).

Generate a sample x1
2 from f (x2 | x1

1 , x0
3 , x0

4 , . . . , x0
N ).

Generate a sample x1
3 from f (x3 | x1

1 , x1
2 , x0

4 , x0
5 , . . . , x0

N ).
...

Finally, generate a sample x1
N from f (xN | x1

1 , x1
2 , . . . , x1

N−1).

One cycle (a raster scan of an image) produces a new value �x 1. Repeating this process
M times produces

�x 0, �x 1, �x 2, . . . , �x M

which, as usual, approximates a sample from the joint probability distribution f (x1, x2,

. . . , xN ).
Using this sample, almost any property of the probability distribution can be in-

vestigated. For example, focusing on only the first component of each �xk produces a
sample

x0
1 , x1

1 , x2
1 , . . . , x M

1 (20)

from the marginal probability distribution of the first component, formally given by
the integral

f (x1) =
∫

x2

· · ·
∫

xN

f (x1, x2, . . . , xN ) dxN · · · dx2.

In this light, Gibbs sampling can be thought of as a multi-dimensional numerical inte-
gration algorithm. The expected value of the first component x1,

E[x1] =
∫

x1

x1 f (x1) dx1,
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is estimated by the average of the sample (20). A 95% confidence interval for x1 can
be taken directly from the sample.

Gelfand and Smith, in both [25] and its immediate follow-up [24], applied Gibbs
sampling to a rich collection of statistical models. Most of these were Bayesian hier-
archical models, structurally similar to Geman and Geman’s Bayesian image models
with edge weights.

A simple three-level hierarchical model uses Bayes’ rule to bind together data, X , a
parameter to be estimated, λ, and an additional hyper-parameter, β. Both λ and β can
be vectors.

• At the first level, X is described by its likelihood function f (X | λ), i.e., the proba-
bility of observing X conditioned on λ.

• At the next level, λ is modeled by a probability density function, g(λ | β), condi-
tioned on the parameter β.

• At the third level, the hyper-parameter β is modeled with another density function
h(β). The choice of h(β) reflects the modeler’s prior beliefs about likely values of
β.

The three density functions are stitched together with Bayes’ rule, producing a proba-
bility density function for λ and β conditioned on the data X :

F(λ, β | X) ∝ f (X | λ)g(λ | β)h(β). (21)

The constant of proportionality is the reciprocal of

∫
λ

∫
β

f (X | λ)g(λ | β)h(β) dβ dλ, (22)

which is independent of the parameters λ and β, though dependent on the data X . The
integrals (or sums, in the case of discrete distributions) are over all values of λ and β.
In most cases (22) is impossible to evaluate. Recalling what we’ve seen so far, it is not
surprising that we can comfortably ignore this intimidating-looking expression.

Hierarchical Bayesian models were known to statisticians before 1990. They nat-
urally describe the subtle connections between data, observed parameters, and other
unobserved parameters (sometimes called latent variables). Their utility was limited
by their analytic intractability. Even if a hierarchical model accurately describes the
interplay of data and parameters, it is usually extremely difficult, if not impossible,
to obtain analytical expressions for important quantities such as point or interval es-
timates. Gelfand and Smith showed that many of these hierarchical models fit nicely
into a form suitable for Gibbs sampling.

To see Gibbs sampling in action, let’s consider a model of water pump failure rates
originally described by Gaver and O’Muircheartaigh [23] and used by Gelfand and
Smith in [25]. The data, X , are given by pairs (si , ti ) for i = 1, 2, . . . , 10. Each pair
represents failure information for an individual pump. For each pump, assume that the
number of failures si in time ti is given by a Poisson(λi ti ) distribution, that is,

fi (si | λi ) = (λi ti )
si e−λi ti

si ! , i = 1, 2 . . . , 10.
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Assuming the failures occur independently, the product gives the likelihood func-
tion for �λ = (λ1, λ2, . . . , λ10):

f (X | �λ) =
10∏

i=1

(λi ti )
si e−λi ti

si ! .

The traditional “frequentist” approach is to use λ̄i = si/ti as the point estimate of
λi for i = 1, 2, . . . , 10. The Bayesian approach is to assume that the individual λi ’s
are linked together by a common distribution. A natural choice in this case, and the
one used by Gelfand and Smith, is a gamma distribution with parameters α and β, so
that the density for the i th parameter is

gi (λi | α, β) = λα−1
i e−λi /β

βα�(α)
, i = 1, 2, . . . , 10.

Gelfand and Smith estimated the “shape” parameter α from the data using the
method of moments and considered β as the hyper-parameter. The product of the
gi (λi | α, β) for i = 1, 2, . . . , 10 gives the second-level density in the hierarchy:

g(�λ | β) =
10∏

i=1

λα−1
i e−λi /β

βα�(α)
.

The remaining hyper-parameter β is described by an inverse gamma distribution
with parameters γ and δ, so that

h(β) = δγ e−δ/β

βγ+1�(γ )
.

The parameters γ and δ are selected so as to make the top-level inverse gamma rea-
sonably diffuse.14

The resulting posterior joint density (21) for the parameters λ1, λ2, . . . , λ10 along
with the scale parameter β is

F(λ1, . . . , λ10, β | X) ∝
[

10∏
i=1

(λi ti )e−λi ti

si !

][
10∏

i=1

λα−1
i e−λi /β

βα�(α)

][
δγ e−δ/β

βδ+1�(γ )

]
. (23)

This complicated-looking joint density possesses the necessary structure for apply-
ing Gibbs sampling. For i = 1, 2, . . . 10, the density for λi conditioned on the other
parameters is proportional to

λ
si +α−1
i e−λi (ti +1/β). (24)

The constant of proportionality is obtained by absorbing all factors independent of λi .
The form of (24) shows that Prob(λi | λ j , j �= i, X, β) is a gamma distribution with
parameters si + α − 1 and 1/(ti + 1/β). Since the gamma distribution is available,
Gibbs sampling can be applied at this step.

14A diffuse distribution tries to convey as little prior information as possible about the parameters. In the
extreme case, a distribution can be “noninformative.” A common example of such a distribution is the uniform
distribution on the parameter space.
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The density for β, conditioned on the other parameters, is proportional to

e(
∑10

i=1 λi +δ)/β

β10α+γ+1
,

showing that Prob(β | λ1, . . . , λ10, X) is an inverse gamma distribution with parame-
ters γ + 10α and

∑10
i=1 λi + δ. Once again, this is an available distribution.

Gelfand and Smith applied Gibbs sampling to the posterior distribution in the pumps
model and obtained marginal posterior distributions for all the λi ’s and for β. The
results were impressive: in relatively few iterations, the posterior samples recreated
results obtained from other more involved integration methods.

Some of the results of using Gibbs sampling with the pumps model are shown in
Figure 5. The histograms show samples for λ2 (s2 = 1 and t2 = 15.72, λ̄2 = s2/t2 =
0.0636) and λ8 (s8 = 1 and t8 = 1.048, λ̄8 = s8/t8 = 0.9542). From the samples we
can estimate the means and 95% confidence intervals. For λ2 the estimate of the mean
is 0.1541 and the 95% confidence interval is (0.0294, 0.3762). For λ8 these are 0.8246
and (0.1459, 2.1453).

Figure 5. Histograms of samples for λ2 and λ8 from the Gelfand and Smith pumps model. From these samples,
estimates of the means and 95% confidence intervals are easily obtained. For λ2 the estimate of the mean is
0.1541 and the 95% confidence interval is (0.0294, 0.3762). For λ8 these are 0.8246 and (0.1459, 2.1453).

The pumps model is an example of a conjugate hierarchical model, that is, one
whose intermediate distributions (in this case, those for the λi and β) are similar to
the original distributions in the hierarchical model. This fits with the Gibbs sampling
requirement that these distributions be available. Bayesians had already identified a
large number of conjugate models, all of which were candidates for Gibbs sampling.

Gelfand and Smith also applied Gibbs sampling (along with the other two algo-
rithms they studied) to other settings, including a multivariate normal model, a vari-
ance component model, and a normal means model. Their conclusions “primed the
pump” for Gibbs sampling to enter computational statistics.

[These algorithms] . . . are all straightforward to implement in several frequently
occurring practical situations, thus avoiding complicated numerical or analytical
approximation exercises (often necessitating intricate attention to reparametriza-
tion and other subtleties requiring case-by-case consideration). For this latter
reason if no other the techniques deserve to be better known and experimented
with for a wide range of problems. [25]

Gelfand and Smith concluded that Gibbs sampling and Tanner and Wong’s data
augmentation worked better than Rubin’s importance sampling algorithm. Because of
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evidence that data augmentation could be more computationally efficient, they did not
settle on Gibbs sampling as the overall favorite. Their follow-up paper made a much
stronger statement about the efficacy of Gibbs sampling.

In the previous article, we entered caveats regarding the computational effi-
ciency of such sampling-based approaches, but our continuing investigations
have shown that adaptive, iterative sampling achieved through the Gibbs sampler
(Geman and Geman, 1984) is, in fact, surprisingly efficient, converging remark-
ably quickly for a wide range of problems. [24]

In the years to come, this “surprisingly efficient” algorithm was made even more so by
the remarkable advances in computational power.

An important impact of Gibbs sampling was that it brought Bayesian methods into
mainstream statistics. At last, it was possible to handle the elegant, but analytically
intractable, Bayesian posterior distributions. Gelfand and Smith (and others) showed
that many Bayesian hierarchical models fit perfectly into the Gibbs sampling frame-
work. Even when the conditional distributions were not available, all was not lost. In
these cases, statisticians soon discovered that the more general Metropolis-Hastings
algorithm worked wonderfully. Soon statisticians were applying MCMC methods to a
wide range of important problems.

5.2. MCMC in Statistics after Gelfand and Smith. It is impossible to do justice to
the depth, breadth, and quality of work done with Gibbs sampling and MCMC methods
in statistics since 1990. A good place to start is the set of three discussion papers in The
Journal of the Royal Statistical Society, Series B 55, No. 1, 1993 by Smith and Roberts
[59], Besag and Green [5], and Gilks et al. [29]. Together, these articles attempt to
summarize the impact of Gibbs sampling on the statistics community in the short time
since the appearance of Gelfand and Smith’s paper.

Parallel to the development of applications and the expansion of the theory, there
were numerous papers that focused on simply explaining this “new” theory. Notewor-
thy early expository articles on Gibbs sampling are Gelfand and Smith’s Bayesians
Statistics Without Tears: A Sampling-Resampling Approach [26] and Casella and
George’s Explaining the Gibbs Sampler [8]. A very nice overview of the Metropolis-
Hastings algorithm is Greenberg and Chib’s Understanding the Metropolis-Hastings
Algorithm [10], which has an excellent discussion of both the algorithmic and theo-
retical aspects of Metropolis-Hastings. For a more general, if somewhat idiosyncratic,
overview of Metropolis-Hastings, see Diaconis and Saloff-Coste’s What Do We Know
About the Metropolis Algorithm? [17]. All of these articles contain ample references
for anyone interested in reading more about MCMC methods in statistics.

The 1990s also saw the appearance of a number of books dealing with MCMC
methods and Bayesian statistics. One of the best early overviews is Markov Chain
Monte Carlo Methods in Practice [30], edited by Gilks et al., which contains numerous
examples of MCMC methods applied to problems in areas such as hierarchical mod-
eling, image analysis, longitudinal modeling, genetics, and archaeology, along with
discussions of some of the theoretical issues. A more recent resource is Casella and
George’s Monte Carlo Statistical Methods [54]. Tanner’s Tools for Statistical Infer-
ence [61] does an excellent job of presenting and applying MCMC methods (along
with expectation maximization and data augmentation). For an overview of Bayesian
methods, including MCMC methods, see Gelman et al.’s Bayesian Data Analysis [27]
and Carlin and Louis’s Bayes and Empirical Bayes Methods for Data Analysis [7].
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6. EPILOG. Since the mid-1990s, MCMC methods have appeared in almost ev-
ery area of natural and social science, as well proving to be intrinsically interesting
to mathematicians, especially probabilists. Innovative applications of MCMC meth-
ods appear regularly in computer science, biology (especially genetics), chemistry,
physics, psychology, and neuroscience, as well as in economics, political science, so-
ciology, and almost any area one can think of.15 There are even applications to pure
mathematics—for example, sampling from the symmetric group—for which MCMC
methods work well.

Along with this explosion of applications, there have been theoretical advances in
the understanding of convergence of MCMC methods. Tierney’s 1994 paper Markov
Chains for Exploring Posterior Distributions [63] had the most early influence on
the statistics community’s understanding of convergence. In this, he provides a strong
theoretical framework for MCMC methods, including Gibbs sampling, Metropolis-
Hastings, and even hybrid methods (some steps using Gibbs sampling, others using
Metropolis-Hastings). Tierney addressed a wide range of questions, including the ef-
fects of different types of proposal transitions in Metropolis-Hastings. He also proved
several strong results related to the ergodic nature of the chains, in particular results
that help the practitioner determine run lengths of the Markov chains. Around the same
time, Rosenthal [56] described a method (called minorization) which gives explicit a
priori polynomial bounds on the number of iterations needed to ensure satisfactory
convergence.

There has been much work within the computer science community to understand
the convergence properties of MCMC methods. Of particular note is Jerrum and Sin-
clair’s results on polynomial-time bounds for mixing times for the Metropolis algo-
rithm applied to the Ising model [39], counting [37], and permanents of matrices [40].
The fundamental nature of their work was recognized by the 1996 Gödel prize in com-
puter science.

Diaconis [16] provides an up-to-date survey of the state of affairs regarding his own
work and the work of others on the convergence of the Metropolis algorithm in a va-
riety of settings. For example, Diaconis generalizes the original Metropolis algorithm
applied to hard spheres to higher-dimensional Lipschitz domains. In this case, for a
target distribution p(x) = p̄(x)/Z on a domain � ⊂ Rd , the Metropolis algorithm de-
fines a transition kernel P(x, dy) which is a bounded, self-adjoint operator on L2(p).
For a maximal step size of h, he shows that

∣∣∣∣Pk
x (A) −

∫
A

p(y) dy

∣∣∣∣ ≤ c1ec2kh2

uniformly in x ∈ � and A ⊂ �. The constant c1 is given explicitly.
Despite the emergence of these sorts of theoretical results, many applications of

MCMC methods do not lend themselves to a priori estimates of convergence time. In
statistics, for example, the focus is on diagnostics of convergence, that is, methods that
help determine if a particular MCMC-generated sequence has come sufficiently close
to the target distribution. Often, these diagnostics are built on the idea of running the
algorithm a number of times with different initial conditions and then checking if the
output is consistent across runs. For more information on these methods, see Cowles
and Carlin’s survey work on MCMC diagnostics [12].

In applications outside of statistics (of which there are many), there is even less
understanding of convergence. As Diaconis notes:

15A simple Google search of the form MCMC “area of interest” will undoubtedly return hundreds of results.

410 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117



I believe you can take any area of science, from hard to social, and find a bur-
geoning MCMC literature specifically tailored to that area. I note that essentially
none of these applications are accompanied by any kind of practically useful
running time analysis. [16]

7. CONCLUSION. We’ve arrived at a good place to conclude the story of the evo-
lution of Markov chain Monte Carlo methods. It is difficult not to wax poetic about
the algorithm. It is as close to universal as anything in mathematics. It is elegant and
efficient. It arose almost spontaneously in the deserts of New Mexico due to the for-
tunate confluence of people, a problem, and a machine. It grew up hand-in-hand with
advances in computing and made substantial impacts across the mathematical and nat-
ural sciences. There are still questions about why it works and predicting ahead of
time how long it will take to work. Nonetheless, it does work and it works well. After
observing the effectiveness of simulated annealing on the traveling salesman problem,
perhaps Čerńy said it best.

It might be surprising that our simple algorithm worked so well in the examples
described above. We believe that this is caused by the fact that our algorithm
simulates what Nature does in looking for the equilibrium of complex systems.
And Nature often does its job quite efficiently. [9]
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9. A. Černý, Thermodynamical approach to the traveling salesman problem: An efficient simulation algo-

rithm, J. Opt. Theory Appl. 45 (1985) 41–51. doi:10.1007/BF00940812
10. S. Chib and E. Greenberg, Understanding the Metropolis-Hastings algorithm, Amer. Statist. 49 (1995)

327–335. doi:10.2307/2684568
11. B. Cipra, An introduction to the Ising model, Amer. Math. Monthly 94 (1987) 937–959. doi:10.2307/

2322600
12. M. K. Cowles and B. Carlin, Markov chain Monte Carlo convergence diagnostics: A comparative review,

J. Amer. Statist. Assoc. 91 (1996) 883–904. doi:10.2307/2291683
13. M. Creutz, Confinement and critical dimensionality in space time, Phys. Rev. Lett. 43 (1979) 553–556.

doi:10.1103/PhysRevLett.43.553
14. G. Cross and A. Jain, Markov random field texture models, IEEE Transactions on Pattern Analysis and

Machine Intelligence PAMI-5 (1983) 25–39. doi:10.1109/TPAMI.1983.4767341
15. L. Devroye, Non-Uniform Random Variate Generation, Springer-Verlag, New York, 1986.
16. P. Diaconis, The Markov chain Monte Carlo revolution, Bull. Amer. Math. Soc. 46 (2009) 179–205. doi:

10.1090/S0273-0979-08-01238-X

May 2010] THE EVOLUTION OF MARKOV CHAIN MONTE CARLO METHODS 411



17. P. Diaconis and L. Saloff, What do we know about the Metropolis algorithm? J. Comput. System Sci. 57
(1998) 20–36. doi:10.1006/jcss.1998.1576

18. R. L. Dobrushin, The description of a random field by means of conditional probabilities and conditions
of its regularity, Journal of Probability and Applications 13 (1968) 197–224. doi:10.1137/1113026

19. J. Dongarra and F. Sullivan, Top ten algorithms of the century, Computing in Science and Engineering 2
(2000) 22–23. doi:10.1109/MCISE.2000.814652

20. R. Eckhardt, Stan Ulam, John von Neumann, and the Monte Carlo method, Los Alamos Science Special
Issue (1987) 131–137.

21. P. M. Flinn, Monte Carlo calculations of phase separation in a 2-dimensional Ising system, J. Stat. Phys.
10 (1974) 89–97. doi:10.1007/BF01011718

22. S. P. Frankel and N. Metropolis, Calculations in the liquid-drop model of fission, Phys. Rev. 72 (1947)
914–925. doi:10.1103/PhysRev.72.914

23. D. P. Gaver and I. G. O’Muircheartaigh, Robust empirical Bayes analyses of event rates, Technometrics
29 (1987) 1–15. doi:10.2307/1269878

24. A. E. Gelfand, S. E. Hills, A. Racine, and A. F. M. Smith, Illustration of Bayesian inference in normal
data models using Gibbs sampling, J. Amer. Statist. Assoc. 85 (1990) 972–985. doi:10.2307/2289594

25. A. E. Gelfand and A. F. M. Smith, Sampling-based approaches to calculating marginal densities, J. Amer.
Statist. Assoc. 85 (1990) 398–409. doi:10.2307/2289776

26. , Bayesian statistics without tears: A sampling-resampling perspective, Amer. Statist. 46 (1992)
85–88.

27. A. Gelman, J. Carlin, H. Stern, and D. Rubin, Bayesian Data Analysis, Chapman & Hall/CRC, Boca
Raton, FL, 1995.

28. S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of
images, IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6 (1984) 721–741. doi:
10.1109/TPAMI.1984.4767596

29. W. R. Gilks, D. G. Clayton, D. J. Spiegelhalter, N. G. Best, A. J. McNeil, L. D. Sharples, and A. J. Kirby,
Gibbs sampling in medicine, J. Roy. Statist. Soc. Ser. B 55 (1993) 39–52.

30. W. R. Gilks, S. Richardson, and D. J. Spiegelhalter, Markov Chain Monte Carlo in Practice, Chapman
& Hall/CRC, London, 1996.

31. R. Glauber, Time dependent statistics of the Ising model, J. Math. Phys. 4 (1963) 294–307. doi:10.
1063/1.1703954

32. J. E. Gubernatis, Marshall Rosenbluth and the Metropolis algorithm, Phys. Plasmas 12 (2005) 1–5. doi:
10.1063/1.1887186

33. A. Habibi, Two-dimensional Bayesian estimate of images, Proceedings of the IEEE 60 (1972) 878–883.
doi:10.1109/PROC.1972.8787

34. J. M. Hammersley and D. C. Handscomb, Monte Carlo Methods, Methuen, London, 1964.
35. W. K. Hastings, Monte Carlo sampling methods using Markov chains and their applications, Biometrika

57 (1970) 97–108. doi:10.1093/biomet/57.1.97
36. D. B. Hitchcock, A history of the Metropolis-Hastings algorithm, Amer. Statist. 57 (2003) 254–257. doi:

10.1198/0003130032413
37. D. Hochbaum, ed., Approximation Algorithms for NP-Hard Problems, PWS Publishing, Boston, 1997.
38. B. R. Hunt, Bayesian methods in nonlinear digital image restoration, IEEE Trans. Comput. C-26 (1977)

219–229. doi:10.1109/TC.1977.1674810
39. M. Jerrum and A. Sinclair, Polynomial-time approximations algorithms for the Ising model, SIAM J.

Comput. 22 (1993) 1087–1116. doi:10.1137/0222066
40. M. Jerrum, A. Sinclair, and E. Vigoda, A polynomial-time approximation algorithm for the permanent of

a matrix with nonnegative entries, J. ACM 51 (2004) 671–697. doi:10.1145/1008731.1008738
41. D. S. Johnson, C. R. Aragon, L. A. McGeoch, and C. Schevon, Optimization by simulated annealing:

An experimental evaluation; Part I, Graph partitioning, Oper. Res. 37 (1989) 865–892. doi:10.1287/
opre.37.6.865

42. , Optimization by simulated annealing: An experimental evaluation; Part II, Graph coloring and
number partitioning, Oper. Res. 39 (1991) 378–406. doi:10.1287/opre.39.3.378

43. L. Kelvin, Nineteenth century clouds over the dynamical theory of heat and light, The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science 2 (1901) 1–40.

44. R. Kindermann and J. L. Snell, Markov Random Fields and Their Applications, American Mathematical
Society, Providence, RI, 1980.

45. S. Kirkpatrick, C. D. Gelett, and M. P. Vecchi, Optimization by simulated annealing, Science 220 (1983)
671–680. doi:10.1126/science.220.4598.671

46. N. Metropolis, The beginning of the Monte Carlo method, Los Alamos Science 15 (1987) 125–130.
47. N. Metropolis and F. H. Harlow, Computing and computers: Weapons simulation leads to the computer

era, Los Alamos Science 12 (1983) 132–141.

412 c© THE MATHEMATICAL ASSOCIATION OF AMERICA [Monthly 117



48. N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and E. Teller, Equation of state
calculations by fast computing machines, Journal of Chemical Physics 21 (1953) 1087–1092. doi:
10.1063/1.1699114

49. N. Metropolis and S. Ulam, The Monte Carlo method, J. Amer. Statist. Assoc. 44 (1949) 335–341. doi:
10.2307/2280232

50. G. Michael, An interview with Bernie Alder (1997), available at http://www.computer-
history.info/Page1.dir/pages/Alder.html.

51. N. E. Nahi and T. Assefi, Bayesian recursive image estimation, IEEE Trans. Comput. C-21 (1972) 734–
738.

52. P. H. Peskun, Optimum Monte-Carlo sampling using Markov chains, Biometrika 60 (1973) 607–612.
doi:10.1093/biomet/60.3.607

53. W. Richardson, Bayesian-based iterative method of image restoration, Journal of the Optical Society of
America 62 (1972) 55–59. doi:10.1364/JOSA.62.000055

54. C. P. Robert and G. Casella, Monte Carlo Statistical Methods, Springer-Verlag, Berlin, 1999.
55. , A History of Markov chain Monte Carlo—Subjective recollections from incomplete data (2008),

available at http://arxiv.org/abs/0808.2902v1.
56. J. Rosenthal, Minorization conditions and convergence rates for Markov chain Monte Carlo, J. Amer.

Statist. Assoc. 90 (1995) 558–566. doi:10.2307/2291067
57. J. Rosenthal and W. K. Hastings, statistician and developer of the Metropolis-Hastings algorithm (2004),

available at http://probability.ca/hastings/.
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