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A Survey of Prophet Inequalities
in Optimal Stopping Theory

THEODORE P. HILL AND ROBERT P. KERTZ

ABSTRACT. This paper surveys the origin and development of what has
come to be known as “prophet inequalities” in optimal stopping theory.
Included is a review of all published work to date on these problems, in-
cluding extensions and variations, descriptions and examples of the main
proof techniques, and a list of a number of basic open problems.

1. Introduction

The main purpose of this paper is to provide a brief survey of what has come
to be known as “prophet inequalities” or “prophet problems” in the theory of
optimal stopping. This survey includes summaries of the basic results, subse-
quent extensions and variations of these results, main proof tools and techniques
(with concrete examples), and a list of open problems.

Although the term “prophet” has been used in other mathematical and proba-
bilistic contexts, the expression “prophet inequality” in optimal stopping theory
is generally associated with the following problem. Given a class C of sequences
of integrable random variables X = (X1, X2, ), find universal inequalities
valid for all X in C which compare the expected supremum of the sequence with
the optimal stopping value of the sequence. That is, if M denotes the expected

supremuin

M=MX)=E {sup Xn}
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and V denotes the optimal-stopping value (over the set 7 = ’T()_f ) of stop rules
for X)
V=V(X)=supEX,
teT

then a prophet inequality for a class C is an inequality in M and V' which is valid
for all sequences X in C. The term “prophet” arises from the optimal-stopping
interpretation of M, which is the optimal expected return of a player endowed
with complete foresight, who observes the sequence X, X2,... and may stop
whenever he pleases, thereby incurring a reward equal to the variable at the time
of stopping. With complete foresight (or inside information, or equivalently, the
ability to return to previously observed values), such a player obviously stops
always with the largest values, and wins on the average M, which is at least as
large as the optimal return V of the non-prophet player (i.e., M > V).

Although there have been many comparisons of M and V for fized distri-
butions X » apparently the first universal inequality for a large natural class of
random variables is the following now-classical result of Krengel, Sucheston and
Garling {49, 50| which has directly or indirectly inspired most of the results
mentioned in this paper.

If X1,X,,... are independent and > 0, then

(1.1) M<2v

and the bound “2” is sharp.
In other words, if C is the class of sequences of independent non negative
random variables, then

M(X
(1.1 sup ()f) =2
Xec

This result is both surprising and elegant; it says that a player with complete
foresight may never win more, on the average, than twice that of an ordinary
gambler when sequentially observing and stopping along a sequence of indepen-
dent nonnegative random variables. Its discovery, first with the multiplicative
upper bound “4” by Krengel and Sucheston (50], has inspired a number of sin-
ilar inequalities such as the additive and, regional inequalities (1.2) and (1.3)
below.

If X1, Xy, ... are independent with values in [0,1], then (cf. (33, 26])

(1.2) M—Vs%
and
(1.3) M <2V — V2

In fact from (1.3) follows easily that the region (often called the prophet re-
gion) for the class C of sequences of independent [0,1] valued random variables is
precisely the convex region in the plane given by V. < M < 2V — V2. Note that
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inequalities (1.1) and (1.2) both follow easily from
ties for a variety of other classes C (e.g., arbitrarily
bounded, i.i.d., averages of independent r.v.’s, exchangeable r.v.’s etc.) as well
as for a variety of other stopping options (e.g., stopping with partial recall, stop-
ping several times, using only threshold stopping rules, etc.) have been found in
recent years, and will be summarized in Sections 2 and 3 below.

Applications of prophet inequalities have been mainly to other problems in
optimal stopping theory. The classica] inequality ( 1.1) was orginally discovered
by Krengel and Sucheston [50] in their study of semiamarts (processes X satisfy-

ing sup; EX; < 00), and (1.1) implied a representation theorem for semiamarts,
namely,

(1.3). Analogous inequali-
~dependent and uniformly

a nonnegative independent sequence X, X5, ... is a semiamart if and only
if E(sup,, X,) < co.

An application of (1.1) for order-selection problems is the following (cf. Hill
(26]). Let W({X,, X,,... }) denote the value of the unordered collection of ran-
dom variables {X;, X, ... } to a player who is free to select the order of obser-
vation of the variables as well as the stop rule, that is, W = W({X1, Xy, }) =
sup{V (X1, Xr(2);--.) 1 7 is a permutation of the positive integers}. Then the
value of a sequence of nonnegative independent r.v.’s to z player free to select
both order and stop rule is at most twice that of a player who is only free to
select the stop rule (and must observe the sequence in a predetermined order);
Le., W < 2V. This inequality follows easily from (1.1) since clearly W < M, so

(14) if X1,X,,... are independent and > 0, then W <2V

The same example to show that (1.1) is sharp also shows that (1.4) is sharp:
taking X; = 1; X, = ¢! with probability €, and = 0 otherwise shows that V =1
and W = M = 2 —¢. Inequalities analogous to (1.4) for nonmeasurable stopping
and stopping with partial recall have been obtained using (1.1) in [37] and [28].
For several other applications of prophet inequalities, the reader is referred to
Hill [28] and Kertz [45].

2. Prophet Inequalities for Different Classes of Random Vectors

For the class C,, of random vectors X = (X1,...,X,,) consisting of indepen-
dent r.v.’s Xi,..., X, taking values in [0,1], the prophet inequalities of (1.1),
(1.2) and (1.3) indicate the advantage of the prophet over the gambler. For
which classes of random vectors does the prophet have a greater advantage over
the gambler than with this class? For which classes of random vectors is the
prophet’s advantage greatest? On the other hand, for which classes of random
vectors does the prophet have a smaller advantage over the gambler than with
this class?

If no boundedness assumptions are imposed on the random variables, then the
prophet can have arbitrarily large (proportionate) advantage for two independent
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r.v.’s, as the following example of [33] indicates:

(2.1) for any M >0, let X; =1 and define X, by
P(X, = 2M) = % = P(X; = —2M); then V(X1, X,) = 1
1
and E(Xl VX2) =M+ (5)

However, if uniformly bounded r.v.’s are considered, the class comparison be-
comes more meaningful. If arbitrarily-dependent r.v.’s are considered, then the
prophet’s greatest advantage over the gambler is given by the following sharp
inequalities [35]:

for nonnegative r.v.’s X1,..., X,,
(2.2) M < nV;
for r.v.’s X1,..., X, taking values in [0,1],

(2.3) M-V <((n-1)/n)", and
(2.4) M<V - (n-1)V(yYe-1 _y).

and for r.v.’s X, Xy, ... taking values in [0,1]

(2.5) M-V <el and

(2.6) MLV -VhV.

For what type of distributions does the prophet do best possible? These extremal
distributions have been found [85]; for example, for 0 < z < 1, V = 2z and

M=z —(n-1)z(z!/"= — 1) for process Xi,..., X,, defined by X| =z, and
form=2,... n,

if Xppoy = g(r=m40/(n=1) they
P(X,, = m(n—m)/(n—l)le’ oy X)) = et/ =
1 - P(Xm = 0|X1,.. -aXm—l)

and if X,,_, =0, then
p(Xm = ()’X},...,Xm_l) =1.

This process is a martingale. Indeed, the inequalities (2.2)-(2.6) are sharp for
martingales, and for Markov chains. For details on these results, see [8, 20,
35, 45]. Recently, it has been observed (38, 39] that for the class of sequences
X;j=Yj—cj,j=1,2,... where Y;, Y2,... are independent r.v.’s taking values
in [0,1] and ¢ > 0, the prophet’s ‘proportionate’ advantage is also +oo and
the prophet’s ‘difference’ advantage is also ‘e”!’. In this case, the ‘difference’
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inequality (2.5) is already sharp for the subclass in which Y;,Ys,... are iid.
r.v.’s [58].

Variations on these classes of sequences give classes with advantage to the
prophet strictly between the independent r.v. case and the martingale case. For
example, for p > 1 and any martingale Y1,Y,,...,

(2.7) E(sup i) < (p/(p - 1)) sup E(|Yi[)

(with (p/(p — 1))» T o as p | 1, and (p/(P~1))P | e asp 1 ), so the
universal ‘proportionate’ constant for this case (with fixed p > 1) is finite and
> 2. Inequality (2.7) is Doob’s inequality ([17, p. 317]); sharpness of Doob’s
inequality was shown in [13, 15, 19]. The finite sequence cases and other prophet
inequalities in this setting are given in [13, 15, 19, 25]. Prophet inequalities for
other classes of submartingales which are formed from martingales are given in
(19, 23, 25, 46]. The constant ‘e’ also appears as the universal ‘proportionate’
constant (i.e., M < eV) for the class of positive parts of sums of i.i.d. r.v.’s
having strictly negative mean, as was shown by Darling, Liggett and Taylor [16]
(prior to the results (1.1) of Krengel and Sucheston).

There are now several different proofs of the prophet inequalities (1.1), (1.2),
and (1.3) for the class of independent r.v.’s |4, 26, 32, 33, 41, 50], and also a
verification of which distributions can be extremal [48]. There are other classes of
distributions which give some prophet inequalities with universal constants which
are close to those of the independent case. These include a class of discounted
independent r.v.’s [7]; classes of averages and weighted sums of independent r.v.’s
(11, 27, 49, 50]; a class of finite sequences of exchangeable r.v.’s [21, 22]; a
class of negatively dependent r.v.’s [53, 54, 57]; and the class of positive parts
of sums of i.i.d. r.v.’s having mean zero [47].

If the class of r.v.’s is not only independent, but also identically distributed,
then the prophet’s advantage decreases. This was shown in (34, 43], where
specific universal constants and boundary curves for the prophet regions are
given via implicit equations which allow numerical calculations, with lower values
than in the independent case.

3. VARIATIONS ON THE
PROPHET-GAMBLER COMPARISON

Changes in the stopping options, changes in the underlying process structure,
and changes in the optimization criteria have led to other natural prophet in-
equalities which give insights into the original prophet inequalities (1.1), (1.2),
and (1.3).

Samuel-Cahn [55, 57] has shown that the prophet inequalities (1.1), (1.2),
and (1.3) hold even if the gambler is restricted to choose from a smaller collection
of stop rules. If one defines a pure threshold stop rule ¢(c) by t(c) = min{l <
J <n:X; >c} if this set is nonempty, and = n otherwise, for some constant
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¢, and denotes Vo = Vo(X1,...,Xn) = sup.5¢ E(Xy(c)), then by using a median
constant m of the distribution of max;<n X;, she showed that for the class of
nonnegative independent r.v.’s Xi,..., X,

(3.1) M < 2E(Xy(my) < 2V < 2V.

This gives an additional verification of the prophet inequality (1.1) and shows
that, for this class of random vectors, limiting the gambler to use of pure thresh-
old stop rules does not improve the prophet’s advantage (in the worst-case sce-
nario; of course for certain fixed sequences, such a restriction does improve the
prophet’s advantage). This threshold-stop rule approach has also led to other
prophet inequalities for this class of sequences and for classes of negatively de-
pendent r.v.’s [5, 53-57].

Hill and others [ 9, 24, 26, 28, 35] have shown that, gamblers with various
types of more general stopping options can do as well (in the worst-case situa-
tion) as a prophet does against a gambler with the usual stopping options. For
example, if

W1 =sup{EX, : t is a possibly nonmeasurable stop rule, t < n}, and

W2 = max{V(Xr(1),-.., Xr(n)) : 7 is any permutation of {1, .. .t}
then for the class of nonnegative independent r.v.’s X1, ..., X,
(3.2) W; <2V fori=1,2,

and in both cases the inequality is sharp. For other stopping options which yield
the same type of comparison inequality as (3.2), see [9, 26, 28|.

The gambler also does better against the prophet if the prophet receives an
average of s choices or if the gambler is given several choices. For example,
Kennedy (41, 42] has shown that if M, is the s*® largest order statistic in

X1,X2,..., then for the class of nonnegative, independent r.v.’s X1, X, ...,
(3.3) E(s™H My + -+ M,)) < (1+ %)V;

and

(3.4) M < Cr-sup{E(X;, +-- 4+ X,): stoprules 7y < --- < 7.},

where 2 > C,. | 1. For other prophet inequalities of this type, see [44].

A combination of changes in the underlying process structures and changes
in the choice mechanism have led to prophet inequalities for transforms of pro-
cesses [45, 51, 60] and for parallel processes (3, 6, 29]. For an example of a
prophet inequality in the transform setting let Xy, X;,... be integrable r.v.’s
and Uy, Us, ... be r.v.’s taking values in [0,1], and define the transform of X by
UasUxX = (UxX), = Xo+ 31, Us(X; — X;_1). Krengel and Sucheston [51]
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have shown that if Xo,..., X, are nonnegative r.v.’s with E(Xi|Xi_1) = EX;
fori=1,...,n, and E(Xo A EX,) < E(X, AEX,), then

(3.5)
sup{E(U x X) : Up,...,Up} < 3sup{E(Ux X) : U, € o(Xi—1) fori=1,...,
and the bound ‘3’ is sharp.

n},

As an example of a prophet inequality in a parallel process setting, let X, ... X
be n independent sequences of independent [0,1]—valued random variables, with
X; = (X1, Xs2,...) fori=1,...,n, and let

~ -

V= V(le R Xn) ‘= max V(*ﬁ)?
1<i<n

then Hill and Kennedy [29] have shown that

(3.6) E( sup Xi)<1-(1-¥)n+
1<i<n;1<j
and the upper bound is attained.

Prophet inequalities over classes of random vectors have also been proved un-
der other reward criteria, in a game-theoretic formulation and minimax criteria
[31, 59], based on stochastic orderings of distributions (19, 23, 25, 46, 53, 54],
and with other reward functions [30, 31]. For an example in the stochastic order
setting, let 4 be any probability measure (p.m.) on R with [ |z]du(z) < oc, then
the Hardy and Littlewood p.m. p* is the least upper bound in the stochastic
order of the set

{v: there is a martingale (X;)o<s<1 satisfying, X, has pm. p
and sup X, has p.m. v}.
0<t<1

This result has been applied to give expectation based prophet inequalities in
(19, 23, 25, 46].

4. TECHNIQUES AND METHODS OF PROOF

The purpose of this section is to briefly describe some of the various analytical,
probabilistic and algebraic tools which have proved useful in establishing prophet
inequalities similar to (1.1)-(1.3).

Classical optimal-stopping theory. Many of the basic ideas in optimal
stopping (see especially Chow, Robbins and Siegmund [12]) are used repeatedly
throughout the study of prophet inequalities. For example, the basic backward
induction principle used to explicitly calculate V' says that, given the process has
not been stopped before time 7, it is optimal to stop at time j if and only if X is
at least as much as the conditional value V(Xj41,...|Xy,..., X;) from time j+1
on, given Xi,...,X;, where V(Xj41,...1X1,...,X;) = ess sup{E(X¢| Xy, ...,
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X;) : t > j}. That is, letting F; denote the sigma algebra generated by
X1, X,

(41) V(Xj,Xj.H, . |.7:J) = Xj V V(Xj+1,Xj+2, e |.7'-J) a.e. for all] >1.

Hence, if the {X;} are independent, then the value V/(Xy,..., X,) of a finite
sequence is vy, where v, < vn,—1 < -+ < v are defined inductively by v, = E X,

and v; = E(X; Vvj41). An optimal stop rule t* (i.e., EXy = V(X1,...,X,))
in this case is

t* =min{j < n:X; > v;41} if this set is nonempty,

and = n otherwise,

and so to establish inequalities of the form (1.1)~(1.3) for classes of independent
r.v.’s the supremum over stop rules in the definition of V' can be replaced by the
relatively simple explicit expression for EX;..

In some cases, an even simpler optimal stop rule can be shown to exist. For
example, in establishing a prophet inequality for bounded i.i.d. r.v.’s with cost
c of observation, Samuel-Cahn made powerful use of the Chow, Robbins and
Siegmund result that for this class of r.v.’s there is always an optimal rule s* of
the form

s* =inf{i: X; > B8},

where [ is the unique value for which
EX -0t =c

Dilation and convexity. In establishing an inequality of the form (1.1)
(1.3), it is often useful to restrict a given class C to a much smaller class C
containing the extremal distributions. For this purpose, dilations (or balayage)
arguments have been very useful, via the following lemma [33].

DEFINITION. If X is any integrable r.v., and co < a < b < o0, (X)? is ar.v.
satisfying (X)b = X if X ¢ [a,b]; = a with probability (b—a)~! fXG[a,b](b_ X);
and = b with probability (b—a)~! fXE[a. b](X —a). (Such an (X)® is a “maximal

a
balayage” of X on the interval [a,b].)

LEMMA 4.1. (i) EX = E[(X)%). (i) If Y is any r.v. independent of both X
and (X)?, then

E(XVY)<E(X)}VY).

This lemma, which is a special case of the fact that X is a balayage of Y if and
only if X is convexly dominated by Y (which is also equivalent to the pair (Y, X)
being martingalizable), can be used to establish inequalities of the form (1.1)
(1.3) as follows. If constants a < b can be found so that V(X1,..., (Xj)g, )=

V(X1,...,Xj,...), then the independent sequence Xi1,...,(X;)8,... is “more
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extremal” than the independent sequence X1,...,Xj,..., since V for both se-
quences is the same, but by Lemma 4.1 (ii),

M(Xy,...,(X;)5,..) > M(X1,.. -, Xj,...).

The simplest example is for a finite sequence X, ..., X, of independent r.v.’s
taking values in [a,b]. Since (by backward induction above), V depends on X,
only through its expectation EXp, replacing X, by the two-valued r.v. (Xa)®
results in a more extremal distribution. Similarly, X,_; can be replaced by the

b
three-valued r.v. ((Xn_l)fX")Exn, and so on. In the case C is the class of
iid. r.v.’s this idea was used in [34] to show that the extremal distribution had
support on at most n + 1 points.

Induction. Backward induction is, as mentioned above, repeatedly used to
calculate V for finite sequences. In addition, for some inequalities of the form
(1.1)-(1.3) both forward induction and backward induction are used simultane-
ously. For example, these techniques can be used as follows to show (cf. (4, 41,
53]) that for X; > 0, not all identically 0,

+
(4.2) E [max X; - Vn] <Va

1<i<n

where V,, = V(X1,...,Xn). By eliminating the +, this yields (1.1) with strict
inequality. For n = 1 (4.2) states E[X; — EX,]T < EX;, which is obvious for
X; > 0, not identically 0. Set V(X2,..., X») = Va—1, and assume the induction
hypothesis

+
E [ max X; — Vn—l] <Via
2<i<n

(with strict inequality if not all X; identically 0). Now

+ +
E [max X; — Vn] <E [lm_ax X; — Vn_l} < E[X, = Vy]"

1<i<n <i<n

+
+E[max Xi—Vn——l:| SE[XI' 1L—1]++Vn-—l =V,
2<i<n

and strict inequality follows if either X, or one of Xa,..., Xy is not identically
0. The last inequality follows from (4.1).

Conditioning. Another way to restrict a given class C to a smaller class C
is through conditioning. For example, conditioning on X yields

M = /M(l‘l,X2,...)dPXl(ZI?1)

and
V= /V(ml,Xg,...)dle(a:l),
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so for many classes C, X; may be replaced by a (worst-case) constant z; resulting
in a more extremal distribution. In the case of an inequality like (1.2), this says

M(z1, Xs,...) = V(z1, X3, ...) 2 M(X1, Xa,...) = V(X1 Xy, L),

Observe that to obtain M, any of the r.v.’s X; may be conditioned on, whereas
for V, in general it is not true that V' is the conditional expectation of V given
X; for j > 1, since given that X; is a constant z; “gives information about
the future.” In some cases in a proper setting one can condition on “interior”
X;’s in order to reduce C (cf. [27]). It should also be observed that for other
natural C, such as the class of uniformly bounded i.i.d. r.v.’s, conditioning on
X, although valid, does not result in a new sequence which is still in the class,
and the reduction is worthless.

Constrained optimization. The general problem of establishing an in-
equality like (1.1) is by definition a constrained optimization problem, in this
case

maximize M(X1, Xa,...)]V
subject to: V(X1,X9,...) =V
X1, X, ... independent
0< X; <1 forall 5.

In general, both the constraints and objective function are unwieldly in this
generality, but in many cases, using backward induction, dilation (via Lemma
4.1) etc. one may reduce this setup to a more tractable one, say, of only a finite
number of variables. For example, in establishing the finite horizon analog of
(1.1) for nonnegative i.i.d. r.v.’s (cf. [32]), dilation and backward induction
were used to first show that the extremal distributions have support on at most
n + 1 points, in this case on the points 0 = 29 < z, < -+ < x,,, where xj =
V(Xy,...,Xj) for j =1,...,n. Then, since the partial moment relations force
constraints on the probabilities p; = P(X1 = z;) (e.g., x1 = Y[ pja;, and
Ty = Z?:lpﬂ'j + x1pg), the whole problem can be reduced to maximizing a
rational function of n variables (the {p;}’s) over a certain constraint set.

Conjugate duality. A powerful technique especially useful in establishing
“region” inequalities such as (1.3) is a tool used by Cox and Kertz [15] and
Kertz [43] which reduces the original constrained maximization problem to an
unconstrained minimization problem which is generally much easier to solve. The
idea is essentially as follows. For a concave function f defined on an interval I in
R, define the conjugate function f* on D* = {y € R:inf,e[vy — f(v)] > —o0}
by

f7(y) = inf[vy — f(v)].
vel

Next, in the context of (1.3), let I'(v) = sup{m : m = M(X;,...) and
v =V(Xy,...) for some sequence of independent r.v.’s X1, X, ... taking values



PROPHET INEQUALITIES IN OPTIMAL STOPPING THEORY 201

in [0,1]}; that is, [(v) is the upper boundary of the “prophet region” for this
particular choice of C. Next, verify that on I =[0,1], T' is a concave, continuous
function with closed hypograph, from which general theory (Young’s inequality,
etc.) of conjugate functions implies that (I')* =T, so I' determines I'* and vice
versa. Then, since

I‘*(’Y) = lnf{’YV(XlaX%) - M(X]_,Xz,. ) IX],XQ,...

are independent r.v.’s taking values in [0,1]},

the problem is now reduced to the unconstrained (over ) minimization problem
of determining I'*, which can often be solved using dilations, mixtures, etc.
Finally, determining I" from I'* completes the solution.

Dynamic programming and verification lemmas. To prove analogs of
(1.1)-(1.3) for certain classes C, such as uniformly bounded martingales, tech-
niques and results from dynamic programming and gambling theory have also
proved useful. For example, to demonstrate that

(4.3) for all martingales X1,..., X, taking values in [0,1],
M<V+(n—1)V(1-vyie)

Dubins and Pitman [20] used the following verification lemma from abstract
gambling theory due to Dubins and Freedman (18].

LEmMMA 4.2. If (I, F,u) is any measurable gambling problem, and Q is a
real-valued ¥ -tneasurable function on F satisfying

() u(f) < Q(f) for each f € F; and

() [QF)v(df) < Q(f) for everyy €T(f), each f € F,
then for each f € F, any I' process starting at f satisfies E[u(fi)] < QUf) for
every {Fn} stop rule t.

To prove (4.3) using Lemma 4.2, take: F = {f=(z,y,r):0<r <y <L
r=0,12... % u(f) =ulz,yr) =y r'(f) = {'yx Ty is the distribution of
(X,X Vy,r—1) where X isar.v. with0 < X <land EX <afifr=12....
and T(f) = {6(f)} if r = 0; and Q(f) = Qx,y,r) =y +re(l - y'/my), so
Qz,z,n—1)=z+ (n-1z(l- £Y/(=1). Then (4.3) follows by showing that
(i) and (ii) of Lemma 4.2 hold for all r > 1, using convexity and “coalescing”
techniques.

Algebraic inequalities. Several purely algebraic inequalities have also proved
useful in establishing prophet inequalities. For example, Kennedy [41] used the
inequality

av,3+'y§a+[3\/'yforallaZ*yZOandallﬁzo
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and backward induction to establish a generalization of (1.1) for order statistics,
namely,

if X;, Xs,... are independent and > 0, then for each k > 1,

k
E|S Xy | <(k+1)V,

i=1

where X[; denotes the j** order statistic of X1, X5,... (so X[j = SUP,>1 Xn,
etc.).
Similarly, algebraic inequalities such as

(@a+B—-af)Vy<a+(l—a)(BVry) for all a, B, € [0,1]
were used in [29] to establish prophet inequalities for parallel processes.

Moment theory. In establishing prophet inequalities for martingale-based
processes, basic results from classical moment theory have proved useful. In Cox
and Kertz [15], the result from moment theory

if h is a bounded Borel function, then ¢(t) := inf{E[h(X)] : X is an
integrable r.v. with EX = t} is the height at location = = ¢t of the lower
boundary of the convex hull of the graph of i

was combined with conditioning arguments, convexity, and a conjugate function
formulation to obtain prophet regions for pt" absolute moments of martingales.
In a similar problem, the above moment result was applied in [45] repeatedly to
a maximization function

J
on(s,t) = sup {E (121]%)(" {s,t+;¥;}) :Y1,...,Y,

is a martingale difference sequence with

j
EY, =0 and 0§t+ZYiSla.e. foreachlSan}

i=1
to conclude that for any martingale X,,..., X, taking values in [0,1],

E(max X;|X;=2)<z+ (n—-1)1 -2/
1<j<n

)

and (4.3) then follows by Jensen’s inequality and the concavity of g(z) = x(1 —
1/(n-1) )
T .

5. OPEN PROBLEMS

A number of basic and interesting prophet questions remain open. In the
following inequalities, the sharp universal constants {k;} and functions {¢;} are
unknown (although some bounds, e.g., k; < 2, are known in special cases).
Recall that V = V(X) is the optimal value of X to a player free to select the

—

stop rule only, W = W(X) is the optimal value to a player free to select both
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the order of observation and the stop rule, and M = M (X) the optimal value to
a player with complete information or foresight, e.g., a prophet,so V< W < M.

Ql. If Y1, Y5, ... areiid. r.v.’s taking values in [0,1], and Xj=Y1+--4Y;)/4,
then

M<kV;

M -V < ks

M < ¢1(V);

M < kW,

M~ W < ky; and
M < ¢o(W).

Q2. If Xy,..., X, are exchangeable r.v.’s taking values in [0,1], then

M < ksV;

M -V < ke;

M < ¢3(V);

M < kW

M — W < kg; and
M < ¢g(W).

Q3. What is the largest natural class C of random variables for which M <
2V'? For example, C contains sequences of independent and more generally.
negatively dependent, nonnegative random variables, and sequences of averages
of independent nonnegative random variables, but is there a large natural C
including all the known results for which it is true? Similarly, what is the largest
natural class C for which M —V <1/4,or M <2V - V??

Q4. In several cases involving “costs” or other limits, surprising discontinuities
in the bounds exist. For example, the extremal bounds as functions of cost ¢ in
Jones [38, 39] and Samuel-Cahn [58] are discontinuous at ¢ = 0, and the finite
horizon result of Klass [47] is discontinuous in the limit as is seen in Darling.
Liggett and Taylor’s result [16].

Can these counter -intuitive discontinuities be explained?

Q5. What are the universal bounds analogous to (1.1) (1.3) for comparison of
the value V with the “threshold-value” Vr <V of a sequence to a player forced
to use only threshold stop rules (e.g., what are the best universal constants so
that if X, X,,... are independent and > 0, then V < kgV4, and V — Vi < kyy,
etc.)?

In addition, most of the natural analogs of the above questions for order
statistics as well as averages and sums of order statistics, also remain open, as
do the questions for multi-choice, or multiple-stopping options.
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