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A Survey of Prophet Inequalities 

in Optimal Stopping Theory 

THEODORE P. HILL AND ROBERT P. KERTZ 

ABSTRACT. This paper surveys the origin and development of what has 

come to be known as "prophet inequalities" in optimal stopping theory. 

Included is a review of all published work to date on these problems, in­

cluding extensions and variations, descriptions and examples of the main 

proof techniques, and a list of a number of basic open problems. 

1. Introduction 

The Illain purpose of this paper is to provide a brief survey of what has CODle 

to be known as "prophet inequalities" or ~~prophet problerns" in the theory of 

optirnal stopping. rrhis survpy includes surnrnaries of the basic results, subse­

quent extensioIls and variations of these results, Blain proof tools and techniques 

(with concrete exarllples), a,ad a list of open problenls. 

Although the terrIl "prophet" has been used in other rnathernatical and proba­

bilistic contexts, the expression "prophet inequality" in optirnal stopping theory 

is generally associated with the following problern. Given a class C of sequences 

of integrable randolll variables X == (Xl, X2,"')' find universal inequalities 

valid for all X in C which cornpare the expected suprerllUrl1 of the sequence with 

the optirnal stopping value of the sequence. That is, if M denotes the expected 

suprernurll 
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and V denotes the optimal-stopping value (over the set T = T(X) of stop rules 
for }() 

v = V(X) = sup EXt 
tET 

then a prophet inequality for a class C is an inequality in M and V which is valid 

for all sequences Xin C. The term "prophet" arises from the optimal-stopping 

interpretation of M, which is the optimal expected return of a player endowed 

with complete foresight, who observes the sequence Xl, X 2 , .•. and may stop 

whenever he pleases, thereby incurring a reward equal to the variable at the time 

of stopping. With complete foresight (or inside information, or equivalently, the 
ability to return to previously observed values), such a player obviously stops 

always with the largest values, and wins on the average M, which is at least as 
large as the optimal return V of the non-prophet player (i.e., M ~ V). 

Although there have been many comparisons of M and V for fixed distri­

butions X, apparently the first universal inequality for a large natural class of 

random variables is the following now-classical result of Krengel, Sucheston and 

Garling [49, 50] which has directly or indirectly inspired most of the results 
rnentioned in this paper. 

If "\"'1, X 2 , ... are independent and 2 0, then 

(1.1)	 M ~2V 

and the bound ~~2" is sharp. 

In other words, if C is the cla..,;s of sequences of indepeuclent non negative 
randorn variables, then 

M(X)
(1.1')	 sup --.-_- = 2. 

;'<EC V(X) 

T'his result is l)oth surprising and elegant; it says that a player with conlplete 

foresight rnay IH\,ver win rnore, on the average, than twice that of au ordina..ry 

garnbler when Se(IlH~Iltially observing and stopping along a sequence of indepell­

dent nonnegative randc)Jn variables. Its discovery, first with the rn/ultiplicati1J(' 
upper l)Ollnd ~'4" by Krengel and Sucheston [50], has inspired a nurnber of SiIll­

ilar inequalities such as the add'itive and, Tegional inequalities (1.2) and (l.:q 
below. 

If"\'"I, .,\'"2,· .. are independent with values in [0,1], then (cf. [33,26]) 

1
( 1.2)	 M-V<­- 4 

and 

In fact frc)JIl (1.:3) follows easily that the region (often called the prophet re­

gion) for tlH~ cla,ss C of sequences of independent [0,1] valued randorn variables is 
r)recisely the convex region in the plane given by V S M ~ 2V - V 2 . Note that 
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inequalities (1.1) and (1.2) both follow easily from (1.3). Analogous inequali­
ties for a variety of other classes C (e.g., arbitrarily-dependent and uniforrnly

bounded, Li.d., averages of independent r.v.'s, exchangeable r.v.'s etc.) as well

as for a variety of other stopping options (e.g., stopping with partial recall, stop­

ping several times, using only threshold stopping rules, etc.) have been found in

recent years, and will be summarized in Sections 2 and 3 below.


Applications of prophet inequalities have been mainly to other problems in

optimal stopping theory. The classical inequality (1.1) was orginally discovered

by Krengel and Sucheston [50] in their study of semiamarts (processes i satisfy­

ing SUPt EXt < (0), and (1.1) implied a representation theorem for semiamarts,

namely,
 

a nonnegative independent sequence Xl, X 2 , • .• is a semiamart if and only
if E(SliPn X n) < 00. 

An application of (1.1) for order---selection problems is the following (cf. Hill

[26]). Let W( {X I, x 2 , •.. }) denote the value of the unorder'ed collection of rarl­

dom variables {XI, X 2 , .•. } to a player who is free to select the order of obser­

vation of the variables as well as the stop rule, that is, W = W ({X 1, X2, ... }) =

sup{V (X1r (l)' X 1r (2)' •.. ) : 7r is a perrllutation of the positive integers}. 111en the

value of a sequence of nonnegative independent r.v.'s to a player free to select

both order and stop rule is at rnost twice that of a player who is only free to

select the stop rule (and IJlUst observe the sequence in a predeterrnined order);

i.e., W ~ 2V. This inequality follows easily froI11 (1.1) since clearly W ~ M, so
 

(1.4) ifX1,X2 , ... are independent ancl 2:0, then W~2V. 

The sarne exarnple to show that (1.1) is sharp also shows that (1.4) is sharp:

taking Xl :.== 1; X 2 = (-1 with probability (, and = () otherwise shows that \/ = 1

and W = M == 2 - (, Inequalities analogous to (1.4) for nonrncas'lJ,Table stopping

and stopping 'lvith paTtial recall have been obtained using (1.1) in [37} and [28}.

For several other applicatiolls of prophet inequalities, the reader is referred to
 
Hill [28] and Kertz (45]. 

2. Prophet Inequalities for Different Classes of Randolll Vectors 

For the class Cn of randorIl vectors X = (X 1, ... , Xn ) consisting of indepen­

dent r.v.'s Xl, ... , X n
 taking values in [0,1], the prophet inequalities of (1.1),
(1.2) anel (1.3) indicate the advantage of the prophet over the garnbler. For
which classes of randorn vectors does the prophet have a greater advaIltag(~ over

the garnbler than with this class? For which classes of randorll vectors is the

prophet's advantage greatest? On the other hand, for which classes of ranclorll

vectors does the prophet have a snlaller advantage over the garnbler than with

this class?
 

If no boundedness assurnptions are imposed on the randolll variables, then the

prophet can have arbitrarily large (proportionate) advantage for two independent
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r.v.'s, as the following example of [33] indicates: 

(2.1)	 for any M > 0, let Xl == 1 and define X 2 by
 

1
 
P(X2 = 2M) = 2" = P(X2 = -2M); then V(XI , X 2 ) = 1 

and E(X1 V X 2 ) = M + (~) 

However, if uniformly bounded r.v.'s are considered, the class comparison be­

comes more meaningful. If arbitrarily-dependent r.v.'s are considered, then the 
prophet's greatest advantage over the gambler is given by the following sharp 
inequalities [35]: 

for nonnegative r.v.'s Xl, ... , X n , 

(2.2)	 M:::;nV; 

for r.v.'s Xl, ... , X n taking values in [0,1], 

(2.3) M -	 V :::; ((n - 1)/n)n, and 

(2.4)	 M :::; V - (n - l)v(v I /(n-l) - 1); 

and for r.v.'s Xl, X 2 , ... taking values in [0,1] 

(2.5) M -	 V < e- l
, and 

(2.6)	 M:::; V- VlnV. 

For what type of distributions does the prophet do best possible? These extrernal 

distributions have been found [35]; for exarnple, for °< 1,' < 1, V == 3: and 
M == x - (n - 1):l,'(x 1

/(n-l) - 1) for process Xl, ... , X definec} by Xl == :1:, andn 
for Tn == 2, ... , n, 

if X m.- 1 == ~r;(n-rn+l)/(n-l),	 then 

[ )(X == x·· (n-rn)/(n-l)/X. X ) == .yol/(n-l) == 
Tn' 1, ... , rn-l .,IJ 

1 -P(Xrn == 0IXl , ... , X rn - l ) 

and if XTn -1 == 0, then 

T'his process is a rnartingale. Indeed, t:he inequalities (2.2) "(2.6) are sharp for 
rnartingales, and for Markov chains. For details OIl these results, see [8, 20, 

35, 45]. H,ecently, it has been observed [38, 39] that for the class of sequences 

X j == Yj - ej, j == 1, 2, ... where YI , Y2, ... are independent r. v. '8 taking values 
in [0,1] and c > 0, the prophet's 'proportionate' advantage is also +00 and 
the prophet's 'difference' advantage is also 'e- 1'. In this case, the 'difference' 
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inequality (2.5) is already sharp for the subclass in which Y
1

, Y
2

, • •• are Li.d. 
r.v.'s [58]. 

Variations on these classes of sequences give classes with advantage to the 
prophet strictly between the independent r.v. case and the martingale case. For 
example, for p > 1 and any martingale Y1, Y2 , ••• , 

(2.7) E (sup IYi IP) S (p / (p - l))P Sup E (IYi IP) 
i~l i~l 

(with (p/(p - l))P i 00 as P 1 1, and (p/(p - l))P 1 e as p lao), so the 
universal 'proportionate' constant for this case (with fixed p > 1) is finite and 
> 2. Inequality (2.7) is Doob's inequality ([17, p. 317]); sharpness of Doob's 
inequality was shown in [13, 15, 19]. The finite sequence cases and other prophet 
inequalities in this setting are given in [13, 15, 19, 25]. Prophet inequalities for 
other classes of submartingales which are formed from martingales are given in 
[19, 23, 25, 46]. The constant 'e' also appears as the universal 'proportionate' 
constant (i.e., M S eV) for the class of positive parts of sums of Li.d. r.v. 's 
having strictly negative mean, as was shown by Darling, Liggett and Taylor [16] 
(prior to the results (1.1) of Krengel and Sucheston). 

There are now several different proofs of the prophet inequalities (1.1), (1.2), 
and (1.3) for the class of independent r.v.'s [4, 26, 32, 33, 41, 50], and also a 
verification of which distributions can be extrenlal [48]. There are other classes of 
distributions which give SOllle prophet inequalities with universal constants which 
are close to those of the independent case. These include a class of discountecl 
independent r. v. 's [7]; classes of averages and weighted Sluns of independent r. v. 1S 

[11, 27, 49, 50]; a class of finite sequences of exchangeable r.v.'s [21, 22]~ a 
class of negatively dependent r.v. 's [53, 54, 57]; and the class of positive parts 
of surns of Li.d. r.v.'s having rnean zero [47]. 

If the class of r.v. 's is not only independent, but also identically distributed, 
then the prophet's advantage decreases. This was shown in [34, 43], w h(~re 

specific universal constants and boundary curves for the prophet regions are 

given via irnplicit equations which allow ruunerical calculations, with lower values 
than in the independent case. 

3. VARIATIONS ON THE 
PROPHET-GAMBLER COMPARISON 

Changes in the stopping options, changes in the underlying process struct ure 1 

and changes in the optiIuization criteria have led to other natural prophet in­
equalities which give insights into the original prophet inequalities (1.1), (1.2)1 
and (1.3). 

Sarnuel-Cahn [55, 57] has shown that the prophet inequalities (1.1), (1.2), 
and (1.3) hold even if the gambler is restricted to choose froIn a srnaller collection 
of stop rules. If one defines a pure threshold stop rule t (c) by t (c) = rnin{I ~ 

j < n : X j 2: c} if this set is nonempty, and = n otherwise, for SOIne constant 
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C, and denotes Vo = Vo(X1, ••. ,Xn) = sUPc>o E(Xt(c)), then by using a median 
constant m of the distribution of maxj~n Xj, she showed that for the class of 
nonnegative independent r.v.'s Xl,"" X n , 

(3.1) M S 2E(Xt (m)) ~ 2VO ~ 2V. 

This gives an additional verification of the prophet inequality (1.1) and Shows 
that, for this class of random vectors, limiting the gambler to use of pure thresh­
old stop rules does not improve the prophet's advantage (in the worst-case sce­
nario; of course for certain fixed sequences, such a restriction does improve the 
prophet's advantage). This threshold-stop rule approach has also led to other 
prophet inequalities for this class of sequences and for classes of negatively de­
p,endent r.v.'s [5, 53-57]. 

Hill and others [ 9, 24, 26, 28, 35] have shown that. gamblers with various 
types of rnore general stopping options can do as well (in the worst-case situa­
tion) as a prophet does against a gambler with the usual stopping options. For 
exarnple, if 

WI = sup{EXt: t is a possibly nonmeasurable stop rule, t ~ n}, and 

W 2 = rnax{V(X7r (l), ... , X 7r (n)) : 1r is any permutation of {I, ... ,n}}, 

then for the cla..c;s of nonnegative independent r.v.'s Xl, ... , X ,n 

(3.2) Wi ~ 2V for i = 1, 2, 

and in both ca.."es the inequality is sharp. For other stopping options which yield 
the sarne type of cornparison inequality as (3.2), see [9, 26, 28]. 

The garnbler also does better against the prophet if the prophet receives an 
average of s choices or if the ganlbler is given several choices. For exalnple, 

8 thKennedy [41, 42] has shown that if M s is the largest order statistic in 
Xl, X 2 , ... , then for the class of nonnegative, independent r.v.'s Xl, X 2 , ... , 

E(S-l(Ml + ... + M s )) ~ (1 + ~)V; 
8 

and 

(:.3.4) M ~ Cr . sup{ E(XT1 + ... + X Tr ): stop rules 71 < ... < 7 r }, 

where 2 ~ c:1• J 1. For other prophet inequalities of this type, see [44]. 

A cornl>ination of changes in the underlying process structures and changes 
in the choice Inechanislll have led to prophet inequalities for transforrns of pro­
cesses [45, 51, 60] and for parallel processes [3, 6, 29]. For an exarnple of a 
prophet inequality in the transfornl setting letXo, XI, ... be integrable r.v. 's 
and l}1,[]2, ... be LV.'S taking values in [0,1], and define the transfornl of X by 
lJ as lJ *X =: ([f *.X:)n =: Xo+ E~=l Ui(Xi - Xi-I). Krengel and Sucheston [51] 
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have shown that if xo, ... ,Xn are nonnegative r.v.'s with E(XiIX
i
-

1
) = EX

i
for i = 1, ... , n, and E(Xo /\ EXo) :S E(Xn /\ EX ), thenn 

(3.5) 

sup{E(U *X) : Ul , ... , Un} ~ 3sup{E(U *X) : Ui E O"(Xi-d for i = 1, ... ,n}, 
and the bound '3' is sharp. 

As an example of a prophet inequality in a parallel process setting, let Xl, ... ,X 
n 

be n independent sequences of independent [O,l]-valued random variables with 
Xi = (Xi1 ,Xi2 , ... ) for i = 1, .. . ,n, and let ' 

then Hill and Kennedy [29] have shown that 

(3.6)	 E( sup Xij) ~ 1 - (1 - v)n+l 
l~i~n;l~j 

and the upper bound is attained. 

Prophet inequalities over classes of randorn vectors have also been proved UIl­

der other reward criteria, in a game-,theoretic forrnulation and rninirnax criteria 
[31, 59], based on stochastic orderings of distributions [19, 23, 25, 46, 53, 54]' 
and with other reward functions [30, 31]. For an exarnple in the stochastic order 
setting, let fl be any probability rneasure (p.lll.) on IR. with I l:rld{i(X) < oc, then 
the Hardy and Littlewood p.rn. fl* is the least upper bound in the stochastic 
order of the set 

{v:	 there is a rnartingale (Xt)O::;t::;l satisfying, Xl has p.rn. Ii 

and sup X t has p.rn. v}. 
O::;t::;l 

This result has been applied to give expectation based prophet inequalities in 
[19, 23, 25, 46]. 

4. TECHNIQUES AND METHODS OF PROOF 

The purpose of this section is to briefly describe sorne of the va,rious aIlalyticaL 
probabilistic and algebraic tools which have proved useful in establishing prophet 

inequalities sinlilar to (1.1)-(1.3). 

Classical optimal-stopping theory. Many of the basic ideas in optiIllal 
stopping (see especially Chow, Robbins and Siegmund [12]) are llsed repeatedly 
throughout the study of prophet inequalities. For exanlple, the basic backward 
induction principle used to explicitly calculate V says that, given the process has 
not been stopped before time j, it is optimal to stop at tirne j if and only if X j is 
at least as much as the conditional value V (Xj +1, ... lXI, ... ,Xj) frorn tilHe j + 1 

on, given X1, ... ,Xj , where V(Xj+I, ... IXI, ... ,Xj ) = esssup{E(XtIX l , ... , 
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Xj) : t > j}.. That is, letting :Fj denote the sigma algebra generated by 
X1, .... ,Xj , 

(4.1) V(Xj,Xj + 1, .. -IFj ) = X j V V(Xj +1,Xj +2 , _• . IFj ) a.e. for all j ~ 1. 

Hence, if the {Xj } are independent, then the value V(XI , .. . ,Xn ) of a finite 
s,equence is vl,where Vn .~ Vn-I :5 ... ::; VI are defined inductively by V = EX ,n n 
and Vj = E(Xj V Vj+l). An optimal stop rule t* (Le., EXt * = V(X1 , .. . , X ))n 
in this case is 

t* = min{j < n : X j ~ Vj+l} if this set is nonempty, 

and = n otherwise, 

and so to establish inequalities of the form (1.1)-(1.3) for classes of independent 
r.v.'s the supremum over stop rules in the definition of V can be replaced by the 
relatively simple explicit expression for EXt *. 

In sorne cases, an even siInpler optimal stop rule can be shown to exist. For 
example, in establishing a prophet inequality for bounded Li.d. r.v.'s with cost 
c of observation, Samuel-Cahn made powerful use of the Chow, Robbins and 
Siegmund result that for this class of r.v. 's there is always an optimal rule s* of 
the fornl 

s* = inf{i : Xi ~ ,8}, 

where (3 is th(~ unique value for which 

E[X - /3]+ = c. 

Dilation and convexity. In establishing an inequality of the fornt (1.1) 
(1.3), it is often useful to restrict a given class C to a rnuch srnaller class C 
containing the extrernal distributions. For this purpose, dilations (or balayage) 
argurnents have been very useful, via the following lemrna [33]. 

DEFINITION. If X is any integrable r.v., and 00 < a < b < oo~ (X)~~ is a r.v. 

satisfying (X)~ = X if X ¢:. [a, b]; = a with probability (b - a)-l JXE[a,bJ(b - X): 

and == b with probal)ility (b-a)-l JXE[a,b](X -a). (Such an (X)~ is a "rnaxirnal 
l)alayage" of X on the interval [a, b].) 

LEMMA 4.1. (i) EX = E[(X)~]. (ii) rry i8 any T.V. independent of both X 
and (X)~, then 

E(X V Y) :S E((X)~ V Y). 

This lernrna, which is a special case of the fact that X is a balayage of Y if and 
only if X is convexly donlinated by Y (which is also equivalent to the pair (Y~ X) 
being rnartingalizable) ~ can be used to establish inequalities of the form (1.1) 
(1.3) as follows. If constants a < b can be found so that V(X1 , . .. , (Xj)~~ ... ) = 
V(X 1, .. . ~ Xj~ ... ), then the independent sequence Xl, ... , (Xj)~, ... is "more 
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extremal" than the independent sequence Xl, ... , X j , •.• , since V for both se­
quences is the same, but by Lemma 4.1 (ii), 

The simplest example is for a finite sequence Xl, ... , Xn of independent r.v. 's 
taking values in [a, b]. Since (by backward induction above), V depends on Xn 

only through its expectation EXn , replacing Xn by the two-valued r.v. (Xn)~ 

results in a more extremal distribution. Similarly, X n - 1 can be replaced by the 

three-valued r.v. ((Xn_d~Xn)~Xn' and so on. In the case C is the class of 
i.i.d. r.v. 's this idea was used in [34] to show that the extremal distribution had 

support on at most n + 1 points. 

Induction. Backward induction is, as mentioned above, repeatedly used to 
calculate V for finite sequences. In addition, for some inequalities of the farnl 
(1.1)-(1.3) both forward induction and backward induction are used simultane­
ously. For example, these techniques can be used as follows to show (cf. [4, 41, 

53]) that for Xi ~ 0, not all identically 0, 

(4.2) E [ rnax Xi - Vn] + < Vnlsisn 

where V = V(X1 , ... , X n ). By elinlinating the +, this yields (1.1) with strict n 

inequality. For n = 1 (4.2) states E[X1 - EXd+ <EXt, which is obvious for 
Xl ~ 0, not identically O. Set V(X2 , ••• , Xn ) = Vn - t , and assurne the induction 

hypothesis 

E [rnax Xi - \(,1,-1] + s: Vn - 1 
2sisn 

(with strict inequality if not all Xi identically 0). Now 

E[rnax Xi - Vn] + s: E [rn~x Xi - \(,t-l] + s: E[X 1 ­ Vn-d+ 
l~i~n l~z~n 

+ E [rnax Xi - Vn-l]+ s: E[X1 Vn-d+ + \/'.-1 = Vn-
2~iS;n 

and strict inequality follows if either Xl or one of X2, ... ,"\n is not identically 

O. The last inequality follows frOlIl (4.1). 

Conditioning. Another way to restrict a given class C to a slnaller cla.ss C 

is through conditioning. For exanlple, conditioning on X 1 yields 

and 



THEODORE P. HILL AND ROBERT P. KERTZ200 

so for many classes C, Xl may be replaced by a (worst-case) constant Xl resulting 
in a more extremal distribution. In the case of an inequality like (1.2), this says 

M(Xl' X 2 , ••. ) - V(Xl' X 2 ,·· .) 2 M(X1 , X 2 , •.. ) - V(X1 , X 2 , • .. ). 

Observe that to obtain M, any of the r.v.'s X j may be conditioned on, whereas 
for V, in general it is not true that V is the conditional expectation of V given 
X j for j > 1, since given that X j is a constant Xj "gives information about 
the future." In some cases in a proper setting one can condition on "interior" 
Xj'S in order to reduce C (cf. [27]). It should also be observed that for other 
natural C, such as the class of uniformly bounded Ll.d. r.v. 's, conditioning on 
X 1, although valid, does not result in a new sequence which is still in the class, 
and the reduction is worthless. 

Constrained optimization. The general problem of establishing an in­
equality like (1.1) is by definition a constrained optimization problem, in this 
case 

maximize M(X1 , X 2 , )/V 

subject to: V(X 1 , X 2 , ) = V 

Xl, X 2, . .. independent 

oS X j S 1 for all j. 

In general, both the constraints and objective function are unwieldly in this 
generality~ but in Inany cases~ using backward induction, dilation (via Leuuna 

4.1) etc. one rnay reduce this setup to a rnore tractable one~ say~ of only a finite 
Ilurnber of variables. For exarnple, in establishing the finite horizon analog of 
(1.1) for nonnegative i.i.d. r.v.'s (cf. [32]), dilation and backward inducti()ll 
were used to first show that the extrernal distributions have support on at rnost 
n + 1 points~ in this case on the points 0 == Xo < Xl < .,. < :Tn ~ where l:j 

V(X 1, ... ,Xj ) for j == 1, ... ~ 'tL Then, since the partialrIlornent relatioIls force 

constraints on the probabilities Pj == P(X I == :rj) (e.g., :£1 == 2:,~l=lPrrj\ and 

X2 == 2:,j1=1 PjXj + XlPO), the whole problern can be reduced to IlHLxirnizing a 
rational function of n variables (the {Pj} 's) over a certain constraint set. 

Conjugate duality. A powerful technique especially useful in establishing 
"regiorl" inequalities such as (1.3) is a tool used by Cox and Kertz [15] and 
Kertz [43] which reduces the original constrained rnaxirnizatiol1 problerIl to an 
unconstr'ained rninirnization problenl which is generally rnuch easier to solve, The 

idea is essentially as follows. :F'or a concave function f defined on an interval I in 
IR.~ define the conjugate function f* on D* == {, E IR: infvEl[v, - f(v)] > -oo} 
by 

f* (,) == inf [v, - f (v)].
vEl 

Next, in the context of (1.3), let r(v) == sup{rn : rn == M(Xl~"') and 
v = V(X1, •.. ) for sorne sequence of independent r.v.'s Xl, X 2 , ... taking values 
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in [O,I]}; that is, r(v) is the upper boundary of the "prophet region" for this 
particular choice of C. Next, verify that on I = [0,1], r is a concave, continuous 
function with closed hypograph, from which general theory (Young's inequality, 

etc.) of conjugate functions implies that (f*)* = f, so f determines f* and vice 

versa. Then, since 

r*(,) = inf{,V(X1 , X 2 , ••• ) - M(X1 , X 2 , • •. ) : Xl, X 2 , ••. 

are independent r.v.'s taking values in [O,I]}, 

the problem is now reduced to the unconstrained (over C) minimization problem 

of determining f*, which can often be solved using dilations, mixtures, etc. 

Finally, determining f from f* completes the solution. 

Dynamic programming and verification lemmas. To prove analogs of
 

(1.1)-(1.3) for certain classes C, such as uniformly bounded martingales, tech­

niques and results from dynamic programming and gambling theory have also
 

proved useful. For example, to demonstrate that
 

(4.3)	 for all martingales Xl," .,Xn taking values in [0,1],
 

M ~ V + (n - l)V(l - Vl/(n-l))
 

Dubins and Pitman [20] used the following verification lernrna fronl abstract
 

gambling theory due to Dubins and Freedman [18].
 

LEMMA 4.2. If (f, F,11,) is any rneasurable gambling problern, and (J l8 a 

real--valued ~-rr~easurable fttnction onF satisfying 

(i) u(f)::; Q(f) for each f E F,. and 
(ii) JQ(!),(d!) ::; Q(f) for every, E r(f), each f E F, 

then for each f E F, any r prOCeJ3.9 starting at f satisfies 1~['lL(fd] ~ (2(f) fOT' 

every {Fn } stop rule t. 

To prove (4.3) using Lernma 4.2, take: F == {f == (:x:,y,r) : O:S:1: ~ y S; l. 

T = 0,1,2, ... }; u(f) = 11,(x,y,r) = y; r(f) == {'x: 'x is the distributioll of 

(X,X Vy,r-1) where X is a r.v. with 0 S; X S; 1 and E~X S; ~I:} ifr == 1.2~ ... ~ 
and f(f) = {8(f)} if r = 0; and Q(f) = Q(x,y,r) = 11 + n:(l - 1/1/1), SO 

Q(x, x, n - 1) = x + (n - 1)x(1 - xl/(n-I)). Then (4.:1) follows by showinf( tha1 

(i) and (ii) of Lemma 4.2 hold for all r ~ 1, using convexity and "coalpscinf(" 

techniques. 

Algebraic inequalities. Several purely algebraic inequalities have also prov('d 

useful in establishing prophet inequalities. For example, Kennedy [41] used t.1lt' 

inequality 

a V f3 + , :s; a + {3 V , for all a 2: , 2: 0 and all /1 ~ 0 
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and backward induction to establish a generalization of (1.1) for order statistics, 
namely, 

if Xl, X 2 , .•. are independent and 2:: 0, then for each k ~ 1, 

E (t,X[jJ) :5 (k + 1)V, 

where X[j] denotes the jth order statistic of X 1 ,X2 , ... (so X[l] = sUPn~l X n , 

etc.). 
Similarly, algebraic inequalities such as 

(0 + (3 - a{3) V T ~ a + (1 - a)(f3 V'Y) for all a, (3, 'Y E [0,1] 

were used in [29] to establish prophet inequalities for parallel processes. 

Moment theory. In establishing prophet inequalities for martingale""-based 
processes, basic results fronl classical moment theory have proved useful. In Cox 
and Kertz [15], the result from llloment theory 

if h is a bounded Borel function, then ¢(t) := inf{E[h(X)] : X is an 
integrable r.v. with EX = t} is the height at location x = t of the lower 
boundary of the convex hull of the graph of h 

was cornbined with conditioning argurnents, convexity, and a conjugate function 
formulation to obtain prophet regions for pth absolute lllonlents of rnartingales. 
In a sirnilar problern, the above ll10Ulent result was applied in [45] repeatedly to 
a Inaxinlization function 

¢n(.~, t) = sup { E C~ttn {-~, t + ~ Yi }) : Y1 , ... , Yn 
is a rnartingale difference sequence with 

EYj = 0 and 0:5 t +~ Y; :5 1 a.e. for each 1 :5 j :5 n } 

to conclude that for any rnartingale Xl, ... ,Xn taking values in [0,1], 

l~( In~1x -'X"jIX1 = :r) ~:1: + (n - 1)(1 - x1/(n-l))x, 
l~J~n 

and (4.3) thell follows by .Jensen~s inequality and the concavity of g(:1:) == :r( 1 ­
x1/(n-l)). 

5. OPEN PROBLEMS 

A rnunber of basic anel interesting prophet questions rernain open. In the 
following inequalities, the sharp universal constants {k i } and functions {rPi} are 
unknown (although sorne l)ounds, e.g., k1 :::; 2, are known in special cases). 

R,ecall that V = V (X) is the optirnal value of X to a player free to select the 

stop rule orlly, W = W(X) is the optiIual value to a player free to select both 
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the order of observation and the stop rule, and M =M(X) the optimal value to 
a player with complete information or foresight, e.g., a prophet, so V ~ W ~ M. 

Ql. IfY1 , Y2 , ••• are Li.d. r.v.'s taking values in [0,1], and X j = (Y +_. _+Yj)/j,1 
then 

M S k1V;
 

M - V ~ k2 ;
 

M S ¢l(V);
 

M S k3W;
 

M - W S k4 ; and
 

M S ¢2(W).
 

Q2. If Xl, ... , X n are exchangeable r.v.'s taking values in [0,1], then 

M S ksV;
 

M - V ~ k6 ;
 

M S ¢3(V);
 

M:::;k7W ; 

M - W S kg; and 

M S ¢4(W). 

Q3. What is the largest natural class C of randorn variables for which M :::; 
2V? For exarnple, C contains sequences of independent and rnore generally, 
negatively dependent, nonnegative randolll variables, anel sequences of averages 
of independent nonnegative randolu variables, but is there a large natural C 
including all the known results for which it is true? Sirnilarly, what is the largest 
natural class C for which M - V S 1/4, or M ~ 2V - V 2 ? 

Q4. In several cases involving "costs" or other lirnits, surprising discontinuities 
in the bounds exist. For exarnple, the extrernal bounds as functions of cost c ill 
Jones [38, 39] and. Salnuel-Cahn [58] are discontinuous at c == 0, and the fillit~\ 

horizon result of Klass [47] is discontinuous in the lirnit as is seen in IJarling, 

Liggett and Taylor's result [16]. 
Can these counter intuitive discontinuities be explained? 

Q5. What are the universal bounds analogous to (1.1)(1.3) for cornparisoll of 
the value V with the "threshold-value" VT ~ V of a sequence to a player f()rced 

to use only threshold stop rules (e.g., what are the best universal constants so 

that if Xl, X 2, . .. are independent and ~ 0, then V ~ kg vt, and V - ~!T ::; k10, 

etc. )? 
In addition, most of the natural analogs of the above questions for ()rder 

statistics as well as averages and sums of order statistics, also rernain open, as 

do the questions for multi-choice, or multiple-stopping options. 
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