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The Maximum Average Gain in a Sequence 
of Bernoulli Games 

Wolfgang Stadje 

1. INTRODUCTION. Consider a sequence of games where one flips a (possibly 
biased) coin and wins $1 if it comes up heads and loses $1 if it comes up tails. At any 
time, one can compute the average gain for the games that have been played so far. 

What is the maximum average gain that will be achieved? 

Formally, let Xi, X2, ... be independent Bernoulli random variables, indicating the 
successive outcomes and satisfying P(Z? = 1) = p and P(X? = ? 

I) = q = I ? p 
for some p e (0, 1). Then Sn ? X{ + + Xn and Sn/n are the total gain and the 

average gain, respectively, after n games; we are interested in M = 
supn>l(Sn/n). It 

is a classical result that the maximum total gain supn>1 Sn is almost surely equal to 
oo if the game is favorable to the player or fair, i.e., if p > 1/2; in the unfavorable 
case p < 1/2 it is almost surely finite and its distribution is given by P(supn>! Sn > 

k) = (p/q)k for all k e N (see [6, Sect. XIV.2]). The maximum average gain M is a 
much more complicated random variable. Besides being of mathematical interest, its 
consideration can be motivated as follows: 

(a) Suppose that the player has to pay a participation fee of c dollars for every game 
(if c < 0 he receives this money to be enticed to play). Then what is the probability itc 
that he will at least once be on the winning side? Clearly, itc = P(supn>1 (Sn 

? 
nc) > 

0) = P(M > c). 

(b) Consider a baseball player and let Hn be his number of hits after going to bat n 

times. Then B = supn>l(Hn/n) is his highest batting average ever attained. Assuming 
independent and identically distributed (i.i.d.) outcomes, we can reduce B to M by an 

affine transformation, defining Hn ? 
X[ H-\-Xfn for the {0, l}-valued random vari 

ables X\ 
= (Xi + l)/2; this leads to the relation B = (M/2) + (1/2). Of course, there 

are many other situations in which the random variable B shows up as the maximum 

average number of successes observed in a long sequence of Bernoulli trials. 

(c) In the theory of optimal stopping [2] one tries to terminate a sequence of random 
variables ("rewards") using some rule that does not depend on future events, so as to 
maximize the expected reward at the time of stopping. In particular, the maximization 
of E(5r/r) over all stopping rules x with respect to (Zn)nGN (i.e., rules r such that for 

every n the event {r = n] can be defined in terms of X\, ... ,Xn alone) has attracted 
a lot of attention (see, e.g., [3, 4]). In the subarea of prophet inequalities, which deals 
with comparison of the maximum expected gain achievable by optimal stopping and 
the expected supremum of the underlying random sequence, the case of arithmetic 

means of i.i.d. random variables has not been solved, even for Bernoulli variables [8]. 
Neither supT E(5T/r) nor E(M) is known. This note may serve as an explanation for 

why computing E(M) is difficult. 

A comprehensive account of simple random walks with steps ?1 was given in [6]. 
Already Pascal and Ferm?t have dealt with the classical gambler's ruin problem [5]; 
their solutions date back to 1656. The first published solution is due to Huygens. Ac 

cording to interpretation (a) above, our question can be considered as a variant of this 
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problem by introducing fees or side payments into the game (and assuming that one 

player is infinitely rich). 
Our first proposition shows an unusual feature of M: it almost surely (a.s.) attains 

only rational values in the interval (p 
? 

q, 1], and each of them with positive proba 
bility. There are hardly any other naturally occurring examples of random variables of 
this kind. 

For this and the following results we need to refer to a few basic facts about random 
walks. Let Y\, Y2, ... be i.i.d. random variables with finite mean and let Rn = Yx + 

+ y?,n> 1. 

(i) Rn/n -> E(F0 a.s. (strong law of large numbers [7, Sect. VII.8]). 

(ii) If E(Fj) = 0 and Y\ is not a.s. equal to 0, then lim supn_>o? Rn ? oo a.s. (case 
of zero drift [7, Sect. VI. 10]). 

(iii) If E(Fi) < 0, then F(Rn < 0 for all n > 1) > 0 (case of negative drift [7, 
Sect. XII.2]). 

We will also need the following fact, which was stated earlier, about the Bernoulli 
variables considered in this paper: 

(iv) If p < 1/2, then P(supn2:1 Sn > k) = (p/q)k, k > 1 [6, Sect. XIV2]. 

Proposition 1. 

P(M e(p-q,l]DQ) = land V(M = x) > Ofor every x e (p 
- 

q, 1] H Q. 

Proof. We have Sn/n < 1 for all n > 1 and Sn/n -> p 
? 

q a.s. by (i). Further, 
(Sn 

? 
(p 

? 
q)n)neN is a nontrivial random walk with mean zero so that, by (ii), 

limsupn_>00(5'n 
? 

(p 
? 

q)n) 
? oo a.s. It follows that V(Sn/n > p 

? 
q for some 

n e N) = 1, yielding p 
- 

q < M < 1 a.s. Thus P(M e (p 
- 

q,l]DQ) = 1, since 
the supremum is a.s. attained. 

Now let r/s be some rational number in (p 
? 

q, 1]. To prove that P(M = r/s) > 0 
we show that the following way to achieve M = r/s has positive probability: The first 
s ? r outcomes are tails and are followed by s + r heads; in particular, the average gain 
after 2s steps is r/s and this is the maximum so far. Given this event, the average gain 
will never exceed r/s over the entire sequence if the average gain on the remaining 
steps after the first 2s is always at most r/s, which in turn has positive probability by 
property (iii) above. This idea can be translated into the following computation: 

P(M = r/s) > 
P(X? 

= -1 for / = 1, ... , s - r and X? = 1 for 

i = s ? r + I, ... ,2s and ?s?^- < 
r/s for all ft > 1 ) 2s + ft / 2s +; 

= 
qs-rps+rMs2s+n 

- 
S2s 

< 
(2s + ft)- 

- 
S2s \ s 

for all ft > 1 | S2s = 2r\ 

= 
qs-rps+rF (sn 

- -ft < 0 for all n > 
l) 

and the right-hand side is positive by (iii), because (Sn 
? 

(r/s)n)n>\ is a random walk 
with negative drift (since r/s > E(XX)). Therefore, P(M = x) > 0 for every rational 
number x e (p 

- 
q, 1]. 
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The main aim of this paper is to derive explicit formulas for P(M < r/s) and 

P(M = r/s), where r and s are integers. We may assume that s > 0, r/s e (p 
? 

q, 1], 
and that r and s are relatively prime. Two cases are simple: r = s or r = 0. We have 

Proposition 2. 

P(M= l) = p (1.1) 

P(Af = 0) = 0, if p> 1/2 (1.2) 

P(M = 0) = p(q~p\ if p< 1/2. (1.3) 
1 -p 

Proo/ First note that P(M = 1) = P(Xi = 1) since SJn < 1 for all n > 2 if Xx = 
? 1 and Sn/n -? 2p 

? 1 < 1. Further, if p > 1/2, (5?)?>i is a random walk with 

nonnegative drift so that limsup^^o^ 
= oo by (i) and (ii), yielding (1.2). If p < 

1/2, we can write P(M = 0) = Y^=l P(A?), where An is the event that the sequence 
5i, S2, . starts with 5i = 

? 1 and visits zero exactly n times, and every such visit is 
followed by a step downwards. If p < q, the probability of reaching zero from ?1 is 

p/q by (iv). Thus, in this case 

P(AW) - q[(p/q)q]n(l 
~ 

~) 
= p\q 

~ 
p), \ q) 

and summing these probabilities yields (1.3). 

From now on let r ̂  s and r ̂  0. To formulate our results, we need the roots of 
the complex polynomial 

f{z) = 
pz2s -Zs+r+q. 

We will show that f(z) has only simple roots of which exactly s -f- r have an absolute 
value less than or equal to 1. Denote the roots by zo, Zi,... , Z2*-i, where zo = 1, 

\Zi\ < 1 for / = 1, ... , s + r ? 1, and |z/| > 1 for / = s + r, ... , 2s - 1. If s + r is 

even, let zi = 
? 1. It turns out that we can write P(Af < r/s) and P(M = r/s) in terms 

Of Zr+s, , Z2i-1 

Theorem. L^ir, s e Z\{0}, ? > 0, gcd(r, s) = 1, and r/s e (p 
? 

q, 1). 77zerc 

25-1 

P(M<r/j)= n^1-^1) (1-4) 
?=r+5 

25-1 25-1 

P(M - r/j) - J] (1 - z-1) + p fi i1 - *' ) (L5> 

Thus, to compute P(M < r/5") and/or P(M = r/s) one needs to find the roots of a 

polynomial of degree 2s. (Note that 1 or ?1 are among these roots, so the degree can 

immediately be diminished by 1 or 2.) The theorem is proved in Section 2. We give 
some explicit results in Section 3. 

Before proceeding to the proof of the theorem it should be remarked that an alter 
native approach to the distribution of M is provided by classical fluctuation theory, 
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which leads to a complicated infinite series representation. From a famous theorem by 
Sparre Andersen (see [7, Sect. XII.7, Theorem 1]) we can conclude that 

P(M < jc) = P(sup(S? 
- 

nx) < 0) = exp 
- 

> -?(Sn > nx) \ 
. (1.6) neN [ ttU J 

For every n the probability F(Sn > nx) can of course be expressed as a binomial sum. 

2. PROOF OF THE THEOREM. We first have to consider the roots of the poly 
nomial f(z) = 

pz2s 
? 

zs+r + q. The only root of its derivative f! in (0, oo) is c ? 

[(s + r)/(2sp)]l/{s~r), and c is larger than 1 since r/s > 2p 
? I. The reader can easily 

check that f(0) = q > 0, / is decreasing in a real neighborhood of 0, and f(l) = 0, 

fr(l) < 0. It follows that f(c) < 0 and that / is decreasing on (0, c] and increasing 
to infinity on [c, oo). In particular, there is exactly one b e (c, oo) such that f(b) = 0, 
and we have f(x) < 0 for all x e (I, b). 

Let K be a circle around 0 with radius strictly between 1 and b. Define g(z) = 

q + pz2s and h(z) = -zs+r.Ifz e K,then0> f(\z\) = q + p\z\2s 
- 

\z\s+r and thus 

\h(z)\ = \z\^r >q + p\z\2s >\q+ pz2s\ = \g(z)\. 

By Rouch?'s theorem, h(z) and g(z) + h(z) = f(z) have the same number of roots 
in the interior of K (each counted according to its multiplicity). As K can be chosen 

arbitrarily close to either of the circles {z : \z\ = b} and [z : \z\ = 1}, there are exactly 
s + r roots of / having absolute value at most 1, and no roots have absolute value in 
the interval (l,b). Moreover, all roots of / are simple because for z ̂ 0, ff(z) = 0 

implies that \z\ = c e (1, b). 
Consider a root w0 of f satisfying |u>0| = b and u>0 7^ b. Then 

\w0\s+r = \q + pw?s\ <q + p\w0\2s =q + pb2s 
= bs+r - |u;0|5+r, 

so that \q + pw^l 
= q + p\w2,5\. This implies that wls e (0, 00) and then, as f(wo) = 

0, also ws0+r e (0, 00). Let meNbe minimal such that w e (0, 00). Then m > 2, 
and m is a common factor of 2s and s + r, say 2s = //n and s + r = jm for some 

integers / and j. If s + r is odd, it follows from gcd(r, s) = 1 that gcd(2s, s + r) = 1, 
and we arrive at a contradiction. Hence, in this case there is no wo as above, so b is the 

only root of / with absolute value b. Now let s + r be even. Clearly 2r = (2j 
? 

l)m, 
so r and s have the common factor m/2 (if ftz is even) or m (if fti is odd). Thus if m > 3, 
we obtain gcd(r, s) 7^ 1, contradicting our assumptions. Therefore m = 2, yielding 
wo = -b. 

Similar reasoning is possible for the roots satisfying \z\ = 1. We have proved: 

Lemma. f(z) has only simple roots. Besides z = I there is exactly one more positive 
real root b, and b E (1, 00). If s + r is odd, s + r ? 1 of the roots have an absolute 
value strictly smaller than 1 and s ? r ? 1 roots have an absolute value strictly larger 
than b.Ifs-\-ris even, ?1 and ?b are the only real roots, s + r ? 2 of the roots have 
an absolute value strictly smaller than I, and s ? r ? 2 roots have an absolute value 

strictly larger than b. 

Proof of the Theorem. Fix r and s and define 

(r 

m \ 
Sn< -n + - for all ft e N) . 

s s / 
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Then a0 = P(M < r/s). Conditioning with respect to X\ = ?1 easily yields 

am = 
pam+r^s + qam+r+s, m = s - r, s - r + I, ... (2.1) 

am = 
qam+r+s, m = 0, 1, ... , s 

? r ? 1. (2.2) 

Relations (2.1) and (2.2) can be written more compactly in the form of the following 
identity, which is valid for all z C for which \z\ < 1: 

5+r ?1 i oo 

YJ amzm = -(pz2s 
- 

zs+r + ?) X>mzm. (2-3) 
m=rO ^ m=0 

From (2.3) we now derive explicit formulas for a0, ... , as+r-\. We prove that 

s+r-\ 25-1 / -i \ 5+r-l / \ 

E^=n04)n(i-F)- 
^ 

ra=0 i=r+s \ ^ / i = l \ ^ / 

Recall that zo, , Z2s-i are the (distinct) roots of /(z), where zi, ... zs+r-\ have ab 

solute value at most 1, z5+r, , z2s-\ have absolute value greater than 1, and zi = ?1 

if s + r is even. Two cases have to be distinguished. 

Case 1: s + r is odd. By (2.3), the roots of f(z) having absolute value smaller than 1, 
that is, zi, ... , Z5+r-i are also roots of the polynomial Y^m=o~ amim- Therefore 

5+r ?1 5+r?1 / 
z 

m=0 --1 v Zi YJ amzm = a0 H ( 
1 - - 

) (2-5) 

To determine a0, note that 

1-(PZ2S 
- f+r +q) = (1 - 

Z)f[(\ 
- 

-) 
. 

The random walk (Sn 
? 

(r/s)n)n>{ has a negative drift since E(5i) 
? 

(r/s) 
? p 

? 

q 
? 

(r/s) < 0, so that its supremum T ? supw>1(Sn 
? 

(r/s)n) is a.s. finite. As am ? 

F(T < m/s), it follows that liir^oo am = 1. Hence, replacing the complex z by the 
real variable x, lim0<x_>i-(l 

? 
jc) Ylm=oamxm 

= 1 DY Abel's limit theorem [1, p. 42]. 

Inserting (2.5) in (2.3) and letting z run through a sequence of real numbers strictly 
increasing to 1 yields 

i=r+s \ ?l / 

and (2.4) follows from (2.5). 

Case 2: s -f r w everc. The relation X^mtlcT ̂ m^f 
= 0 on^y holds for the roots inside 

the unit circle, i.e., for / = 2, ... , s + r ? 1. (Recall that z\ = 
? 1 in this case.) Hence 

there are constants C\ and C2 such that 

? amzm = (CxZ + C2) fj (l 
- 

-) 
- (2.6) 
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Since am -> I , it is easily seen that lim0>x_>_i+(l + x) X]m=oa^jm 
= 0- Thus, in 

serting (2.6) in (2.3) and letting z tend to ?1 through a decreasing sequence of real 

numbers yields C\ = C2. It follows that zi = ?1 is also a root of Y^m=o amZm. There 

fore, (2.5) is also valid if s + r is even. The rest of the proof of (2.4) is the same as in 
Case 1. 

Now we can compute the coefficients of the left-hand side of (2.4) by expanding 
the right-hand side: 

am= J2 
(~1)m 

fl i1"")- 
rn = 0,...,s + r-l. (2.7) 

l<il<-<im<s+r-l ^1 
* ' ' 

Zim i=r+s ^ Zi ' 

(1.4) is the special case m = 0 of (2.7). 
To prove (1.5), we proceed as follows: 

P (sup(Sn/n) <r/s\ = V(Sn/n < r/s for all n e N) 

(rn 

\ 
Sn 

- 
X! < 1 + ? for all ft > 2) 

s + r rn 

Sn <-+ 
? for all ft g N 

s s 

= q?(sSn < s + r + rn for all n G N) 

= q?(sSn < s + r + rn - 1 for all n ? N) 

$ _j_ y ? 1 rn 

Sn <-+ 
? for all ft N 

s s 

= 
qar+s-.i. (2.8) 

The first equality in (2.8) follows because Sn/n -> p 
? 

q < r/s a.s., for the second 
one we condition onli, and for the third one we use that the sequence S2 

? 
X\, S3 

? 

X\,... has the same distribution as S\, S2,... From (2.8) we obtain 

F(M = r/s)=a0-qas+r^. (2.9) 

By (2.7) and the fact that z\ * zis-\ = q/p, we get 

?r+s-l no-,) Z\ --Zs+r-1 i=r+s 
x Zi' 

2s-l i2s-\ 

=-n<i-z'V ri2* 
i=r+s ' i = \ 

n 
2s~l 

= 
~U(l-Zi). (2.10) ? ?tri 

Now (1.5) follows immediately from (2.9) and (2.10). 
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3. SOME EXPLICIT RESULTS. A determination of zr+i, ... , z2s-1 in closed form 
in terms of radicals is possible for the fractions r/s e {1/2, 1/3, 1/5, 3/5}. 

Example 1. r = 1, s = 2. Then 

f(z) = 
pz4 

- 
Z3 + q = (z 

- 
l)(pz3 

- 
qz2 -qz- q). 

Using Cardano's formulas [9, Ch. 8.8] for polynomial equations of third degree, we 

find that the only root outside the unit circle is 

1 _ p J-20p3 + I5p2 + 3p + 3V?Jl6p6 
- 

24p5 + 3/?4 + 2p3 + 3p2 + 2 

3/7 3*/2p 

V2(2p2-p-l) 

3p^-20p3 + \5p2 + 3p + 3V3y/\6p6 
- 

24p5 + 3/?4 + 2p3 + 3p2 + 2 

We have forp 
? 

q < 1/2, i.e., for p < 3/4, 

P(M < 1/2) = 1 -ZT1 

and 

P(M = 1/2) = 1 - b~l - 
p(b 

- 
1). 

For p = 1/2 these probabilities are approximately 0.45631 and 0.0367, respectively. 

Example 2. r = 1, s = 3. Then 

/(z) = 
pz6 

- 
z4 + 4 - (Z2 

- 
1)(PZ4 

- 
qz2 

- 
q). 

Thus one only has to solve a quadratic equation to obtain the roots; the ones outside 
the unit circle are 

Uip + i-ip* i i 

V 2p 2p 2' 

The condition p 
? 

q < r/s translates into p e [0, 2/3), and for these values of p we 

get 

3 J3p + 1 2p (V(2 
- 

3p)p + 1 - 1) P(M < 1/3) = 
- - 

f-%=, P(M = 1/3) = Py\ P>\->-. 2 2V1 
- p V(2 

- 
3p)p + 1 + 1-/7 

For p = 1/2 we obtain V(M < 1/3) = (3 - V5)/2 ? 0.38197 and P(M = 1/3) = 

(7 - V5)/4 ? 0.07295. 

Example 3. For r/s = 1/5 and r/s = 3/5 the corresponding polynomials are 

and 

pzm -z6 + q = (z2- l)(pz* + PZ6 
- 

qz4 
- 

qz2 
- 

q) 

pZw 
- 

z8 + q = (z2 
- 

l)(pz* 
- 

qz6 
- 

qz* 
- 

qz2 
- 

q). 
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To find their roots one can set w = z2 and solve polynomial equations of fourth degree. 
Of course, the resulting formulas are very long. For example, the real root b > 1 of 

pz10 
? 

z8 + q (case r/s = 3/5) is given by 

b = Mp) +-+ 
9pB(p)j 

1/2 

+ A(p) 
B(p) C(p) 

Dip) 'aq,) + !M+ 
P 9pB(p)] 

1/2 

+ 

2p 9pB(p) 

Ap 4 

where 

Mp) = (p-l)2 2(p-l) 
4p2 3P 

25p3 + 30p2 + 15p + 3V3V-125p6 + 300p5 
- 

190p4 + 4p3 + 3p2 
- 

8p + 16 - 20 

3^2 B(p) = 

C(p) = 
5p2-Ap-l, 

(p-1)3 | (p-1)2 2(p 
- 1) 

D{P^ =-FT" +-1 4p3 pl p 

Since ?b are the only roots outside the unit circle, it follows that 

P(M < 3/5) = \-b~\ P(M = 3/5) = 1 - b"1 - p(b 
- 1) 

for p < 4/5. In the case p = 1/2 we obtain b % 1.38827. 

For all other values of r/s numerical methods seem to be required. Using Mathe 
matica it is easy to compute P(M = r/s) and P(M < r/s) for any given values of r 
and s. Let us write Pp(-) to indicate the dependence on p. Clearly, M is stochastically 
increasing in p, i.e., p i?>- fp(M 

< x) is decreasing on [0, (x + l)/2) for any fixed 
x (-1, 1). Note that limx/l PP(M < x) = 1 - ?P(M 

= 1) = 1 - p, and the limit 
seems to be approached quickly. For example, we have P2/s(M 

< 3/4) % 0.5996, 

P2/5(M e (3/4, 1)) % 0.0004 and P,/2(M < 4/5) % 0.49951, P,/2(M e (4/5, 1)) ? 
0.00049. 

We can write / (z) in the form 

f(z) - 
p(z2* 

- 
1) 

- 
(r? 1), 

so that f(z) is a simple linear combination of two cyclotomic polynomials. However, 
it is not clear whether its Galois group is solvable for any values of p, r, and s other 
than the ones treated above. 
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