
Online Convex Programming
and Generalized Infinitesimal Gradient Ascent

Martin Zinkevich maz@cs.cmu.edu

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213 USA

Abstract

Convex programming involves a convex set
F ⊆ R

n and a convex cost function c :
F → R. The goal of convex programming
is to find a point in F which minimizes c.
In online convex programming, the convex
set is known in advance, but in each step
of some repeated optimization problem, one
must select a point in F before seeing the cost
function for that step. This can be used to
model factory production, farm production,
and many other industrial optimization prob-
lems where one is unaware of the value of the
items produced until they have already been
constructed. We introduce an algorithm for
this domain. We also apply this algorithm
to repeated games, and show that it is re-
ally a generalization of infinitesimal gradient
ascent, and the results here imply that gen-
eralized infinitesimal gradient ascent (GIGA)
is universally consistent.

1. Introduction

Convex programming is a generalization of linear pro-
gramming, with many applications to machine learn-
ing. For example, one wants to find a hypothesis
in a hypothesis space H that minimizes absolute er-
ror (Boyd & Vandenberghe, 2003), minimizes squared
error (Hastie et al., 2001), or maximizes the mar-
gin (Boser et al., 1992) for the training set X. If
the hypothesis space consists of linear functions, then
these problems can be solved using linear program-
ming, least-squares regression, and support vector ma-
chines respectively. These are all examples of convex
programming problems.

Convex programming has other applications, such as
nonlinear facility location problems (Boyd & Vanden-
berghe, 2003, pages 421-422), network routing prob-

lems (Bansal et al., 2003), and consumer optimiza-
tion problems (Boot, 2003, pages 4–6). Other exam-
ples of linear programming problems are meeting nu-
tritional requirements, balancing production and con-
sumption in the national economy, and production
planning(Cameron, 1985, pages 36–39).

Convex programming consists of a convex feasible set
F ⊆ R

n and a convex (valley-shaped) cost function
c : F → R. In this paper, we discuss online convex
programming, in which an algorithm faces a sequence
of convex programming problems, each with the same
feasible set but different cost functions. Each time
the algorithm must choose a point before it observes
the cost function. This models a number of optimiza-
tion problems including industrial production and net-
work routing, in which decisions must be made before
true costs or values are known1. This is a generaliza-
tion of both work in minimizing error online (Cesa-
Bianchi et al., 1994; Kivinen & Warmuth, 1997; Gor-
don, 1999; Herbster & Warmuth, 2001; Kivinen &
Warmuth, 2001) and of the experts problem (Freund
& Schapire, 1999; Littlestone & Warmuth, 1989).

In the experts problem, one has n experts, each of
which has a plan at each step with some cost. At
each round, one selects a probability distribution over
experts. If x ∈ Rn is defined such that xi is the prob-
ability that one selects expert i, then the set of all
probability distributions is a convex set. Also, the
cost function on this set is linear, and therefore con-
vex. Repeated games are closely related to the experts
problem.

In minimizing error online, one sees an unlabeled in-
stance, assigns it a label, and then receives some error
based on how divergent the label given was from the
true label. The divergences used in previous work are

1We expand on the network routing domain at the end
of this section. In particular, our results have been ap-
plied (Bansal et al., 2003) to solve the “online oblivous
routing problem”.

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

fixed Bregman divergences, e.g. squared error.

In this paper, we make no distributional assumptions2

about the convex cost functions. Also, we make no as-
sumptions about any relationships between successive
cost functions. Thus, expecting to choose the optimal
point at each time step is unrealistic. Instead, as in
the analysis of the experts problem, we compare our
cost to the cost of some other “offline” algorithm that
selects a fixed vector. However, this other algorithm
knows in advance all of the cost functions before it
selects this single fixed vector. We formalize this in
Section 2.1.

We present an algorithm for general convex functions
based on gradient descent, called greedy projection.
The algorithm applies gradient descent in R

n, and
then moves back to the set of feasible points. There
are three advantages to this algorithm. The first is
that gradient descent is a simple, natural algorithm
that is widely used, and studying its behavior is of in-
trinsic value. Secondly, this algorithm is more general
than the experts setting, in that it can handle an ar-
bitrary sequence of convex functions, which has yet to
be solved. Finally, in online linear programs this algo-
rithm can in some circumstances perform better than
an experts algorithm. While the bounds on the per-
formance of most experts algorithms depends on the
number of experts, these bounds are based on other
criteria which may sometimes be lower. This relation-
ship is discussed further in Section 4, and further com-
ments on related work can be found in Section 5. The
main theorem is stated and proven in Section 2.1.

Another measure of the performance of gradient pro-
jection is found in Section 2.2, where we establish re-
sults unlike those usually found in online algorithms.
We establish that the algorithm can perform well, even
in comparison to an agent that knows the sequence in
advance and can move for some short distance. This
result establishes that greedy projection can handle en-
vironments that are slowly changing over time and re-
quire frequent but small modifications to handle well.

The algorithm that motivated this study was infinites-
imal gradient ascent (Singh et al., 2000), which is an
algorithm for repeated games. First, this result shows
that infinitesimal gradient ascent is universally con-
sistent (Fudenberg & Levine, 1995), and secondly it
shows that GIGA, a nontrivial extension developed
here of infinitesimal gradient ascent to games with
more than two actions, is universally consistent. GIGA
is defined in Section 3.2, and the proof is similar to that

2The assumptions we do make are listed in the begin-
ning of Section 2.

in (Freund & Schapire, 1999).

Bansal et al. (2003) formulate an online oblivious rout-
ing problem as an online convex programming prob-
lem, and apply greedy projection to obtain good per-
formance. In online oblivious routing, one is in charge
of minimizing network congestion by programming a
variety of routers. At the beginning of each day, one
chooses a flow for each source-destination pair. The
set of all such flows is convex. Then, an adversary
chooses a demand (number of packets) for each source-
destination pair. The cost is the maximum congestion
along any edge that the algorithm has divided by the
maximum congestion of the optimal routing given the
demand.

The contribution of this paper is a general solution
for a wide variety of problems, some solved, some un-
solved. Sometimes, these results show new properties
of existing algorithms, like IGA, and sometimes, this
work has resulted in new algorithms, like GIGA. Fi-
nally, the flexibility to choose arbitrary convex func-
tions has already resulted in a solution to a practical
online problem (Bansal et al., 2003).

2. Online Convex Programming

Definition 1 A set of vectors S ⊆ Rn is convex if
for all x, x′ ∈ S, and all λ ∈ [0, 1], λx+ (1−λ)x′ ∈ S.

Definition 2 For a convex set F , a function f : F →
R is convex if for all x, y ∈ F , for all λ ∈ [0, 1],

λf(x) + (1− λ)f(y) ≥ f(λx+ (1− λ)y)

If one were to imagine a convex function R2 → R,
where the function described the altitude, then the
function would look like a valley.

Definition 3 A convex programming problem
consists of a convex feasible set F and a convex cost
function c : F → R. The optimal solution is the
solution that minimizes the cost.

Definition 4 An online convex programming
problem consists of a feasible set F ⊆ R

n and an
infinite sequence {c1, c2, . . . } where each ct : F → R is
a convex function.

At each time step t, an online convex programming
algorithm selects a vector xt ∈ F . After the vector is
selected, it receives the cost function ct.

Because all information is not available before deci-
sions are made, online algorithms do not reach “so-
lutions”, but instead achieve certain goals. See Sec-
tion 2.1.

Define ‖x‖ =
√
x · x and d(x, y) = ‖x− y‖. Through-

out the remainder of the paper we will make seven
assumptions:

1. The feasible set F is bounded. There exists N ∈
R such that for all x, y ∈ F , d(x, y) ≤ N .

2. The feasible set F is closed. For all sequences
{x1, x2, . . . } where xt ∈ F for all t, if there exists
a x ∈ Rn such that x = limt→∞ xt, then x ∈ F .

3. The feasible set F is nonempty. There exists an
x ∈ F .

4. For all t, ct is differentiable3.

5. There exists an N ∈ R such that for all t, for all
x ∈ F , ‖∇ct(x)‖ ≤ N .

6. For all t, there exists an algorithm, given x, which
produces ∇ct(x).

7. For all y ∈ Rn, there exists an algorithm which
can produce argminx∈F d(x, y). We define the pro-
jection P (y) = argminx∈F d(x, y).

Given this machinery, we can describe our algorithm.

Algorithm 1 Greedy Projection Select an arbi-
trary x1 ∈ F and a sequence of learning rates
η1, η2, . . . ∈ R+. In time step t, after receiving a cost
function, select the next vector xt+1 according to:

xt+1 = P
(
xt − ηt∇ct(xt)

)
.

The basic principle at work in this algorithm is quite
clear if we consider the case where the sequence
{c1, c2, . . . } is constant. In this case, our algorithm
is operating in an unchanging valley. The boundary
of the feasible set is the edge of the valley. By pro-
ceeding along the direction opposite the gradient, we
walk down into the valley. By projecting back into the
convex set, we skirt the edges of the valley.

2.1. Analyzing the Performance of the
Algorithm

What we would like to do is to prove greedy projection
“works” for any sequence of convex functions, even if
these convex function are unrelated to one another. In
this scenario, we cannot hope choose a point xi that
minimizes ci, because ci can be anything. Instead we
try to minimize regret.

3Although we make the assumption that ct is differen-
tiable, the algorithm can also work if there exists an algo-
rithm that, given x, can produce a vector g such that for
all y, g · (y − x) ≤ ct(y)− ct(x).

We calculate our regret by comparing ourselves to an
“offline” algorithm that has all of the information be-
fore it has to make any decisions, but is more restricted
than we are in the choices it can make. For example,
imagine that the offline algorithm has access to the
first T cost functions at the beginning. However, it
can only choose one vector x ∈ F . Then the offline
algorithm can attempt to minimize the cost function
c(x) =

∑T
i=1 c

i(x). This is an offline convex program-
ming problem. Regret is the difference between our
cost and the cost of the offline algorithm. Average re-
gret is the regret divided by T , the number of rounds.

Definition 5 Given an algorithm A, and a convex
programming problem (F, {c1, c2, . . . }), if {x1, x2 . . . }
are the vectors selected by A, then the cost of A until
time T is

CA(T) =
T∑
t=1

ct(xt).

The cost of a static feasible solution x ∈ F until time
T is

Cx(T) =
T∑
t=1

ct(x).

The regret of algorithm A until time T is

RA(T) = CA(T)−min
x∈F

Cx(T).

As the sequences get longer, the offline algorithm finds
itself at less of an advantage. If the sequence of cost
functions is relatively stationary, then an online al-
gorithm can learn what the cost functions will look
like in the future. If the sequence of cost functions
varies drastically, then the offline algorithm will not
be able to take advantage of this because it selects a
fixed point. Our goal is to prove that the av-
erage regret of Greedy Projection approaches
zero. In order to state our results about bounding
the regret of this algorithm, we need to specify some
parameters. First, let us define:

‖F ‖ = max
x,y∈F

d(x, y)

‖∇c‖ = max
x∈F,t∈{1,2,... }

‖∇ct(x)‖.

Here is the first result derived in this paper:

Theorem 1 If ηt = t−1/2, the regret of the Greedy
Projection algorithm is:

RG(T) ≤ ‖F ‖
2√
T

2
+
(√

T − 1
2

)
‖∇c‖2

Therefore, lim supT→∞RG(T)/T ≤ 0.

The first part of the bound is because we might begin
on the wrong side of F . The second part is a result of
the fact that we always respond after we see the cost
function.

Proof: First we show that without loss of generality,
for all t there exists a gt ∈ Rn such that for all x,
ct(x) = gt · x.

First, begin with arbitrary {c1, c2, . . . }, run the algo-
rithm and compute {x1, x2, . . . }. Then define gt =
∇ct(xt). If we were to change ct such that for all x,
ct(x) = gt · x, the behavior of the algorithm would be
the same. Would the regret be the same?

Because ct is convex, for all x:

ct(x) ≥ (∇ct(xt)) · (x− xt) + ct(xt).

Set x∗ to be a statically optimal vector. Then, because
x∗ ∈ F : ct(x∗) ≥ gt · (x∗ − xt) + ct(xt). Thus:

ct(xt)− ct(x∗) ≤ ct(xt)−
(
gt · (x∗ − xt) + ct(xt)

)
≤ gt · xt − gt · x∗

Thus the regret would be at least as much with the
modified sequence of functions.

We define for all t, yt+1 = xt − ηtg
t. Observe that

xt+1 = P (yt+1). We will attempt to bound the regret
of not playing action x∗ on round t.

yt+1 − x∗ = (xt − x∗)− ηtgt

(yt+1 − x∗)2 = (xt − x∗)2 − 2ηt(xt − x∗) · gt

+η2
t ‖gt ‖

2

Observe that in the expression a2 − 2ab + b2, a2 is
a potential, 2ab is the immediate cost, and b2 is the
error (within a factor of 2ηt). We will now begin to
fully flush out these properties. For all y ∈ Rn, for all
x ∈ F , (y − x)2 ≥ (P (y) − x)2. Also, ‖gt ‖ ≤ ‖∇c‖.
So

(xt+1 − x∗)2 ≤ (xt − x∗)2 − 2ηt(xt − x∗) · gt

+η2
t ‖∇c‖

2

(xt − x∗) · gt ≤ 1
2ηt

(
(xt − x∗)2 − (xt+1 − x∗)2

)
+
ηt
2
‖∇c‖2

Now, by summing we get:

RG(T) =
T∑
t=1

(xt − x∗) · gt

≤
T∑
t=1

1
2ηt

(
(xt − x∗)2 − (xt+1 − x∗)2

)
+
ηt
2
‖∇c‖2

≤ 1
2η1

(x1 − x∗)2 − 1
2ηT

(xT+1 − x∗)2

+
1
2

T∑
t=2

(
1
ηt
− 1
ηt−1

)
(xt − x∗)2

+
‖∇c‖2

2

T∑
t=1

ηt

≤ ‖F ‖2
(

1
2η1

+
1
2

T∑
t=2

(
1
ηt
− 1
ηt−1

))

+
‖∇c‖2

2

T∑
t=1

ηt

≤ ‖F ‖2 1
2ηT

+
‖∇c‖2

2

T∑
t=1

ηt

Now, if we define ηt = 1√
t
, then

T∑
t=1

ηt =
T∑
t=1

1√
t

≤ 1 +
∫ T

t=1

dt√
t

≤ 1 +
[
2
√
t
]T

1

≤ 2
√
T − 1

Plugging this into the above equation yields the
result.

2.2. Regret Against a Dynamic Strategy

Another possibility for the offline algorithm is to allow
a small amount of change. For example, imagine that
the path that the offline algorithm follows is of limited
size.

Definition 6 The path length of a sequence
x1, . . . , xT is:

T−1∑
i=1

d(xi, xi+1).

Define A(T,L) to be the set of sequences with T vectors
and a path length less than or equal to L.

Definition 7 Given an algorithm A and a maximum
path length L, the dynamic regret RA(T,L) is:

RA(T,L) = CA(T)− min
A′∈A(T,L)

CA′(T).

Theorem 2 If η is fixed, the dynamic regret of the
Greedy Projection algorithm is:

RG(T,L) ≤ 7‖F ‖2

4η
+
L‖F ‖
η

+
Tη‖∇c‖2

2

The proof is similar to the proof of Theorem 1, and
is included in the full version of the paper (Zinkevich,
2003).

3. Generalized Infinitesimal Gradient
Ascent

In this section, we establish that repeated games are
online linear programming problems, and an applica-
tion of our algorithm is universally consistent.

3.1. Repeated Games

From the perspective of one player, a repeated game
is two sets of actions A and B, and a utility function
u : A × B → R. A pair in A × B is called a joint
action. For the example in this section, we will think
of a matching game. A = {a1, a2, a3}, B = {b1, b2, b3},
where u(a1, b1) = u(a2, b2) = u(a3, b3) = 1, and every-
where else u is zero.

As a game is being played, at each step the player
will be selecting an action at random based on past
joint actions, and the environment will be selecting an
action at random based on past joint actions. We will
formalize this later.

A history is a sequence of joint actions. Ht = (A×B)t

is the set of all histories of length t. Define H =⋃∞
t=0H

t to be the set of all histories, and for any his-
tory h ∈ H, define |h| to be the length of that history.
An example of a history is:

h = {(a3, b1), (a1, b2), (a2, b3), (a2, b2), (a2, b2)}

In order to access the history, we define hi to be the
ith joint action. Thus, h3 = (a2, b3), h1,1 = a3 and
h5,2 = b2. The utility of a history h ∈ H is:

utotal(h) =
|h|∑
i=1

u(hi,1, hi,2).

The utility of the above example is utotal(h) = 2. We
can define what the history would look like if we re-
placed the action of the player with a2 at each time
step.

h∗→a2 = {(a2, b1), (a2, b2), (a2, b3), (a2, b2), (a2, b2)}

Now, utotal(h∗→a2) = 3. Thus we would have done
better playing this action all the time. The definition
of regret of not playing action a for all h ∈ H, for
all a ∈ A is:

R∗→a(h) = utotal(h∗→a)− utotal(h)

In this example, the regret of not playing action a2 is
R∗→a2(h) = 3 − 2 = 1. This regret of not playing an
action need not be positive. For example, R∗→a1(h) =
1 − 2 = −1. Now, we define the maximum regret, or
just regret, to be:

R(h) = max
a∈A

R∗→a(h).

Here R(h) = 1. The most important aspect of this
definition of regret is that regret is a function of the
resulting history, independent of the strategies that
generated that history.

Now, we introduce the definition of the behavior and
the environment. For any set S, define ∆(S) to be
the set of all probabilities over S. For a distribution
D and a boolean predicate P , we use the notation
Prx∈D[P (x)] to indicate the probability that P (x) is
true given that x was selected from D.

A behavior σ : H → ∆(A) is a function from histories
of past actions to distributions over the next action of
the player. An environment ρ : H → ∆(B) is a
function from the history of past actions to distribu-
tions over the next action of the environment. Define
H∞ = (A×B)∞ to be the set of all infinite histories.
We define Fσ,ρ ∈ ∆(H∞) to be the distribution over
infinite histories where the player chooses its next ac-
tion according to σ and the environment chooses its
next action according to ρ. For all h ∈ H∞, define
h(t) to be the first t joint actions of h.

Definition 8 A behavior σ is universally consistent if
for any ε > 0 there exists a T such that for all ρ:

Pr
h∈Fσ,ρ

[
∀t > T,

R(h(t))
t

> ε

]
< ε.

After some time, with high probability the average re-
gret is low. Observe that this convergence over time is
uniform over all environments.

3.2. Formulating a Repeated Game as an
Online Linear Program

For simplicity, suppose that we consider the case where
A = {1, . . . , n}. Before each time step in a repeated
game, we select a distribution over actions. This can
be represented as a vector in an n-standard closed sim-
plex, the set of all points x ∈ Rn such that for all i,
xi ≥ 0, and

∑n
i=1 xi = 1. Define this to be F .

Since we have a utility u instead of cost c, we will
perform gradient ascent instead of descent. The utility
u is a linear function when the environment’s action
becomes known.

Algorithm 2 (Generalized Infinitesimal Gradi-
ent Ascent) Choose a sequence of learning rates
{η1, η2, . . . }. Begin with an arbitrary vector x1 ∈ F .
Then for each round t:

1. Play according to xt: play action i with probability
xti.

2. Observe the action ht,2 of the other player and
calculate:

yt+1
i = xti + ηtu(i, ht,2)
xt+1 = P (yt+1)

where P (y) = argminx∈F d(x, y), as before.

Theorem 3 Setting ηt = 1√
t
, GIGA is universally

consistent.

The proof is in the full version of the paper (Zinkevich,
2003), and we provide a sketch here. As a direct result
of Theorem 1, we can prove that if the environment
plays any fixed sequence of actions, our regret goes to
zero. Using a technique similar to Section 3.1 of (Fre-
und & Schapire, 1999), we can move from this result
to convergence with respect to an arbitrary, adaptive
environment.

4. Converting Old Algorithms

In this section, in order to compare our work with
that of others, we show how one can näively trans-
late algorithms for mixing experts into algorithms for
online linear programs, and online linear programming
algorithms into algorithms for online convex programs.
This section is a discussion and no formal proofs are
given.

4.1. Formal Definitions

We begin with defining the expert’s problem.

Definition 9 An experts problem is a set of ex-
perts E = {e1, . . . , en} and a sequence of cost vectors
c1, c2, . . . where for all i, ci ∈ Rn.

On each round t, an expert algorithm (EA) first
selects a distribution Dt ∈ ∆(E), and then observes a
cost vector ct.

We assume that the EA can handle both positive and
negative values. If not, it can be easily extended by
shifting the values into the positive range.

Definition 10 An online linear programming
problem is a closed convex polytope F ⊆ Rn and a se-
quence of cost vectors c1, c2, . . . where for all i,ci ∈ Rn.

On each round t, an online linear programming
algorithm (OLPA) first plays a distribution Dt ∈
∆(F), and then observes a cost vector ct.

An OLPA can be constructed from an EA, as described
below.

Algorithm 3 Define v1, . . . , vk to be the vertices of
the polytope for an online linear program. Choose E =
{e1, . . . , ek} to be the experts, one for each vertex.

On each round t, receive a distribution Dt from the
EA, and select vector vi if expert ei is selected. Define
c′ ∈ Rk such that c′i = ct · vi. Send EA the cost vector
c′ ∈ Rk.

The optimal static vector must be a vertex of the poly-
tope, because a linear program always has a solution
at a vertex of the polytope. If the original EA can do
almost as well as the best expert, this OLPA can do
at least as well as the best static vector.

The second observation is that most EA have bounds
that depend on the number of experts. The number
of vertices of the convex polytope is totally unrelated
to the diameter, so any normal expert’s bound is in-
comparable to our bound on Greedy Projection.

There are some EA that begin with a distribution or
uneven weighting over the experts. These EA may per-
form better in this scenario, because that one might
be able to tweak the distribution such that it is spread
evenly over the space (in some way) and not the ex-
perts, giving more weight to lonely vertices and less
weight to clustered vertices.

4.2. Converting an OLPA to an Online Convex
Programming Algorithm

There are two reasons that the algorithm described
above will not work for an online convex program. The
first is that an online convex program can have an

arbitrary convex shape as a feasible region, such as a
circle, which cannot be described as the convex hull of
any finite number of points.

The second reason is that a convex function may not
have a minimum on the edge of the feasible set. For
example, if F = {x : x · x ≤ 1} and c(x) = x · x, the
minimum is in the center of the feasible set.

Now, this first issue is difficult to handle directly4,
so we will simply assume that the OLPA can handle
the feasible region of the online convex programming
problem. This can be either because that the OLPA
can handle an arbitrary convex region as in Kalai and
Vempala (2002), or because that the convex region of
the convex programming problem is a convex polytope.

We handle the second issue by converting the cost
function to a linear one. In Theorem 1, we find that the
worst case is when the cost function is linear. This as-
sumption depends on two properties of the algorithm;
the algorithm is deterministic, and the only property of
the cost function ct that is observed is ∇ct(xt). Now,
we form an Online Convex Programming algorithm in
the following way.

Algorithm 4 On each round t, receive Dt from the
OLPA, and play xt = EX∈Dt [X]. Send the OLPA the
cost vector ∇ct(xt).

The algorithm is discrete and only observes the gradi-
ent at the point xt, thus we can assume that the cost
function is linear. If the cost function is linear, then:

EX∈Dt [ct(X)] = ct(EX∈Dt [X]).

xt may be difficult to compute, and we address this
issue in the full version of the paper.

5. Related Work

Kalai and Vempala (2002) have developed algorithms
to solve online linear programming, which is a spe-
cific type of online convex programming. They are
attempting to make the algorithm behave in a lazy
fashion, changing its vector slowly, whereas here we
are attempting to be more dynamic, as is highlighted
in Section 2.2.

These algorithms were motivated by the algorithm
of (Singh et al., 2000) which applies gradient ascent to
repeated games. We extend their algorithm to games
with an arbitrary number of actions, and prove uni-
versal consistency. There has been extensive work on

4One can approximate a convex region by a series of
increasingly complex convex polytopes, but this solution is
very undesirable.

regret in repeated games and in the experts domain,
such as (Blackwell, 1956; Foster & Vohra, 1999; Foster,
1999; Freund & Schapire, 1999; Fudenberg & Levine,
1995; Fudenberg & Levine, 1997; Hannan, 1957; Hart
& Mas-Colell, 2000; Hart & Mas-Colell, 2001; Lit-
tlestone & Warmuth, 1989). What makes this work
noteworthy in a very old field is that it proves that a
widely-used technique in artificial intelligence, gradi-
ent ascent, has a property that is of interest to those
in game theory. As stated in Section 4, experts algo-
rithms can be used to solve online online linear pro-
grams and online convex programming problems, but
the bounds may become significantly worse.

There are several studies of online gradient descent and
related update functions, for example (Cesa-Bianchi
et al., 1994; Kivinen & Warmuth, 1997; Gordon, 1999;
Herbster & Warmuth, 2001; Kivinen & Warmuth,
2001). These studies focus on prediction problems
where the loss functions are convex Bregman diver-
gences. In this paper, we are considering arbitrary
convex functions, in problems that may or may not
involve prediction.

Finally, in the offline case, (Della Pietra et al., 1999)
have done work on proving that gradient descent and
projection for arbitrary Bregman distances converges
to the optimal solution.

6. Future Work

Here we deal with a Euclidean geometry: what if one
considered gradient descent on a noneuclidean geome-
try, like (Amari, 1998; Mahony & Williamson, 2001)?
It is also possible to conceive of cost functions that
do not just depend on the most recent vector, but on
every previous vector.

7. Conclusions

In this paper, we have defined an online convex pro-
gramming problem. We have established that gradient
descent is a very effective algorithm on this problem,
because that the average regret will approach zero.
This work was motivated by trying to better under-
stand the infinitesimal gradient ascent algorithm, and
the techniques developed we applied to that problem
to establish an extension to infinitesimal gradient as-
cent that is universally consistent.

Acknowledgements

This work was supported in part by NSF grants CCR-
0105488, NSF-ITR CCR-0122581, and NSF-ITR IIS-
0121678. Any errors or omissions in the work are the

sole responsibility of the author. We would like to
thank Pat Riley for great help in developing the algo-
rithm for the case of repeated games, Adam Kalai for
improving the proof and bounds of the main theorem,
and Michael Bowling, Avrim Blum, Nikhil Bansal, Ge-
off Gordon, and Manfred Warmuth for their help and
suggestions with this research.

References

Amari, S. (1998). Natural gradient works efficiently in
learning. Neural Computation, 10, 251–276.

Bansal, N., Blum, A., Chawla, S., & Meyerson, A.
(2003). Online oblivious routing. Fifteenth ACM
Symposium on Parallelism in Algorithms and Ar-
chitecture.

Blackwell, D. (1956). An analog of the minimax the-
orem for vector payoffs. South Pacific J. of Mathe-
matics, 1–8.

Boot, J. (2003). Quadratic programming: Algorithms,
anomolies, applications. Rand McNally & Co.

Boser, B., Guyon, I., & Vapnik, V. (1992). A training
algorithm for optimal margin classifiers. Proceedings
of the Fifth Annual Conference on Computational
Learning Theory.

Boyd, S., & Vandenberghe, L. (2003). Con-
vex optimization. In press, available at
http://www.stanford.edu/~boyd/cvxbook.html.

Cameron, N. (1985). Introduction to linear and convex
programming. Cambridge University Press.

Cesa-Bianchi, N., Long, P., & Warmuth, M. K. (1994).
Worst-case quadratic bounds for on-line prediction
of linear functions by gradient descent. IEEE Trans-
actions on Neural Networks, 7, 604–619.

Della Pietra, S., Della Pietra, V., & Lafferty, J.
(1999). Duality and auxilary functions for Breg-
man distances (Technical Report CMU-CS-01-109).
Carnegie Mellon University.

Foster, D. (1999). A proof of calibration via Black-
well’s approachability theorem. Games and Eco-
nomic Behavior (pp. 73–79).

Foster, D., & Vohra, R. (1999). Regret in the on-line
decision problem. Games and Economic Behavior,
29, 7–35.

Freund, Y., & Schapire, R. (1999). Adaptive game
playing using multiplicative weights. Games and
Economic Behavior (pp. 79–103).

Fudenberg, D., & Levine, D. (1995). Universal consis-
tency and cautious fictitious play. Journal of Eco-
nomic Dynamics and Control, 19, 1065–1089.

Fudenberg, D., & Levine, D. (1997). Con-
ditional universal consistency. Available at
http://ideas.repec.org/s/cla/levarc.html.

Gordon, G. (1999). Approximate solutions to markov
decision processes. Doctoral dissertation, Carnegie
Mellon University.

Hannan, J. (1957). Approximation to bayes risk in
repeated play. Annals of Mathematics Studies, 39,
97–139.

Hart, S., & Mas-Colell, A. (2000). A simple adaptive
procedure leading to correlated equilibrium. Econo-
metrica, 68, 1127–1150.

Hart, S., & Mas-Colell, A. (2001). A general class of
adaptive strategies. Journal of Economic Theory,
98, 26–54.

Hastie, T., Tibishirani, R., & Friedman, J. (2001). The
elements of statistical learning. Springer.

Herbster, M., & Warmuth, M. K. (2001). Tracking the
best linear predictor. Journal of Machine Learning
Research, 1, 281–309.

Kalai, A., & Vempala, S. (2002). Geometric algorithms
for online optimization (Technical Report). MIT.

Kivinen, J., & Warmuth, M. (1997). Exponentiated
gradient versus gradient descent for linear predic-
tors. Information and Computation, 132, 1–64.

Kivinen, J., & Warmuth, M. (2001). Relative loss
bounds for multidimensional regression problems.
Machine Learning Journal, 45, 301–329.

Littlestone, N., & Warmuth, M. K. (1989). The
weighted majority algorithm. Proceedings of the Sec-
ond Annual Conference on Computational Learning
Theory.

Mahony, R., & Williamson, R. (2001). Prior knowl-
edge and preferential structures in gradient descent
algorithms. Journal of Machine Learning Research,
1, 311–355.

Singh, S., Kearns, M., & Mansour, Y. (2000). Nash
convergence of gradient dynamics in general-sum
games. Proceedings of the Sixteenth Conference in
Uncertainty in Artificial Intelligence (pp. 541–548).

Zinkevich, M. (2003). Online convex programming and
generalized infinitesimal gradient ascent (Technical
Report CMU-CS-03-110). CMU.

