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Towards the end of the 18th century Gaspard Monge posed a problem con-
cerning the most efficient way to move a pile of sand into a hole of the same
volume. In modern language the problem was something like this:

Given two probability measures µ and ν on R2 (or more generally Rn), find
a map T : R2 → R2 which transports µ to ν and which minimises the total
cost ∫

‖x− Tx‖ dµ(x).

(Thus the cost of moving a unit mass from x to Tx is just the distance moved.)

The statement that T transports µ to ν means that for each measurable
set A,

µ
(
T−1(A)

)
= ν (A) (1)

or equivalently, that for any bounded continuous real-valued function f
∫

f
(
T (x)

)
dµ(x) =

∫

f(x) dν(x). (2)

Monge gave a number of examples to illustrate the difficulties of the prob-
lem. Plainly if arbitrary measures are allowed it may not be possible to trans-
port at all. If µ is a single point mass and ν consists of two point masses, each
with weight 1/2, then no map T can “split µ in half”. Where transportation
maps do exist, there may be many different optimal ones, even for measures
on the line. If µ consists of two equal masses at (say) 0 and 1, and ν consists
of two equal masses at 2 and 3 then it does not matter whether we choose

0 → 2
1 → 3 or 0 → 3

1 → 2 :
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the total cost is 4 in each case. For general measures, it is difficult to demon-
strate the existence of any optimal transportation map. In the late seventies,
Sudakov [S] outlined an important new approach to the problem which has re-
cently been implemented in a number of different ways: by Caffarelli, Feldman
and McCann [CFM], Trudinger and Wang [TW] and Ambrosio [A] and in par-
ticular contexts by Ambrosio, Kirchheim and Pratelli [AKP]. I am indebted
to Bernd Kirchheim for his guidance on the history of this problem.

One reason for the difficulty is that the condition (1) is highly non-linear
in T . This difficulty can be overcome by relaxing the requirement that µ be
transported to ν by a map. Instead of insisting that all the µ-measure at x
should end up at the same place Tx, we may allow this mass to be “smeared
out” over many points. The aim is thus to describe for each pair of points
(x, y), how much mass is moved from x to y. More formally, we look for a
measure γ on the product Rn × Rn whose marginal in the x direction is µ
and whose marginal in the y direction is ν: so for measurable sets A and B,

γ(A× Rn) = µ(A)

γ(Rn ×B) = ν(B).

A transportation measure is then optimal if it minimises
∫

‖x− y‖ dγ(x, y).

In this form, the problem is a linear program (for γ), whose discrete version is
familiar from introductory courses on linear programming. The conversion of
the transportation problem to a linear program was first described by Kan-
torovich. In this setting, the existence of optimal transport measures is not so
hard to establish: the difficulty is to decide whether there is such a measure
which is concentrated on the graph of a function T .

In the context of linear programming it is customary to consider trans-
portation costs that are much more general than simply the distance ‖x− y‖.
The total cost will be ∫

c(x, y) dγ(x, y)

if cmeasures the cost per unit mass of transporting from x to y. If c is a strictly
convex function of the distance ‖x− y‖ then examples of non-unique optimal
transportation like the one above, do not occur. In [Br], Brenier explained
that there is one particular choice of cost function for which not only is the
optimal map unique but also it has a particularly special form, which makes
it suitable for a wide range of applications. From the geometric point of view,
this cost function is undoubtedly the “right” one. The cost in question is the
square of the Euclidean distance: c(x, y) = ‖x− y‖2.

To see why this choice is so special, consider the problem of transport-
ing a probability measure µ on R2 (which will be assumed to be absolutely
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continuous with respect to Lebesgue measure) to the probability measure ν
which assigns mass 1/2 to each of the points (1, 0) and (−1, 0). The problem is
illustrated in Figure 1: the shaded region on the left is supposed to represent
the measure µ.

Fig. 1. A simple transport problem

The problem is to find a partition of R2 into sets A and B with

µ(A) = µ(B) = 1/2

so as to minimise the cost of transporting A to (−1, 0) and B to (1, 0):
∫

A

‖x− (−1, 0)‖2 dµ+
∫

B

‖x− (1, 0)‖2 dµ.

I claim that the best thing to do is to divide the measure µ using a line in the
direction (0, 1), as shown in Figure 1.

To establish the claim, we need to check that given two points (a, u) and
(b, v) with a < b, it is better to move the leftmost point to (−1, 0) and the
rightmost point to (1, 0), than it is to swap the order. The quadratic cost
‖x− y‖2 ensures this because it “keeps separate” the contributions from the
first and second coordinates. The costs in the two cases are

(a+ 1)2 + u2 + (b− 1)2 + v2

and
(a− 1)2 + u2 + (b+ 1)2 + v2

and the only difference arises because a < b.
Because the transport function T maps everything to the right of the line,

to the point (1, 0) and everything to the left of the line to the point (−1, 0),
the map T is the gradient of a ‘V’-shaped function as shown in Figure 2.
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Fig. 2. Representing the transport as a gradient

More generally, the special feature of the Brenier map is that whenever we
find a transport map which is optimal with respect to the quadratic cost, it
will be the gradient of a convex function. Let’s see why such a gradient should
be optimal. Suppose that φ : Rn → Rn is convex, T = ∇φ and we have points
x1, x2, . . . , xk whose images under T are y1, y2, . . . , yk respectively. The aim
is to show that if u1, u2, . . . , uk is a permutation of the xi then

∑
‖xi − yi‖2 ≤

∑
‖ui − yi‖2 :

that the total cost goes up if we map the points any other way than by T .
Plainly the inequality amounts to

∑
〈xi, yi〉 ≥

∑
〈ui, yi〉. (3)

Now, since φ is convex, we have that for every x and u

φ(u) ≥ φ(x) + 〈u − x,∇φ|x〉.

Hence ∑
〈ui − xi, yi〉 ≤

∑(
φ(ui) − φ(xi)

)

and the expression on the right is zero, since the ui are a permutation of the
xi. This establishes (3).

Brenier demonstrated the existence of such optimal transport maps un-
der certain conditions on the measures µ and ν: his result was generalised by
McCann in [Mc1]. The Brenier map is sometimes called a monotone trans-
portation map by analogy with the 1-dimensional case, in which the derivative
of a convex function is monotone increasing. The rest of this article is organ-
ised as follows. In the next section we will demonstrate the existence of the
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Brenier map under fairly general conditions on the measures, using an argu-
ment which is somewhat in the spirit of the example above. In the last section
we shall explain how the special structure of the Brenier map fits neatly with
a number of geometric inequalities.

There are a number of excellent surveys relating to mass transportation
and monotone maps, for example the lecture notes of Villani [V].

1 A Construction of the Brenier Map

The aim of this section is to outline a proof of the following theorem:

Theorem 1. If µ and ν are probability measures on Rn, ν has compact
support and µ assigns no mass to any set of Hausdorff dimension (n − 1),
then there is a convex function φ : Rn → R, so that T = ∇φ transports µ
to ν.

The proof has two main steps. We first establish the existence of φ in the
case that the second measure ν is discrete and then pass to general measures
by approximating them weakly by discrete ones. Suppose then that ν is a
convex combination of point masses

ν =
m∑

1

αiδui .

The convex function we want has the form

φ(x) = max
{〈x, ui〉 − si

}

for some suitable choice of real numbers s1, s2, . . . , sm. This function partitions
Rn into m pieces according to whichever linear function is biggest. If Ai is
the set where φ is given by

x �→ 〈x, ui〉 − si
then we want to juggle the si so as to arrange that µ(Ai) = αi for each i. In
order to use a fixed point theorem we shall define a map H on the simplex of
points t = (t1, t2, . . . , tm) with non-negative coordinates satisfying

∑
ti = 1,

by considering the function

φt(x) = max
{

〈x, ui〉 − 1
ti

}

.

If t has non-zero coordinates,H(t) will be the point (µ(A1), . . . , µ(Am)) whose
coordinates are the measures of the sets on which φ is linear. As ti approaches
0, the ith linear function drops to negative infinity and so µ(Ai) decreases
to zero. In view of the hypothesis on µ, H can be defined continuously on
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the simplex and maps each face of the simplex into itself. It is a well-known
consequence (or reformulation) of Brouwer’s fixed point theorem, that such
a map is surjective. (If the map omits a point, say in the interior of the
simplex, then we can follow it by a projection of the punctured simplex onto
its boundary, to obtain a continuous map from the simplex to its boundary
which fixes each face. Now by cycling the coordinates of the simplex we obtain
a continuous map with no fixed point.) So there is a choice of t for which H(t)
is (α1, . . . , αm).

Now suppose that we have a general probability ν. Approximate it weakly
by a sequence (νk) of discrete measures and choose convex functions φk whose
gradients transport µ to these approximants. Assume that the φk are pinned
down by (for example) φk(0) = 0. We may assume that all νk are supported
on the same compact set from which it is immediate that the φk are equicon-
tinuous. So we may assume that they have a locally uniform limit, φ, say. The
function φ is convex.

A standard result in convex analysis guarantees that outside a set of Haus-
dorff dimension n− 1, φ and all the φk are differentiable: (for the φk the dif-
ferentiability is obvious by their construction). It is quite easy to check that
except on the exceptional set,

∇φk → ∇φ.
Let Tk = ∇φk for each k and T = ∇φ. By the condition on the support

of φ, Tk → T , µ-almost everywhere. We want to conclude that T transports
µ to ν. This is a standard argument in weak convergence: if f is a bounded
continuous function then

∫

f dν = lim
∫

f dνk

= lim
∫

f ◦ Tk dµ

=
∫

f ◦ T dµ .

Hence T transports µ to ν. ��
The preceding theorem establishes the existence of a monotone transporta-

tion map T . Since T is the gradient of a convex function φ, its derivative is
the Hessian of φ, so T ′ is positive semi-definite symmetric. Therefore det(T ′)
is non-negative. This means that T is essentially 1-1. Therefore, if µ and ν
have densities f and g respectively, the condition (1) for the Brenier map, has
a local formulation as the familiar change of variables formula

f(x) = g(Tx). det
(
T ′(x)

)
. (4)

This version of the measure transportation property is particularly useful
in a number of geometric applications such as those below.
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2 The Brunn–Minkowski Inequality

The aim of this section and the following one is to illustrate why the Brenier
map is the perfect tool for a number of geometric applications. The first such
applications were found by McCann [Mc2] who gave a proof of the Brunn–
Minkowski inequality using displacement convexity, which depends upon mass
transportation, and Barthe [B] who used the Brenier map to give a very clear
proof of the Brascamp-Lieb inequality [BL], and its generalisations proved in
[L], and also of a reverse inequality that had been conjectured by the present
author. There have been several other, striking, geometric applications, for
example those in [CNV].

In this article I have chosen two somewhat simpler applications: to results
which were originally proved in other ways but which illustrate quite well, just
why monotone maps are so appropriate. The first is the Brunn–Minkowski
inequality.

If A and B are non-empty measurable sets in Rn and λ ∈ (0, 1) then we
define the set

(1 − λ)A+ λB

to be {
(1 − λ)a+ λb : a ∈ A, b ∈ B}.

The Brunn–Minkowski inequality states that

vol
(
(1 − λ)A+ λB

)1/n ≥ (1 − λ)vol(A)1/n + λvol(B)1/n.

By using the arithmetic/geometric mean inequality, we can deduce a mul-
tiplicative version of the Brunn–Minkowski inequality, which has a number of
advantages (one of them being that it admits a number of simple proofs)

vol
(
(1 − λ)A + λB

) ≥ vol(A)1−λvol(B)λ.

For fixed A, B and λ, this latter inequality is weaker than the Brunn–
Minkowski inequality, but it is not hard to check that its truth for all A,
B and λ implies the formally stronger statement.

Using the Brenier map it is easy to give a short explanation of the mul-
tiplicative form of the Brunn–Minkowski inequality, although to make the
argument formal one requires regularity results for the Brenier map which are
not so easy to derive. (Cafarelli [C1] and [C2] has obtained a powerful regu-
larity theory for these maps which is more than sufficient for the applications
described here.)

We may assume that both A and B have finite non-zero measure. Let
µ and ν be the restrictions of Lebesgue measure to A and B respectively,
rescaled by the volumes of these sets so as to have total measure 1. Let T be
the Brenier map transporting µ to ν.

Equation (4) for the transportation shows that for each x ∈ A,
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1
vol(A)

=
1

vol(B)
. det (T ′(x)) .

Now, let Tλ be the map given by

x �→ (1 − λ)x + λT (x).

This map transports µ to a measure, of total mass 1, supported on (1−λ)A+
λB. The density fλ of this measure satisfies

1
vol(A)

= fλ (Tλ(x)) . det (T ′
λ(x)) .

In order to prove that (1 − λ)A + λB is large, it suffices to check that the
density is small: to be precise, that

fλ

(
Tλ(x)

) ≤ 1
vol(A)1−λvol(B)λ

.

This will follow if

det (T ′
λ(x)) ≥

(
vol(B)
vol(A)

)λ

=
(
det

(
T ′(x)

))λ
.

This says that for each x,

det
(
(1 − λ)I + λT ′(x)

) ≥ (
det

(
T ′(x)

))λ

where I is the identity map on Rn.
Now we use the fact that the Brenier map is monotone. At each x, T ′(x) is

the Hessian of a convex function φ and so is a positive semi-definite symmetric
matrix. With respect to an appropriate orthonormal basis, it is diagonal: let’s
say its diagonal entries are t1, t2, . . . , tn. The problem is to show that for these
positive ti

∏
(1 − λ+ λti) ≥

(∏
ti

)λ

.

This inequality is the special case of the Brunn–Minkowski inequality in which
the set A is a unit cube and the set B is a cuboid with sides t1, . . . , tn, aligned
in the same way as the cube. It is immediate because the arithmetic/geometric
mean inequality shows that for each i

(1 − λ) + λti ≥ tλi . ��
As long ago as 1957, Knothe [K] gave a proof of the Brunn–Minkowski

inequality which involved a kind of mass transportation. His argument used
induction upon dimension and corresponded, in effect, to the construction
of a transportation map whose derivative is upper triangular rather than
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symmetric, as is the derivative of the Brenier map. Since such a choice of
map is basis dependent, the proof is geometrically less elegant, but it has the
advantage that regularity is not a serious issue.

Recently Alesker, Dar and Milman [ADM] used monotone transportation
to give a proof of the Brunn–Minkowski inequality which was “constructive”
in the following slightly exotic way. Normally each point of the combination
(1 − λ)A + λB can be realised as a combination of points (one from A and
one from B) in many different ways. In [ADM] the authors construct a map
which associates each point of the convex combination with a particular com-
bination that generates it, and which allows them to compare directly the sets
themselves, rather than just their volumes.

3 The Marton–Talagrand Inequality

In [M] and subsequent articles, Marton described a new method for demon-
strating probabilistic deviation inequalities based upon a comparison between
transportation cost and entropy. Her main focus was on Markov chains where
the existing methods did not give any estimates and in this setting she consid-
ered transportation costs based on an L1-type cost function rather than the
L2-type discussed in this article. In his article [T], Talagrand pointed out that
Marton’s method could be applied very elegantly to the isoperimetric inequal-
ity for Gaussian measure provided one uses the quadratic cost function. The
aim of this section is to explain the Marton–Talagrand inequality using the
Brenier map. As in the previous section, the argument will treat regularity of
the maps naively. The fact that the Brenier map fits well with the Marton–
Talagrand inequality was noticed independently by several people. The first
available references seem to be [Blo] and [OV].

Let γ be the standard Gaussian measure on Rn with density

g(x) =
1

(
√

2π)n
e−|x|2/2.

For a density f on Rn we define the relative entropy of f (relative to the
Gaussian) to be

Ent(f‖γ) =
∫

Rn

f log(f/g).

The Marton–Talagrand inequality compares the relative entropy of f with the
cost of transporting γ to the probability with density f . This cost is

C(g, f) =
∫

|x− T (x)|2 dγ

where T is the Brenier map transporting γ to the measure with density f .
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Theorem 2. With the notation above

1
2
C(g, f) ≤ Ent(f‖γ).

Proof. Let T be the Brenier map transporting γ to the probability with den-
sity f . Then for each x

g(x) = f
(
T (x)

)
T ′(x).

The relative entropy is
∫

f(y) log
(
f(y)/g(y)

)
dy

and after the change of variables y = T (x) this becomes
∫

f
(
T (x)

)
log

(
f(T (x))
g(T (x))

)

T ′(x) dx =
∫

g(x) log
(

g(x)
g(T (x))T ′(x)

)

.

The latter simplifies to
∫

g(x)
[−|x|2/2 + |T (x)|2/2 − logT ′(x)

]

and we want to show that this expression is at least

1
2

∫

g(x)|x − T (x)|2.

That amounts to showing that
∫

g(x) log T ′(x) ≤
∫

g(x)〈x, T (x) − x〉.

As in the Brunn–Minkowski argument above, for each x, the derivative
T ′(x) is a positive semi-definite symmetric matrix with eigenvalues t1, . . . , tn
(say). Therefore logT ′(x) =

∑
log ti and this is at most

∑
(ti − 1) which is

the trace of the matrix T ′−I. This in turn is the divergence (at x) of the map

x �→ T (x) − x.
Using integration by parts and the fact that ∇g(x) = −xg(x) we can conclude
as follows:

∫

g(x) logT ′(x) ≤
∫

g(x)div(T (x) − x)

= −
∫

〈∇g(x), T (x) − x〉

=
∫

g(x)〈x, T (x) − x〉. ��
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The original argument of Talagrand, like that of Marton, used induction
on dimension, much as in the proof of the Brunn–Minkowski inequality found
by Knothe.

To see how the Marton–Talagrand inequality provides a deviation esti-
mate, consider a measurable set B and form a density by restricting the
Gaussian density g to B and dividing by γ(B): call it fB. So

fB(x) = 1B(x)g(x)/γ(B).

Then the relative entropy of fB is just

log
(

1
γ(B)

)

.

So the cost of transporting γ to fB is at most −2 log γ(B). Now suppose that
A is a set of fairly large Gaussian measure (1/2 perhaps) and that all points
of B are at least distance ε from A. Then in transporting γ to fB, we must
transport all the measure in A, at least a distance ε. So the cost is at least
γ(A)ε2.

Hence
γ(A)ε2 ≤ −2 log γ(B)

which implies that
γ(B) ≤ e−γ(A)ε2/2.

Thus the ε-neighbourhood of a set of fairly large measure has Gaussian mea-
sure, close to 1.
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