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Abstract—We present two probability inequalities. The simpler
first inequality weakens both hypotheses in Höffding-Azuma
inequality. Using it, we generalize concentration results previ-
ously known for the uniform density for the TSP, MWST and
Random Projections to long-tailed inhomogeneous distributions.
The second more complicated inequality further weakens the
moment requirements and using it, we prove the best possible
concentration for the long-studied bin packing problem as well
as some others.

Index Terms—Probability Inequality; Concentration; Long-
Tailed distributions

I. INTRODUCTION

Probabilistic Analysis of Algorithms is now a decades-old
subject with many beautiful results. Generally, one assumes
a simple probability distribution on the input (often uniform,
Poisson distribution - see TSP section below, Bernoulli trials
or Gaussians) and proves results on the expected value and
concentration about this value. With modern massive data
problems, worst-case analysis may lead to prohibitively high
running times and so probabilistic analysis has emerged again
as an important approach. But, it has been realized that the
well-studied simple distributions do not necessarily model
data well. Some empirically observed features from data point
to characteristics not shared by simple distributions - long
tails, inhomogeneity (i.e., variables not being i.i.d.), lack of
independence etc.. We provide here a basic tool which will
be of use in developing concentration results for these new
problems, as well as for existing ones.

For real-valued random variables X1, X2, . . . Xn satisfying
absolute bounds and the Martingale (difference) condition:

|Xi| ≤ 1 ; E(Xi|X1, X2, . . . Xi−1) = 0,

the widely used Höffding-Azuma (H-A) inequality asserts the
following tail bound: Pr (|

∑n
i=1Xi| ≥ t) ≤ c1e

−c2t2/n, for
some constants c1, c2. The main aim of this paper is to weaken
the assumption of an absolute bound, while retaining the
essential strength of the conclusion. We present two theorems
which do this, both upper bounding E(

∑n
i=1Xi)m (the m th

moment of
∑n
i=1Xi) for some even integer m; from this, it

is simple to get tail bounds by Markov inequality.
Our Theorem 1 is simply stated. But both H-A inequality

and Chernoff bounds are very special cases of it. For the
Traveling Salesperson Problem (TSP), earlier hard concen-
tration results for the uniform density were made easy by
Talagrand’s celebrated inequality; using Theorem 1, we are
able to prove as strong concentration, but, for more general

densities allowing both longer tails and inhomogeneity. We do
the same for the minimum weight spanning tree problem as
well. We also consider random graphs where edge probabilities
are not equal (inhomogeneity). We show a concentration result
for the chromatic number (which has been well-studied under
the traditional model with equal edge probabilities.) Theorem
1 also weakens the Martingale difference condition to a
condition we call Strong Negative Correlation; this weakening
has several uses too. A notable one is when we pick a
random vector(s) of unit length as in the well-known Johnson-
Lindenstrauss (JL) Theorem on Random Projections. Using
Theorem 1, we prove a more general theorem than JL where
longer-tailed distributions are allowed.

The absolute bound of H-A is weakened in Theorem 1
to bounds on (even) moments of Xi conditioned on (any)
value of X1 + X2 + . . . + Xi−1. A further weakening is
obtained in our Main Theorem - Theorem (6) whose proof
is more complicated. In Theorem (6), we use information on
conditional moments of Xi conditioned on “typical values” of
X1 + X2 + . . . + Xi−1 as well as the “worst-case” values.
This is very useful in many contexts as we show. Using
Theorem 2, we settle the (discrete case of the) stochastic bin-
packing problem studied by Rhee and Talagrand and others
by proving concentration results which we show are best
possible. We also give a proof of concentration for the longest
increasing subsequence problem. In the full paper, we discuss
applications to the number of triangles in sparse random
graphs and several others.

II. THEOREM 1

In theorem (1), we weaken the absolute bound |Xi| ≤ 1 of
H-A to something weaker than E(X l

i |X1+X2+. . .+Xi−1) ≤
1 for all even l upto a certain m. We prove a bound on the
m (which is even) th moment of

∑n
i=1Xi. Note the m is the

same - the higher the moment bounded by the hypothesis, the
higher the moment bounded by the conclusion. Under H-A’s
absolute bound assumption, the Theorem below also yields
H-A’s conclusion.

Theorem 1. Let X1, X2, . . . Xn be real valued random vari-
ables and m an even positive integer satisfying the following
for i = 1, 2, . . . n:

EXi(X1 +X2 + . . . Xi−1)l ≤ 0 , l < m, odd. (1)

E(X l
i |X1 +X2 + . . .+Xi−1) ≤

(
n
m

)(l−2)/2
l! , l ≤ m, even.(2)



Then, we have

E

(
n∑
i=1

Xi

)m
≤ (24nm)m/2.

Proof Let Ml = MAXni=1E(X l
i |X1, X2, . . . Xi−1) for

even l ≤ m. For 1 ≤ i ≤ n and q ∈ {0, 2, 4, . . .m − 2,m},
define

f(i, q) = E

 i∑
j=1

Xj

q

.

Using the two assumptions, we derive the following recursive
inequality for f(n,m), which we will later solve (much as
one does in a Dynamic Programming algorithm):

f(n,m) ≤ f(n−1,m)+
11
5

∑
t∈{2,4,6,...m}

mt

t!
Mtf(n−1,m−t),

(3)
Proof of (3):1 Let A = X1 + X2 + . . . Xn−1. Let al =
ml

l! E|Xn|l|A|m−l. Expanding (A+Xn)m, we get

E(A+Xn)m ≤ EAm +mEXnA
m−1 +

m∑
l=2

al. (4)

Now, we note that EXnA
m−1 ≤ 0 by hypothesis (1) and

so the second term may be dropped. [In fact, this would be
the only use of the Martingale difference condition if we had
assumed it; we use SNC instead, since it clearly suffices.] We
will next bound the “odd terms” in terms of the two even terms
on the two sides using a simple “log-convexity” of moments
argument. For odd l ≥ 3, we have

E|Xn|l|A|m−l ≤ (E(X l+1
n Am−l−1))1/2(E(X l−1

n Am−l+1))1/2

Also,
1
l!
≤ 6

5
1√

(l + 1)!
1√

(l − 1)!

So, al is at most 6/5 times the geometric mean of al+1 and
al−1 and hence is at most 6/5 times their arithmetic mean.
Plugging this into (4), we get

E(
n∑
i=1

Xi)m ≤ EAm +
11
5

(a2 + a4 + . . .+ am) (5)

Now, we use the standard trick of “integrating over” Xn first
and then over A (which is also crucial for proving H-A)
to get for even l: EX l

nA
m−l = EA

(
Am−lEXn

(X l
n|A)

)
≤

MlEA
m−l which yields (3).

We view (3) as a recursive inequality for f(n,m). We will
use this same inequality for the proof of the Main theorem, but
there we use an inductive proof; here, instead, we will now
“unravel” the recursion to solve it. [But first, note that the
dropping the EXnA

m−1 ensured that the coefficient of EAm

is 1 instead of the 11/5 we have in front of the other terms.
This is important: if we had 11/5 instead, since the term does
not reduce m, but only n, we would get a (11/5)n when we
unwind the recursion. This is no good; we can get m terms
in the exponent in the final result, but not n.]

1E will denote the expectation of the entire expression which follows.

Now to solve the recursive inequality, imagine a (recursion)
tree (it is really a directed graph with possibly more than
one path between a pair of nodes) whose root is marked
f(n,m). A node of the tree marked f(i, q) (for i ≥ 2,
0 ≤ q ≤ m, even) has (q/2) + 1 edges going from it to nodes
marked f(i− 1, q), f(i− 1, q− 2), . . . f(i− 1, 0); these edges
have “weights” respectively 1, 11

5
q2

2!M2,
11
5
q4

4!M4, . . .
11
5
qq

q!Mq

which are respectively at most

1,
11
5
m2

2!
M2,

11
5
m4

4!
M4, . . .

11
5
mq

q!
Mq.

A node marked f(1, q) has one child - a leaf marked f(0, 0)
connected by an edge of weight Mq . Define the weight of a
path from a node to a leaf as the product of the weights of
the edges along the path. It is easy to show by induction on
the depth of a node that f(i, q) is the sum of weights of all
paths from node marked f(i, q) to a leaf.

Now, there is a 1-1 correspondence between paths from
f(n,m) to a leaf and elements of the following set : L =
{(l1, l2, . . . ln) : li ≥ 0, even ;

∑n
i=1 li = m}; li indicates that

at level i we take the li th edge - i.e., we go from node f(i,m−
ln− ln−1− . . . li+1) to f(i−1,m− ln− ln−1− . . . li) on this
path. For an l = (l1, l2, . . . ln) ∈ L and t ∈ {0, 2, 4, . . .m},
define

gt(l) = number of i with li = t .

Clearly, the vector g(l) = (g0(l), g2(l), . . . , gm(l)) belongs to
the set

H = {h = (h0, h2, h4, . . . hm) :
∑
t

tht = m;ht ≥ 0;
∑
t

ht = n}.

Since the weight of an edge corresponding to li at any level is
at most ( 11

5 )zMli
mli

li!
, where z = 1 iff li ≥ 2, and the number

of non-zero li along any path is at most m/2, we have

f(n,m) ≤
∑
l∈L( 11

5 )m/2
∏
tM

gt(l)
t

mtgt(l)

(t!)gt(l)

For an h ∈ H , the number of l ∈ L with gt(l) = ht∀t is
the number of ways of picking subsets of the n variables of
cardinalities h0, h2, h4, . . . hm, namely,(

n

h0, h2, h4, . . . hm

)
=

n!
h0!h2!h4! . . . hm!

≤ nh2+h4+...hm

h2!h4! . . . hm!
.

Thus, we have (using the assumed upper bound on conditional
moments)

f(n,m) ≤ ( 11
5 )m/2

∑
h∈H

nh2+h4+...hm

h2!h4!...hm!

∏
tm

tht n
ht((t/2)−1)

mht((t/2)−1)

≤ ( 11
5 )m/2

∑
h(nm)

∑
t tht/2 m

∑
ht

h2!h4!...hm! ≤ ( 11
5 nm)m/2|H|em/2,

since m
∑

ht

h2!h4!...hm! is easily seen to be maximized when

h2 = p/2 and the rest are 0 : mhtmh2

h2!ht!
≤ mh2+(tht/2)

(h2+(tht/2))!
implies that we may “transfer” ht into h2. Now, we bound
|H|: each element of H corresponds to a unique m

2 -vector
(h2, 2h4, 4h8, . . .) with coordinates summing to m/2. Thus
|H| is at most the number of partitions of m/2 into m/2
parts which is

(
m
m/2

)
≤ 2m. This finishes the proof of the

Theorem. 2



Remark 1. The bound on m th moment of
∑
iXi in the

theorem will be used in a standard fashion to get tail bounds.
For any t, by Markov inequality, we get from the theorem
Pr(|

∑
iXi| ≥ t) ≤ (24nm)m/2

tm . The right hand side is
minimized at m = t2/(cn). So if the hypothesis of the theorem
holds for this m (as is the case if |Xi| ≤ 1) we get the
conclusion of H-A: Pr(|

∑
iXi| ≥ t) ≤ c1 exp

(
−t2
c2n

)
.

The set-up for Chernoff bounds is: X1, X2, . . . Xn are
i.i.d. Bernoulli random variables with EXi = ν. For any
t ≤ nν Chernoff bounds assert: Pr (|

∑n
i=1(Xi − ν)| > t) ≤

e−t
2/(cnν). We can get this by applying the theorem with m =

t2/72nν to: X ′i = (Xi−ν)/
√
ν to get E (

∑n
i=1(Xi − ν))m ≤

(cnmν)m/2 For t ≥ nν, we use the theorem on X ′i =√
n
m (Xi − ν) with m = ct to get E (

∑n
i=1(Xi − ν))m ≤

(cm)m and by Markov, Pr (|
∑n
i=1(Xi − ν)| > t) ≤ e−ct.

Comparisons with Burkholder type inequalities and Efron-
Stein type inequalities are given in section (XII).

III. NOTATION, CONCENTRATION FOR FUNCTIONS OF
INDEPENDENT RANDOM VARIABLES

Theorem 1 and the Main Theorem (6) will often be applied
to a real-valued function f(Y1, Y2, . . . Yn) of independent (not
necessarily real-valued) random variables Y1, Y2, . . . to show
concentration of f . This is usually done using the Doob’s
Martingale construction which we recall in this section. While
there is no new stuff in this section, we will introduce notation
used throughout the paper.

Let Y1, Y2, . . . Yn be independent random variables. Denote
Y = (Y1, Y2, . . . Yn). Let f(Y ) be a real-valued function of
Y . One defines the classical Doob’s Martingale:

Xi = E(f |Y1, Y2, . . . Yi)− E(f |Y1, Y2, . . . Yi−1).

It is a standard fact that the Xi form a Martingale difference
sequence and so (1) is satisfied. We will use the short-hand
Eif to denote E(f |Y1, Y2, . . . Yi), so

Xi = Eif − Ei−1f.

Let Y (i) denote the n − 1-tuple of random variables
Y1, Y2, . . . Yi−1, Yi+1, . . . Yn and suppose f(Y (i)) is also de-
fined. Let

Zi = f(Y )− f(Y (i)).

Then, Xi = EiZi − EYi

(
EiZi

)
, (6)

since Y (i) does not involve Yi. f, Yi, Xi, Zi will all be reserved
for these quantities throughout the paper. We use c to denote
a generic constant which can have different values.

IV. RANDOM TSP WITH INHOMOGENEOUS, LONG-TAILED
DISTRIBUTIONS

One of the earliest problems to be studied under Proba-
bilistic Analysis [19] is the concentration of the length f of
the shortest Hamilton cycle through a set of n points picked
uniformly independently at random from a unit square. It
is known that Ef ∈ Θ(

√
n) and concentration in intervals

of constant length with sub-Gaussian tails was proved after

many earlier steps by Rhee and Talagrand [15] and Talagrand’s
inequality yielded a simpler proof of this. All of the proofs
replace the uniform density by a Poisson distribution. Here,
we will give a simple self-contained proof of the concentration
result for more general distributions than the Poisson. Two
important points of our more general distribution are
• Inhomogeneity (some areas of the unit square having

greater probability than others) is allowed.
• Longer tails (for example with power-law distributions)

than the Poisson are allowed.

Theorem 2. Suppose the unit square is divided into n small
squares, each of side 1/

√
n. Let Y1, Y2, . . . Yn be independent

sets of points generated in each small square respectively such
that for a fixed constant c ∈ (0, 1), an even positive integer
m ≤ n, and an ε > 0, we have for 1 ≤ i ≤ n and 1 ≤ l ≤
m/2,

Pr(|Yi| = 0) ≤ c ; E|Yi|l ≤ (O(l))(2−ε)l.

Suppose f = f(Y1, Y2, . . . Yn) is the length of the shortest
Hamilton tour through Y1 ∪ Y2 ∪ . . . Yn. We have 2

E(f − Ef)m ≤ (cm)m/2.

Proof Order the small squares in
√
n layers - the first

layer consists of all squares touching the bottom or left
boundary; the second layer consists of all squares which are 1
square away from the bottom and left boundary etc. until the
last layer is the top right square (order within each layer is
arbitrary.) Let Si be the i th square. Let τ = τ(Yi+1, . . . Yn)
be the minimum distance from a point of Si to a point
in Yi+1 ∪ . . . Yn and τ0 = Min(τ, 2

√
2). τ0 depends only

on Yi+1, . . . Yn. Since we may take a detour from a tour
of Y (i) at the nearest point to Si, tour Yi and then return
to the tour of Y (i), we have (see notation in section (III))
Zi ≤ 2τ0 + O(1/

√
n) + f(Yi), Since Zi ≥ 0, we get using

(6)for any even l:

−EYi
(EiZi) ≤ Xi ≤ EiZi (7)

=⇒ |Xi| ≤ 2Eτ0 +O(1/
√
n) + f(Yi)

=⇒ Ei−1X l
i ≤ 2l(Eτ0)l + cl

nl/2 + cl

nl/2E|Yi|l/2 (8)

where the last step uses the following well-known fact [19].

Claim 1. For any square B of side α in the plane and any set
of s points in B, there is a Hamilton tour through the points
of length at most cα

√
s.

First focus on i ≤ n−100 lnn. For any λ ∈ [0, 5
√

lnn/
√
n],

there is a square region Tλ of side λ inside Si+1 . . . Sn (indeed,
inside the later layers) which touches Si. So, Pr(τ ≥

√
2λ) ≤

Pr(Tλ ∩ (Yi+1 ∪ . . . Yn) = ∅) ≤ e−cnλ
2

by the hypothesis
that Pr(|Yj | = 0) < c < 1. This implies (by integration)

2If each Yi is generated according to a Poisson of intensity 1 (=Area of
small square times n), then E|Yi|l ≤ ll and so the conditions of the theorem
are satisfied for all m (with room to spare). Choosing m to be best value
we get (see Remark (1)) for t ∈ O(

√
n), Pr(|f − Ef | ≥ t) ≤ c1e−Ω(t2)

matching Rhee and Talagrand’s result (but for constants). Note that by Claim
(1), there is nothing to prove for t ≥ c

√
n.



that Eτ0 ≤ O(1/
√
n). Plugging this and the assumption that

E|Yi|l/2 ≤ ll into (8), we get Ei−1X l
i ≤ ll

nl/2 . We now apply
theorem (1) to c6

√
nXi, for i = 1, 2, . . . n− 100 lnn to get

E

(
n−100 lnn∑

i=1

Xi

)m
≤ (cm)m/2. (9)

We also have |
∑n
i=n−100 lnn+1Xi| ≤ 2

√
2 +

c
√

lnn
√∑n

i=n−100 ln n+1 |Yi|
n1/2 , the last since all these small

squares are inside a square of side
√

lnn/
√
n. Now using

E
(∑n

i=n−100 lnn+1 |Yi|
)m/2 ≤ c(lnn)m/2mm−εm, the

theorem follows. 2

V. MINIMUM WEIGHT SPANNING TREE

This problem is tackled similarly to the TSP in the previous
section. We will get the same result as Talagrand’s inequality
is able to derive, the proof is more or less the same as our
proof for the TSP, except that there is an added complication
because adding points does not necessarily increase the weight
of the minimum spanning tree. The standard example is when
we already have the vertices of an equilateral triangle and add
the center to it.

Theorem 3. Under the same hypotheses and notation as in
Theorem (2), suppose f = f(Y1, Y2, . . . Yn) is the length of
the minimum weight spanning tree on Y1 ∪ Y2 ∪ . . . Yn. We
have

E(f − Ef)m ≤ (cm)m/2.

Proof If we already have a MWST for Y \ Yi, we can
again connect the point in Yi+1, . . . Yn closest to Si to Si,
then add on a MWST on Yi to get a spanning tree on Y . This

implies again that Zi ≤ τ0 + c
√
|Yi|√
n
. But now, we could have

f(Y ) < f(Ŷ ). We show that

Claim 2. Zi ≥ −c10τ0 −
c
√
|Yi|√
n
.

Proof We may assume that Yi 6= ∅. Consider the
MWST T of Y . We call an edge of the form (x, y) ∈ T :
x ∈ Yi, y ∈ Y \Yi, with |x−y| ≥ c9/

√
n, a long edge and an

edge (x, y) ∈ T : x ∈ Yi, y ∈ Y \ Yi, with |x − y| < c9/
√
n

a short edge. It is well-known that the degree of each vertex
in T is O(1) (we prove a more complicated result in the next
para), so there are at most 6|Yi| short edges; we remove all of
them and add a MWST on the non-Yi ends of them at a cost
of at most O(

√
|Yi|/
√
n) by Claim (1).

We claim that there are at most O(1) long edges - indeed
if (x, y), (w, z) are any two long edges with x,w ∈ Yi, we
have |y − z| ≥ |x − y| −

√
2√
n

, since otherwise, T \ (x, y) ∪
(y, z) ∪ (x,w) would contain a better spanning tree than T .
Similarly, |y − z| ≥ |w − z| −

√
2√
n

. Let x0 be the center of
square Si. The above implies that in the triangle x0, y, z, we
have |y − z| ≥ |x0 − y| − 6√

n
, |x0 − z| − 6√

n
. But |y − z|2 =

|y−x0|2 + |z−x0|2−2|y−x0||z−x0| cos(y, x0, z). Assume
without loss of generality that |y − x0| ≥ |z − x0|. If the
angle y, x0, z were less than 10 degrees, then we would have

|y − z|2 ≤ |y − x0|2 + |z − x0|2 − 1.8|y − x0||z − x0| <
(|y − x0| − 0.04|z − x0|)2 a contradiction. So, we must have
that the angle is at least 10 degrees which implies that there
are at most 36 long edges.

Let a be the point in Yi+1, . . . Yn closest to Si if Yi+1 ∪
. . . ∪ Yn is non-empty; otherwise, let a be the point in Y1 ∪
Y2 ∪ . . . Yi−1 closest to Si. We finally replace each long edge
(x, y), x ∈ Yi by edge (a, y). This clearly only costs us O(τ0)
extra, proving the claim.

Now the proof of the theorem is completed analogously to
the TSP. 2

VI. CHROMATIC NUMBER OF INHOMOGENEOUS RANDOM
GRAPHS

Martingale inequalities have been used in different (beauti-
ful) ways on the chromatic number χ of an (ordinary) random
graph G(n, p), where each edge is chosen independently to be
in with probability p ([16],[2], [3],[8]).

Here we study chromatic number in a more general model.
An inhomogeneous random graph - denoted G(n, P ) - has
vertex set [n] and a n× n matrix P = {pij} where pij is the
probability that edge (i, j) is in the graph. Edges are in/out
independently. Let

p =

∑
i,j pij(
n
2

)
be the average edge probability. Let χ = χ(G(n, P ) be the
chromatic number. Since each node can change the chromatic
number by at most 1, it is easy to see that Pr(|χ − Eχ| ≥
t) ≤ c1e

−c2t2/n by H-A. Here we prove a better result when
the graph is sparse, i.e., when p ∈ o(1).

Theorem 4. For any t ∈ (0, n
√
p), we have

Pr (|χ− Eχ| ≥ t) ≤ e
−ct2

n
√

p ln n .

Remark 2. Given only p, note that χ could be as high as
Ω(n
√
p) : for example, pij could be 1 for i, j ∈ T for some

T with |T | = O(n
√
p) and zero elsewhere.

Proof Let pi =
∑
j pij be the expected degree of i. Let

S = {i : pi ≥ n
√
p}.

|S| ≤ 2n
√
p. Split the n − |S| vertices of [n] \ S into

k = (n − |S|)√p groups G1, G2, . . . Gk by picking for each
vertex a group uniformly at random independent of other
vertices. It follows by routine application of Chernoff bounds
that with probability at least 1/2, we have : (i) for each i,
the sum of pij , j ∈ (same group as i) ≤ O(lnn) and (ii)
|Gt| ∈ O(lnn/

√
p) for all t. We choose any partition of [n]\S

into G1, G2, . . . Gk satisfying (i) and (ii) at the outset and fix
this partition. Then we make the random choices to choose
G(n, P ).

Define Yi for i = 1, 2, . . . k + |S| as the set of edges
(of G(n, P )) in Gi × (G1 ∪ G2 ∪ . . . Gi−1). We can de-
fine the Doob’s Martingale Xi = E(χ|Y1, Y2, . . . Yi) −
E(χ|Y1, Y2, . . . Yi−1). First consider i = 1, 2, . . . k. Define Zi
as in section III. Let dj be the degree of vertex j in Gi in



the graph induced on Gi alone. Zi is at most maxj∈Gi
dj ,

since we can always color Gi with this many additional colors.
dj is the sum of independent Bernoulli random variables
with Edj =

∑
l∈Gi

pjl ≤ O(lnn). By Remark (1), we
have that E(dj − Edj)l ≤ MAX((cl lnn)l/2, (cl)l. Hence,
Ei−1(Zli) ≤ (cl)l + (cl lnn)l/2.

We will apply Theorem (1) to the sum

c7X1

lnn
+
c7X2

lnn
+ . . .

c7Xk

lnn
.

It follows from the above that these satisfy the hypothesis of
the Theorem provided m ≤ k . From this, we get that

E

(
k∑
i=1

Xi

)m
≤ (cmk lnn)m/2.

For i = k+1, . . . k+|S|, Zi are absolutely bounded by 1, so by
the Theorem E(Xk+1 +Xk+2 + . . . Xk+|S|)m ≤ (c|S|m)m/2.
Thus,

E

k+|S|∑
i=1

Xi

m

≤ (cmk lnn)m/2.

Let t ∈ (0, n
√
p). We take m = the even integer nearest to

t2/(c4n
√
p lnn) to get the theorem. 2

Question In studying chromatic number of random graphs,
the maximum average degree of any sub-graph (a quantity we
call MAD) is very useful. Clearly, the chromatic number is at
most MAD, since we can first remove a vertex with degree at
most MAD, color the rest recursively and then put the vertex
back in. For a inhomogeneous random graph G(n, P ), we
define

MAD(P ) = MAXU⊆[n]

∑
i,j∈U pij

|U |
.

Is the following statement true for G(n, P ) :

Pr (|χ− Eχ)| ≥ t) ≤ exp
(
− ct2

MAD(P ) lnn

)
?

VII. RANDOM PROJECTIONS

A famous theorem of Johnson-Lindenstrauss [20] asserts
that if v is picked uniformly at random from the surface of
the unit ball in Rn, then for k ≤ n, and ε ∈ (0, 1), 3

Pr

(∣∣∣∣∣
k∑
i=1

v2
i −

k

n

∣∣∣∣∣ ≥ ε kn
)
≤ c1e−c2kε

2
.

The proofs of this exploit the details of the uniform density or
the Gaussian in the equivalent way of picking v - pick each vi
according to a Gaussian and scale to length 1. Here, we will
prove the same conclusion under weaker hypotheses which
allows again longer tails (and so does not use any special
property of the Gaussian). This is the first application which
uses the Strong Negative Correlation condition rather than the
Martingale Difference condition.

3A clearly equivalent statement talks about the length of the projection of
a fixed unit length vector onto a random k− dimensional sub-space.

Theorem 5. Suppose Y = (Y1, Y2, . . . Yn) is a random
vector picked from a distribution such that (for a k ≤ n)
(i) E(Y 2

i |Y 2
1 +Y 2

2 + . . . Y 2
i−1) is a non-increasing function of

Y 2
1 + Y 2

2 + . . . Y 2
i−1 for i = 1, 2, . . . k and (ii) for even l ≤ k,

E(Y li |Y 2
1 + Y 2

2 + . . . Y 2
i−1) ≤ (cl)l/2/nl/2. Then for any even

integer m ≤ k, we have 4

E

(
k∑
i=1

(Y 2
i − EY 2

i )

)m
≤ (cmk)m/2/nm.

Proof The theorem will be applied with Xi = Y 2
i −

EY 2
i . First, (i) implies for odd l: EXi(X1+X2+. . . Xi−1)l ≤

0, by (an elementary version) of the FKG inequality. [If
X1 + X2 + . . . Xi−1 = W , then since W l is an increasing
function of W for odd l and E(Xi|W ) a non-increasing
function of W , we have EXiW

l = EW
(
E(Xi|W )W l

)
≤

EW (E(Xi|W ))EW l = EXiEW
l = 0.] Now, for even

l, Ei−1(X l
i) ≤ 2lEY 2l

i + 2l(EY 2
i )l ≤ (cl)l/nl. So we

may apply the theorem to the scaled variables c7nXi, for
i = 1, 2, . . . k for m ≤ k to get the result. 2

VIII. MAIN PROBABILITY INEQUALITY

Now, we come to the main theorem. We will again assume
Strong Negative Correlation (1) of the real-valued random
variables X1, X2, . . . Xn. The first main point of departure
from Theorem (1) is that we allow different variables to have
different bounds on conditional moments. A more important
point will be that we will use information on conditional
moments conditioned on “typical” values of previous vari-
ables as well as the pessimistic “worst-case” values. More
specifically, we assume the following bounds on moments for
i = 1, 2, . . . n (m again is an even positive integer):

E(X l
i |X1 +X2 + . . . Xi−1) ≤Mil for l = 2, 4, 6, 8 . . .m.

(10)
In some cases, the bound Mil may be very high for the “worst-
case” X1 + X2 + . . . Xi−1. We will exploit the fact that for
a “typical” X1 +X2 + . . . Xi−1, E(X l

i |X1 +X2 + . . . Xi−1)
may be much smaller. To this end, suppose

Ei,l , l = 2, 4, 6, . . .m ; i = 1, 2, . . . n

are events. Ei,l is to represent the “typical” case. Eil will be
the whole sample space. In addition to (10), we assume that

E(X l
i |X1 +X2 + . . . Xi−1, Ei,l) ≤ Lil (11)

Pr(Ei,l) = 1− δi,l (12)

Theorem 6 (Main Theorem). Let X1, X2, . . . Xn be real val-
ued random variables satisfying Strong Negative Correlation

4As usual, it is simple to derive tail bounds from the moment bound in the
theorem. For ε > 0, put m = kε2/(ec) if ε2 ≤ ec and m = k otherwise to
get

Pr

(∣∣∣∣∣
k∑

i=1

(Y 2
i − EY 2

i )

∣∣∣∣∣ ≥ ε kn
)
≤ c1Min

(
exp

(
−kε2

2ec

)
,
( c
ε2

)k/2
)
.



(1) and m be a positive even integer. Then for X =
∑n
i=1Xi,

EXm ≤ (cm)
m
2 +1

m/2∑
l=1

m1− 1
l

l2

(
n∑
i=1

Li,2l

) 1
l

m/2

+ (cm)m+2

m/2∑
l=1

1
nl2

n∑
i=1

(
nMi,2lδ

2/(m−2l+2)
i,2l

)m/2l
.

There are two central features of the Theorem. The first
is the distinction between typical and worst case conditional
moments which we have already discussed. Note that while
the Mil may be much larger than Lil, the Mil get modulated
by δ2/(p−l+2)

il which can be made sufficiently small.
A second feature of the Theorem is similar to Theorem (??)

in that the second moment term will often be the important
one. If we have

MAXiLi,2l = L2l, (13)

then we get an upper bound of

(cm)m/2
(
nL2 +

√
npL

1/2
4 + . . .

)m/2
,

where we note that for m << n, the coefficients of higher
moments decline fast, so that under reasonable conditions, the
nL2 term is what matters. In this case, it will not be difficult
to see that we have qualitatively sub-Gaussian behavior with
variance equal to the sum of the variances.

IX. PROOF OF THE MAIN THEOREM

Proof (of the Theorem) Let A = X1 +X2 + . . . Xn−1.
In what follows, l will run over even integers from 2 to m.
As in the proof of Theorem (1), we get

E(A+Xn)m ≤ EAm + 3
∑
l

(
m

l

)
Ebl,

where, bl = X l
nA

m−l. Denote by ω points in the sample space;
so A(ω) is the value of A at ω. We have

Ebl = Pr(En,l)E(bl|En,l) + Pr(¬En)E(bl|¬En,l)

≤ Lnl
∫
ω∈En,l

A(ω)m−ldω +Mnl

∫
ω∈¬En,l

A(ω)m−ldω.

We use Hölder’s inequality to get that the second term
is at most Mn,l

(
EAm−l+2

) m−l
m−l+2 (Pr(¬En,l))

2
m−l+2 ≤

M̂nl

(
EAm−l+2

) m−l
m−l+2 , where M̂i,l = Mi,lδ

2/(m−l+2)
i,l .

We use Young’s inequality which says that for any a, b > 0
real and q, r > 0 with 1

q + 1
r = 1, we have ab ≤ aq + br; we

apply this below with q = (m − l + 2)/2 and r = (m − l +
2)/(m− l) and λnl a positive real to be specified later :

M̂nl(EAm−l+2)
m−l

m−l+2

=
(
M̂

2m/l(m−l+2)
nl λ

− m−l
m−l+2

nl

)(
M̂

l−2
l

nl λnlEA
m−l+2

) m−l
m−l+2

≤ M̂m/l
nl λ

−m−l
2

nl + M̂
(l−2)/l
nl λnlEA

m−l+2,

So, we get :

E

(
n∑
i=1

Xi

)m
≤

m∑
l≥0

even

anlEA
m−l,

where

anl = 1 + 3λn2

(
m

2

)
, l = 0

anl = 3
(
m

l

)
Lnl + 3

(
m

l + 2

)
M̂

l/(l+2)
n,l+2 λn,l+2, 2 ≤ l ≤ m− 2

anl = 3Lnm + 3
m∑

l1≥2
even

(
m

l1

)
M̂

m/l1
nl1

λ
(m−l1)/2
nl1

, l = m.

An exactly similar argument yields for any r ≤ n and any
q ≤ m, even

E

(
r∑
i=1

Xi

)q
≤

q∑
l≥0

even

a
(q)
rl E(

r−1∑
i=1

Xi)q−l,

where (since δ1/(q−l+2)
r,l ≤ δ1/(m−l+2)

r,l )

a
(q)
rl = 1 + 3λr2

(
q

2

)
, l = 0

a
(q)
rl = 3

(
q

l

)
Lrl + 3

(
q

l + 2

)
M̂

l/(l+2)
r,l+2 λr,l+2, 2 ≤ l ≤ q − 2

a
(q)
rl = 3Lrq + 3

q∑
l1≥2
even

(
q

l1

)
M̂

q/l1
rl1

λ
(q−l1)/2
rl1

, l = q.

Now we set

λrl =
1

3m2n2/l
for l = 2, 4, 6, 8, . . . .

Then we get

a
(q)
rl ≤ arl = 1 +

1
n
, l = 0

a
(q)
rl ≤ arl = 3

(
m

l

)(
Lrl + M̂

l/(l+2)
r,l+2 n−2/(l+2)

)
, 2 ≤ l ≤ q − 2

a(q)
rq ≤ ârq = 3Lrq + 3

q∑
l1≥2
even

(
q

l1

)
M̂

q/l1
rl1

(3m2)(q−l1)/2n(q−l1)/l1 .

It is important to make a(q)
r0 not be much greater than 1 because

in this case only n is reduced and so in the recurrence, this
could happen n times. Note that except for l = q, the other
arl do not depend upon q; we have used ârq to indicate that
this extra dependence. With this, we have

E

(
r∑
i=1

Xi

)q
≤ ârq +

q−2∑
l≥0

even

arlE(
r−1∑
i=1

Xi)q−l.

We wish to solve these recurrences by induction on r, q.
Intuitively, we can imagine a tree with root marked (r, q)
(since we are bounding E(

∑r
i=1Xi)q . The root has q

2 + 1
children which are marked (r−1, q−l) for l = 0, 2, . . . q/2; the



node marked (r−1, q− l) is trying to bound E(
∑r−1
i=1 Xi)q−l.

There are also weights on the edges of arl respectively. The
tree keeps going until we reach the leaves - which are marked
(1, q) or (r, 0). It is intuitively easy to argue that the bound
we are seeking at the root is the sum over all paths from the
root to the leaves of the product of the edge weights on the
path. We formalize this in a lemma.

For doing that, for 1 ≤ r ≤ n; 2 ≤ q ≤ m, q even and 1 ≤
i ≤ r define S(r, q, i) as the set of s = (si, si+1, si+2, . . . sr)
with si > 0; si+1, si+2, . . . sr ≥ 0 and

∑r
j=i sj = q; sj even.

Lemma 1. For any 1 ≤ r ≤ n and any q ≤ p even, we have

E(
r∑
i=1

Xi)q ≤
r∑
i=1

∑
s∈S(r,q,i)

âi,si

r∏
j=i+1

aj,sj
.

Proof Indeed, the statement is easy to prove for the base
case of the induction - r = 1 since E1l is the whole sample
space and EXq

1 ≤ L1q . For the inductive step, we proceed
as follows.

E(
r∑
i=1

Xi)q ≤
q−2∑
sr≥0
even

ar,srE(
r−1∑
i=1

Xi)q−sr + âr,q

≤ âr,q +
r−1∑
i=1

q−2∑
sr≥0
even

ar,sr

∑
s∈S(r−1,q−sr,i)

âi,si

r−1∏
j=i+1

aj,sj
.

We clearly have S(m, q,m) = {q} and for each fixed i, 1 ≤
i ≤ r − 1, there is a 1-1 map
S(r−1, q, i)∪S(r−1, q−2, i)∪ . . . S(r−1, 2, i)→ S(r, q, i)
given by
s = (si, si+1, . . . sr−1) → s′ = (si, . . . sr−1, q −

∑r−1
j=i sj)

and it is easy to see from this that we have the inductive step,
finishing the proof of the Lemma. The “sum of products” form
in the lemma is not so convenient to work with. We will now
get this to the “sum of moments” form stated in the Theorem.
This will require a series of (mainly algebraic) manipulations
with ample use of Young’s inequality, the inequality asserting
(a1 +a2 + . . . ar)q ≤ rq−1(aq1 +aq2 + . . . aqr) for positive reals
a1, a2, . . . and q ≥ 1 and others.

So far, we have (moving the l = 0 terms separately in the
first step)

E

(
n∑
i=1

Xi

)m
≤

(
n∏
i=1

ai0

)
n∑
i=1

∑
s∈S(n,m,i)

âi,si

n∏
j=i+1
sj 6=0

aj,sj

≤ 3
n∑
i=1

∑
s∈S(n,m,i)

âi,si

n∏
j=i+1
sj 6=0

aj,sj

≤ 3
m/2∑
t≥1

(
n∑
i=1

âi,2t

) ∑
s∈Q(p−2t)

n∏
j=1

sj 6=0

aj,sj
(14)

where, Q(q) = {s = (s1, s2, . . . sn) : si ≥ 0 even ;
∑
j

sj = q}

Fix q for now. For s ∈ Q(q), l = 0, 1, 2, . . . p/2, let Tl(s) =
{j : sj = 2l} and tl(s) = |Tl(s)|. Note that

∑q/2
l=0 ltl(s) =

q/2. Call t(s) = (t0(s), t1(s), t2(s), . . . tq/2(s)) the “signa-
ture” of s. In the special case when ail is independent of i,
the signature clearly determines the “s term” in the sum (14).
For the general case too, it will be useful to group terms by
their signature. Let (the set of possible signatures) be T . [T
consists of all t = (t0, t1, t2, . . . tq/2) with tl ≥ 0

∑q/2
l=1 ltl =

q/2 t0 ≤ n;
∑q/2
l=0 tl = n.

Now,
∑

s∈Q(q)

n∏
j=1

sj 6=0

aj,sj =
∑
t∈T

Tl partition [n]∑
T0,T1,T2,...Tq/2:|Tl|=tl

q/2∏
l=1

∏
i∈Tl

ai,2l

≤
∑
t∈T

q/2∏
l=1

1
tl!

(
n∑
i=1

ai,2l

)tl
,

since the expansion of (
∑n
i=1 ai,2l)

tl contains tl! copies of∏
i∈Tl

ai,2l (as well other terms we do not need.) Now define
R = {r = (r1, r2, . . . rq/2) : rl ≥ 0;

∑
l rl = q/2}. We have

∑
t∈T

q/2∏
l=1

1
tl!

(
n∑
i=1

ai,2l

)tl
≤
∑
r∈R

∏
l

1
(rl/l)!

(
n∑
i=1

ai,2l)rl/l

≤ 1
(q/2)!

 q/2∑
l=1

m1−(1/l)

(∑
i

ai,2l

)1/l
q/2

, (15)

where the first inequality is seen by substituting rl = tll
and noting that the terms corresponding to the r such
that l|rl∀l are sufficient to cover the previous expression
and the other terms are non-negative. To see the second
inequality, we just expand the last expression and note
that the expansion contains

∏
l(
∑
i ai,2l)

rl/l with coefficient(
q/2

r1,r2,...rq/2

)
for each r ∈ R. Now, it only remains to see

that mrl(1−(1/l)) ≥ rl!
(rl/l)!

, which is obvious. Thus, we have
plugging in (15) into (14), we have that EXm is at <

≈
5∑m

2
t=1

3
( m

2 −t)!
(
∑n
i=1 âi,2t)

(∑m
2 −t
l=1 m1− 1

l (
∑
i ai,2l)

1
l

)m
2 −t

.

Now, (
m

2
− t)! ≥ (

m

2
− t) m

2 −te−
m
2 et

≥ mm
2 −te−

m
2 Mint

[( m
2 − t
m

)m
2 −t

et

]
≥ mm

2 −t(2e)−
m
2 ,

the last using Calculus to differentiate the log of the expression
with respect to t to see that the min is at t = 0. Thus, EXm

is <
≈
∑
t

[(
3
m

∑m
2 −t
l=1 m1− 1

l (
∑
i ai,2l)

1
l

)m
2 −t
]

[
∑n
i=1 âi,2t] .

Let α, β denote the quantities in the 2 square brackets respec-
tively. Young’s inequality gives us: : αβ ≤ αm/(m−2t)+βm/2t.
Thus, EXm is bounded by

m
2∑
t=1

(∑
i

âi,2t

)m
2t

+

m
2 −1∑
l=1

m−
1
l

(∑
i

ai,2l

) 1
l


m
2

(16)

5We use α<
≈β to mean α ≤ cmβ, since we freely allow cm factors in the

theorem. But we will explicitly keep track of mO(m) factors.



In what follows, let l1 run over even values to m and i run
from 1 to n.∑m

2
t=1 (

∑
i âi,2t)

m
2t <
≈
∑
t (
∑
i Li,2t)

m
2t

+mm
∑
t

(
1
n

∑
i

∑
l1≤2t

(
2t
l1m

)l1
(nM̂i,l1)2t/l1

)m
2t

<
≈∑

t(
∑
i Li,2t)

m
2t +mm

∑
t,l1

t
m
2t

l
l1
1 n

m
2t

(∑
i(nM̂i,l1)2t/l1

)m
2t <
≈∑

t

(
∑
i

Li,2t)
m
2t +mm

∑
l1

1
nll11

∑
i

(nM̂i,l1)m/l1 . (17)

∑m
2 −1

l=1 m−(1/l) (
∑
i ai,2l)

1
l ≤∑m

2 −1

l=1 m−
1
l

(
m2l

(2l)!

) 1
l

(∑
i Li,2l +

M̂
1

l+1
i,2l+2

n1/(l+1)

) 1
l

≤

m2
∑m

2 −1

l=1
m−

1
l

l2

(
(
∑
i Li,2l)

1
l +

(∑
i M̂i,2l+2

) 1
l+1
)
≤

m2

m
2∑
l=1

m−
1
l

l2

(∑
i

Li,2l

)1/l

+m2

m
2∑
l=2

1
(l − 1)2

(∑
i

M̂i,2l

) 1
l

.

(18)
We will further bound the last term using Hölder’s inequality:(∑m

2
l=2

(∑i M̂i,2l)1/l

(l−1)2

)m
2

≤(∑∞
l=1

1
l2

)(m−2)/2
(∑

l
1

(l−1)2

(∑
i M̂i,2l

)m
2l

)

≤ 2m
m
2∑
l=1

1
nl2

∑
i

(nM̂i,2l)
m
2l . (19)

Now plugging (18,17,19) into (16), we get the Theorem. 2

X. BIN PACKING

Now we tackle bin packing. The input consists of n i.i.d.
items - Y1, Y2, . . . Yn ∈ (0, 1). Suppose EY1 = µ and
VarY1 = σ. Let f = f(Y1, Y2, . . . Yn) be the minimum num-
ber of capacity 1 bins into which the items Y1, Y2, . . . Yn can
be packed. It was shown (after many successive developments)
using non-trivial bin-packing theory ([14]) that (with c, c′ > 0
fixed constants) for t ∈ (0, cn(µ2 + σ2)),

Pr(|f − Ef | ≥ t) ≤ c′e−ct
2/(n(µ2+σ2)).

Talagrand [18] gives a simple proof of this from his inequality
(this is the first of the six or so examples in his paper.) [We
can also give a simple proof of this from our theorem.] The
“ideal” interval of length O(

√
nσ) (as for sums of independent

random variables) is impossible.6

Our main aim here is to prove that the best length of
the interval of concentration is O(

√
n(µ3/2 + σ)) when the

items take on only one of a fixed finite set of values (discrete
distributions - a case which has received much attention in the
literature for example [13] and references therein).

6An example is when items are of size 1/k or (1/k) + ε (k a positive
integer) with probability 1/2 each. σ is O(ε). But it is easy to see that interval
of concentration has to be at least Ω(

√
nµ2).

Theorem 7. Suppose Y1, Y2, . . . Yn are i.i.d. drawn from a
discrete distribution with r atoms each with probability at least

1
logn . Let EY1 = µ ≤ 1

r2 logn and VarYi = σ2. Then for any
t ∈ (0, n(µ3 + σ2)), we have

Pr(|f − Ef | ≥ t+ r) ≤ c1e−ct
2/(n(µ3+σ2)).

Proof Let item sizes be ζ1, ζ2, . . . ζj . . . ζr and the proba-
bility of picking type j be pj . We have : mean µ =

∑
j pjζj

and standard deviation σ = (
∑
j pj(ζj − µ)2)1/2.

[While our proof of the upper bound here is only for
problems with a fixed finite number of types, it would be
nice to extend this to continuous distributions.] Note that if
µ ≤ r/

√
n, then earlier results already give concentration in

an interval of length O(
√
n(µ + σ) which is then O(r + σ),

so there is nothing to prove. So assume that µ ≥ r/
√
n.

Define a “bin Type” as an r− vector of non-negative
integers specifying number of items of each type which are
together packable into one bin. If bin type i packs aij items
of type j for j = 1, 2, . . . r we have

∑
j aijζj ≤ 1. Note that

s, the number of bin types depends only on ζj , not on n.
For any set of given items, we may write a Linear Program-

ming relaxation of the bin packing problem whose answers are
within additive error r of the integer solution. If there are nj
items of size ζj in the set, the Linear program is : Primal :
(xi number of bins of type i.)

Min
s∑
i=1

xi subject to
s∑
i=1

xiaij ≥ nj∀j ;xi ≥ 0.

Since an optimal basic feasible solution has at most r non-
zero variables, we may just round these r up to integers to
get an integer solution; thus the additive error is at most r
as claimed. In what follows, we prove concentration not for
the integer program’s value, but for the value of the Linear
Program. The Linear Program has the following dual : (yj
“imputed” size of item j)

MAX
r∑
j=1

njyj s.t.
∑
j

aijyj ≤ 1 for i = 1, 2, . . . s; yj ≥ 0.

Suppose now, we have already chosen all but Yi. Now, we
pick Yi at random; say Yi = ζk. Let Y = (Y1, Y2, . . . Yn) and
Y ′ = (Y1, Y2, . . . Yi−1, Yi+1, . . . Yn) We denote by f(Y ) the
value of the Linear Program for the set of items Y . Let

Zi = f(Y )− f(Y ′).

Suppose we have the optimal solution of the LP for Y ′. Let
i0 be the index of the bin type which packs b1/ζkc copies of
item of type k. Clearly if we increase xi0 by 1

b1/ζkc , we get
a feasible solution to the new primal LP. So

Zi ≤
1

b1/ζkc
≤ ζk + 2ζ2

k .

Now, we lower bound Zi by looking at the dual. For this, let y
be the dual optimal solution for Y ′. (Note : Thus, y = y(Y ′)
is a function of Y ′.) y is feasible to the new dual LP too (after



adding in Yi). So, we get:Zi ≥ yk and also yk ≤ ζk + 2ζ2
k .

0 ≤ Zi ≤ ζk + 2ζ2
k gives us

E(Z2
i |Y ′) ≤

∑
j

pj(ζj + 2ζ2
j )2 ≤ µ2 + 65σ2 + 64µ3. (20)

E(Zi|Y ′) ≥
∑
j

pjyj(Y ′) = µ− δ(Y ′) (say). (21)

Say the number of items of type j in Y ′ is (n − 1)pj + ∆j .
Recall that ζ is a feasible dual solution.∑

j

((n− 1)pj + ∆j)yj ≥
∑
j

((n− 1)pj + ∆j)ζj

δ(Y ′) ≤ 1
n− 1

(
∑
j

(∆2
j/pj))

1/2(
∑
j

pj(yj − ζj)2)1/2

≤ 32(µ+ σ)r
n

MAXj |∆j/
√
pj |, (22)

where the first step is because y is an optimal dual solution
and we have used the fact that −ζj ≤ yj−ζj ≤ 2ζ2

j ≤ 2ζj . Let
(i−1)pj +∆′j and (n− i)pj +∆′′j respectively be the number
of items of size ζj among Y1, Y2, . . . Yi−1 and Yi+1, . . . Yn.
Since ∆′′j is the sum of n − i i.i.d. random variables, each
taking on value −pj with probability 1− pj and 1− pj with
probability pj , we have E(∆′′j )2 = Var(∆′′j ) ≤ npj . Consider
the event

Ei : |∆′j | ≤ 100
√
p ln(10p/µ)pj(i− 1) ∀j.

p is to be specified later, but will satisfy p ≤ 1
10n(µ3+σ2). The

expected number of “successes” in the i−1 Bernoulli trials is
pj(i − 1). By using Chernoff, we get Pr(¬Ei) = ( say )δi ≤
µ4pp−4p. Using (21) and (22), we get

E(Zi|Y1, Y2, . . . Yi−1; Ei) ≥ µ− E(δ|Y1, Y2, . . . Yi−1; Ei)

≥ µ− 32µr
n

E(max
j

1
√
pj

(100
√
p ln(10p/µ)pj(i− 1)

+ (E(∆′′)2)1/2)) ≥ µ− cµ5/2r
√

ln(10p/µ)− cµr√
n

So, we get recalling (20) and using VarZi = EZ2
i + (EZi)2

Var(Zi|Y1, Y2, . . . Yi−1; Ei) ≤ c(µ3 + σ2), using r√
n
≤

µ ≤ 1
r2 logn . Also, we have Var(Zi|Y1, Y2, . . . Yi−1) ≤

E(Z2
i |Y1, Y2, . . . Yi−1) ≤ cµ2. We now appeal to (6) to see

that these also give upper bounds on Var(Xi). Note that
|Zi| ≤ 1 implies that Li,2l ≤ Li,2. Now to apply the Theorem,
we have Li,2l ≤ c(µ3 + σ2). So the “L terms” are bounded
as follows :

p/2∑
l=1

p1−(1/l)

l2

(
n∑
i=1

Li,2l

)1/l

≤ cn
(
µ3 + σ2

)
noting that p ≤ n(µ3 + σ2) implies that the maximum
of ((n/p)(µ3 + σ2)1/l is attained at l = 1 and also that∑
l(1/l

2) ≤ 2. Now, we work on the M terms in the Theorem.
maxi δi ≤ µ4pp−4p = δ∗ (say).

p/2∑
l=1

(1/n)
n∑
i=1

(nM̂i,2l)p/2l =
p/2∑
l=1

eh(l),

where h(l) = p
2l log n + p

l(p−2l+2) log δ∗. We have h′(l) =

− p
2l2 log n − log δ∗ p(p−4l+2)

l2(p−2l+2)2 . Thus for l ≥ (p/4) + (1/2),
h′(l) ≤ 0 and so h(l) is decreasing. Now for l <

(p/4) + (1/2), we have p
2l2 log n ≥ −(log δ∗) p(p−4l+2)

l2(p−2l+2)2 ,
so again h′(l) ≤ 0. Thus, h(l) attains its maximum at
l = 1, so (36p)p+2

∑p/2
l=1 e

h(l) ≤ p(36p)p+3np/2δ∗ giving
us (36p)p+2

∑p/2
l=1(nM̂∗2l)

p/2l ≤ (cnp(µ3 + σ2))p/2. Thus we
get from the Main Theorem that E(f −Ef)m ≤ (cmn(µ3 +
σ2))

m
2 , from which Theorem (7) follows by the choice of

m = b t2

c5n(µ3+σ2)c.

A. Lower Bound on Spread for Bin Packing

Suppose again Y1, Y2, . . . Yn are the i.i.d. items. Suppose
the distribution is :

Pr
(
Y1 =

k − 1
k(k − 2)

)
=
k − 2
k − 1

; Pr
(
Y1 =

1
k

)
=

1
k − 1

.

This is a “perfectly packable distribution” (well-studied class
of special distributions) (k− 2 of the large items and 1 of the
small one pack.) Also, σ is small. But we can have number
of 1/k items equal to n

k−1 − c
√

n
k . Number of bins required

≥
∑
iXi = n

k + n
k(k−1) + c

√
n
k

(
1
k

(
k−1
k−2 − 1

))
≥ n

k−1 . So

at least c
√

n
k bins contain only (k − 1)/k(k − 2) sized items

(the big items). The gap in each such bin is at least 1/k for
a total gap of Ω(

√
n/k3/2). On the other hand, if the number

of small items is at least n/(k− 1), then each bin except two
is perfectly fillable.

XI. LONGEST INCREASING SUBSEQUENCE

Let Y1, Y2, . . . Yn be i.i.d., each distributed uniformly in
[0, 1]. We consider here f(Y ) = the length of the longest
increasing subsequence (LIS) of Y . This is a well-studied
problem. It is known that Ef = (2+o(1))

√
n. Here, we supply

a (fairly simple) proof from Theorem (6) that f is concentrated
in an interval of length O(n1/4) with sub-Gaussian tails.
Talagrand [18] gave the first (very simple) proof of this. [But
by now better intervals of concentration, namely O(n1/6)
are known, using detailed arguments specific to this problem
[1].] Our argument follows from two claims below. Call Yi
essential for Y if Yi belongs to every LIS of Y (equivalently,
f(Y \ Yi) = f(Y )− 1.) Fix Y1, Y2, . . . Yi−1 and for j ≥ i, let
aj = Pr (Yj is essential for Y |Y1, Y2, . . . Yi−1)

Claim 3. ai, ai+1, . . . an form a non-decreasing sequence.

Proof Let j ≥ i. Consider a point ω in the sample
space where Yj is essential, but Yj+1 is not. Map ω onto
ω′ by swapping the values of Yj and Yj+1; this is clearly a
1-1 measure preserving map. If θ is a LIS of ω with j ∈
θ, j+ 1 /∈ θ, then θ \ j∪ j+ 1 is an increasing sequence in ω′;
so f(ω′) ≥ f(ω). If f(ω′) = f(ω) + 1, then an LIS α of ω′

must contain both j and j + 1 and so contains no k such that
Yk is between Yj , Yj+1. Now α\j is an LIS of ω contradicting
the assumption that j is essential for ω. So f(ω′) = f(ω). So,
j + 1 is essential for ω′ and j is not. So, aj ≤ aj+1. 2

Claim 4. ai ≤ c/
√
n− i+ 1.



Proof ai ≤ 1
n−i+1

∑
j≥i aj . Now

∑
j≥i aj = a (say)

is the expected number of essential elements among Yi, . . . Yn
which is clearly at most Ef(Yi, Yi+1, . . . Yn) ≤ 4

√
n− i+ 1,

so the claim follows. 2Zi is a 0-1 random variable
with E(Zi|Y1, Y2, . . . Yi−1) ≤ c/

√
n− i+ 1. Thus it follows

(using (6) of section (III)) that

E(X2
i |Y1, Y2, . . . Yi−1) ≤ c/

√
n− i+ 1.

Clearly, E(X l
i |Y1, Y2, . . . Yi−1) ≤ E(X2

i |Y1, Y2, . . . Yi−1) for
l ≥ 2, even. Thus we may apply the main Theorem with Eil
equal to the whole sample space. Assuming p ≤

√
n, we see

that (using
∑
l(1/l

2) = O(1))

E(f − Ef)p ≤ (c1p)(p/2)+2np/4,

from which one can derive the asserted sub-Gaussian bounds.

XII. DISCUSSION

The “sub-Gaussian” behaviour - e−t
2.... with the “correct”

variance in remark (1) needs that the exponent of m in
the upper bound in Theorem (1) be m

2 . The well-known
Burkholder type inequalities [9] cannot give this because of
known lower bounds. One point here is that we treat carefully
the different moments. Rewriting the upper bound we required
in Theorem (1) as(

E(X l
i |X1 +X2 + . . .+Xi−1)

)1/l ≤ ( n
m

) 1
2−

1
l l

e
,

we see that (for m ≤ n,) the right hand side is highest at
l = 2, so we put weaker requirements on the higher moments.

Another class of inequalities are the Efron-Stein inequali-
ties, where one takes a high moment of the sum of squared
variations of the function on changing one variable at a time-
see [4] for a recent result on these lines. This does get the
correct exponent of m, and is very useful if one can show
that for any point in the sample space, not too many variables
change the function too much. In contrast we only consider
changing one variable. But even for the classical Longest
Increasing Subsequence (LIS) problem, where for example,
Talagrand’s crucial argument is that only a small number
O(
√
n) of elements (namely those in the current LIS) cause a

decrease in the length of the LIS by their deletion, we are able
to bound individual variations (in essence arguing that EACH
variable has roughly only a O(1/

√
n) probability of changing

the length of the LIS) sufficiently to get a concentration result.
Besides the situation like JL theorem, the Strong Nega-

tive correlation condition is also satisfied by the so-called
“negatively associated” random variables ([7] for example).
Variables in occupancy (balls and bins) problems, 0-1 variables
produced by a randomized rounding algorithm of Srinivasan
[17] etc. are negatively associated [11].

An interesting open question is whether there are good
algorithms under the more general distributions for the TSP
and other problems.
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