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so Mt converges with probability one. If M∞ denotes the value of this limit,
then by Fatou’s lemma and the bound E(|Mt|) ≤ B we have E(|M∞|) ≤ B.

Incidentally, a sequence such as {τn} is relate to the notion of a a local-
izing sequence. In this particular problem, {τn} helps us to localize a prob-
lem concerning the large set L1(dP ) to one that deals with the smaller set
L2(dP ) ⊂ L1(dP ).

Chapter 5

Solution for Problem 5.1. If we choose α such that α/λ < ǫ and if we
let τα = min{t : Bt ≥ α}, then we have {τα < α/λ} ⊂ {τ < ǫ}. Taking
complements, we have

P (τ ≥ ǫ) ≤ P (τα ≥ α/λ)

= 2Φ(α/
√
α/λ) − 1 by (5.22), page 90.

Since Φ(α/
√
α/λ) → 1/2 as α→ 0 we therefore find P (τ ≥ ǫ) = 0.

Solution for Problem 5.2. By interchanging expectation and integration,
it is immediate that E(Ut) = E(Vt) = 0. Next, since Xt =

√
tZ, direct

integration gives Vt = (2/3)t3/2Z, so Var(Vt) = (4/9)t3. Finally, we have

Var(Ut) = E(U2
t ) = E

[∫ t

0

Bs ds

∫ t

0

Bu du

]
=

∫ t

0

∫ t

0

E(BsBu) ds du

=

∫ t

0

∫ t

0

min(s, u) ds du = 2

∫ t

0

∫ u

0

s ds du = t3/3.

Solution for Problem 5.3. First write the integral as a sum:

∫ 1

0

Bt dt =

n−1∑

k=0

∫ (k+1)/n

k/n

Bt dt

=
1

n

n−1∑

k=0

Bk/n +

n−1∑

k=0

∫ (k+1)/n

k/n

(Bt −Bk/n) dt. (15.51)

The processes {Bk/n : k = 0, 1, ...n} and {n− 1
2Sk : k = 0, 1, ...n} have the

same joint distributions, so the first sum in (15.51) is equal in distribution to
An. Thus, it suffices to show that the second sum of (15.51) converges to zero
in probability. We begin by noting

rk(n)
def
=

∫ (k+1)/n

k/n

(Bt −Bk/n) dt
d
=

∫ 1/n

0

Bt dt,

and this gives us the bound

E(|rk(n)|) ≤
∫ 1/n

0

E(|Bt|) dt = n−3/2 2

3

√
2

π
.
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Summing these estimates gives E(|r0(n) + r1(n) + · · ·+ rn−1(n)|) = O(n− 1
2 ),

so by Markov’s inequality the second sum of (15.51) does converge to zero in
probability.

Solution for Problem 5.4. Since max0≤t≤T Bt has the same distribution
as |BT |, the first identity comes from

E(|BT |) = T
1
2E(|B1|) = T

1
2

2√
2π

∫ ∞

0

xex2/2 dx =

√
2T

π
.

Since max0≤t≤T Bt and −min0≤t≤T Bt have the same distribution and since
max0≤t≤T |Bt| ≤ max0≤t≤T Bt − min0≤t≤T Bt the second assertion of (5.44)
follows from the first.

Solution for Problem 5.5. If we condition on the value of Bs and use the
reflection principle for the Brownian motion Xu = Bu − Bs, u > s, then the
left side of equation (5.45) becomes

∫ 0

−∞
P ( max

u∈[s,t]
(Bu−Bs) > −x)e−x2/2s dx√

2πs
=

∫ 0

−∞
2P (Bt−Bs > −x)e−x2/2s dx√

2πs
,

and, again by conditioning, this equals the right side of equation (5.45).

Solution for Problem 5.6. If we set G = {(u, v) ∈ D : v − u ≤ x} and
w = v − u, then the density (5.18) gives us

P (B∗
t −Bt ≤ x) =

∫

G

f(u, v)dudv =

∫ x

0

∫ ∞

0

2(v + w)√
2πt3

exp(−(v + w)2/2)dvdw

= 2

∫ x

0

exp(−w2/2)dw/
√

2πt = 2

(
Φ(x/

√
t) − 1

2

)
= P (B∗

t ≤ x).

Since Xt = B∗
t −Bt can decrease but B∗

t cannot, we see that these processes
are not equivalent.

Solution for Problem 5.7. To prove E(τ) = σ2, we first condition on I
and J and then we exploit the hitting time formula. Specifically, we have

E[τ ] = E[E[τ | I, J ]] = E[(−IJ)]

= −
∫ 0

−∞

∫ ∞

0

tsγ−1(t− s)dF (s)dF (t)

= −
∫ 0

−∞

∫ ∞

0

t2sγ−1dF (s)dF (t) +

∫ 0

−∞

∫ ∞

0

ts2γ−1dF (s)dF (t)

=

∫ ∞

0

t2dF (t) +

∫ 0

−∞
s2dF (s) = σ2.

To prove P (Bτ ≤ x) = F (x), we again use conditioning to get
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P (Bτ ≤ x) =E[P (Bτ ≤ x) | I, J ]] = E

[
I(I ≤ x)

J

J − I
+ I(J ≤ x)

(−I)
J − I

]

=

∫ 0

−∞

∫ ∞

0

I(s ≤ x)
t

t− s
γ−1(t− s)dF (s)dF (t)

+

∫ 0

−∞

∫ ∞

0

I(t ≤ x)
(−s)
t− s

γ−1(t− s)dF (s)dF (t)

=

∫ 0

−∞
I(s ≤ x)dF (s) +

∫ ∞

0

I(t ≤ x)dF (t)

=

∫ ∞

−∞
I(u ≤ x)dF (u) = F (x).

Solution for Problem 5.8. From the set inclusions

{Yn ≤ x− ǫ} ⊂ {Xn ≤ x} ∪ {|Yn −Xn| ≥ ǫ}

{Xn ≤ x} ⊂ {Yn ≤ x+ ǫ} ∪ {|Yn −Xn| ≥ ǫ}
we have the probability bounds

F (x− ǫ) ≤ P (Xn ≤ x) + P (|Yn −Xn| ≥ ǫ)

P (Xn ≤ x) ≤ F (x+ ǫ) + P (|Yn −Xn| ≥ ǫ),

so for all ǫ > 0 we have

F (x− ǫ) ≤ lim inf
n→∞

P (Xn ≤ x) ≤ lim sup
n→∞

P (Xn ≤ x) ≤ F (x+ ǫ).

Solution for Problem 5.9. We relate Bt to Mt = maxs∈[0,t] |Bs| by noting

P (Mt ≥ x) = P (Mt ≥ x, |Bt| ≤ x) + P (Mt ≥ x, |Bt| ≥ x)

= P (Mt ≥ x, |Bt| ≤ x) + P (|Bt| ≥ x),

so we then have

P (Mt ≤ x) = 1 − P (|Bt| ≥ x) − P (Mt ≥ x, |Bt| ≤ x)

= P (|Bt| ≤ x) − P (Mt ≥ x, |Bt| ≤ x).

Next, we set τ = min{t : |Bt| ≥ x} and τ−x = min{t : Bt = −x}, so we have

τ = min{t : |Bt| = x}. We then let B̃t denote the reflection of Bt at x or

at −x according to which ever is hit first; that is, if τx < τ−x then B̃t is the

reflection of Bt at x while if τ−x < τx then B̃t is the reflection of Bt at −x.
We then note that P (Mt ≥ x, |Bt| ≤ x) is equal to
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P (τ < t, τx < τ−x, Bt ∈ [−x, x]) + P (τ < t, τ−x < τxBt ∈ [−x, x])
= P (τ < t, τx < τ−x, B̃t ∈ [x, 3x]) + P (τ < t, τ−x < τx, B̃t ∈ [−3x,−x])
= P (τ < t, τx < τ−x, Bt ∈ [x, 3x]) + P (τ < t, τ−x < τx, Bt ∈ [−3x,−x])
= P (Bt ∈ [x, 3x]) − P (τ−x < τx, Bt ∈ [x, 3x])

+ P (Bt ∈ [−3x,−x]) − P (τx < τ−x, Bt ∈ [−3x,−x])
= P (|Bt| ∈ [x, 3x]) − T,

where T is just shorthand for the two term sum

P (τ−x < τx, Bt ∈ [x, 3x]) + P (τx < τ−x, Bt ∈ [−3x,−x]).

In the first line of this calculation, we used the definition of the reflected
process B̃t, and in the second line we used the equivalence of the processes
{B̃t} and {Bt}. We now repeat the argument for T to find

T = P (τ−x < τx, B̃t ∈ [−5x,−3x]) + P (τx < τ−x, B̃t ∈ [3x, 5x])

= P (τ−x < τx, Bt ∈ [−5x,−3x]) + P (τx < τ−x, Bt ∈ [3x, 5x])

= P (Bt ∈ [−5x,−3x]) − P (τx < τ−x, Bt ∈ [−5x,−3x])

+ P (Bt ∈ [3x, 5x]) − P (τ−x < τx, Bt ∈ [3x, 5x])

= P (|Bt| ∈ [3x, 5x]) − U,

where U = P (τx < τ−x, Bt ∈ [−5x,−3x]) + P (τ−x < τx, Bt ∈ [3x, 5x]).
If we repeat our argument for U , then we find

U = P (|Bt| ∈ [5x, 7x]) − V,

where V = P (τ−x < τx, Bt ∈ [5x, 7x]) + P (τx < τ−x, Bt ∈ [−7x,−5x]), and
by continuing in this way we generate all the terms of the series (5.47).

Solution for Problem 5.10. From the general wavelet expansion (5.3)–
(5.4), page 81, we have for Brownian motion that

Bs −Bt =

∞∑

j=0

Dj(s, t) where Dj(s, t) =
∑

2j≤n<2j+1

cn{∆n(s) −∆n(t)},

and we also have general bounds for the summands,

|Dj(s, t)| ≤
{

max2j≤n<2j+1 cn

2j+1|s− t|max2j≤n<2j+1 cn.

The formula (3.10) for cn for Brownian motion and Lemma 3.2, (both on page
48), then give us a random variable C such that P (C <∞) = 1 for which

|Dj(s, t)| ≤
{
C(ω)(j + 1)

1
2 2−j/2

C(ω)|s− t|(j + 1)
1
2 2j/2.
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Breaking the sum into two parts and using our second estimate for |Dj(s, t)|
on the first part, we find for all m that

|Bt+h −Bt| ≤ C(ω)
∑

0≤j≤m

h(j + 1)
1
2 2j/2 + C(ω)

∑

j:j>m

(j + 1)
1
2 2−j/2.

Comparison with geometric series give us constants C1 and C2 such that

∑

0≤j≤m

(j + 1)
1
2 2j/2 ≤ 2m/2(m+ 1)

1
2

∑

0≤j≤m

2(j−m)/2 ≤ C12
m/2(m+ 1)

1
2

and
∑

j:j>m

(j + 1)
1
2 2−j/2 ≤ C2(m+ 1)

1
2 2−m/2,

so for C′(ω) = C(ω)max(C1, C2) we have for all m = 1, 2, ... that

|Bt+h −Bt| ≤ C′(ω)(m+ 1)
1
2 (h2m/2 + 2−m/2).

To complete the proof we then take m = ⌈log2(1/h)⌉.
Chapter 6

Solution for Problem 6.1. For part (a) it suffices to note that

{ω : g(ω) ≤ x} =
⋂

k

⋃

N

⋂

n: n≥N

{ω : gn(ω) ≤ x+ 1/k},

while for part (b), it suffices to take gn(ω) to be the smallest value of k/2n

such that g(ω) ≤ k/2n. For part (c), first choose fn and gn as in part (b) and
note that gnfn is G measurable since

{ω : fn(ω)gn(ω) ≤ x} =
⋃

{ω : fn(ω) = k/2n} ∩ {ω : gn(ω) = j/2n}

where the union is over all j and k such that (j/2n)(k/2n) ≤ x. Since fg is
the limit of fngn we see that fg is measurable by part (a).

Solution for Problem 6.2. In general, to show that f(ω, t) = I(t ≤ τ(ω)) is
progressively measurable, it suffices to find fn progressively measurable such
that fn(ω, t) converges to f for all ω ∈ Ω and all 0 ≤ t ≤ T . Here we do this
by approximating τ . If we fix 0 ≤ t ≤ T and let τn(ω) be the smallest value
of kt/2n such that τ(ω) ≤ kt/2n, then τn is again an stopping time. We also
have the representation

S ≡ {(ω, s) ∈ Ω × [0, t] : τn(ω) < s} =
⋃

0≤k≤2n

{ω : τn = kt/2n} × (kt/2n, t].

For each 0 ≤ k ≤ 2n we have {ω : τn = kt/2n} ∈ Ft since τn is a stopping time.
Thus, S is a countable union of rectangles A×B with A in Ft and with B a
subinterval of [0, t]. Thus S is an element of the product σ-field Ft ×B([0, t]),
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and this is what we need to show (ω, s) 7→ I(τn(ω) < s) is It-measurable.
Finally, for all (ω, s) we have as n → ∞ that I(τn(ω) < s) converges to
I(τ(ω) < s). Thus, by Exercise 6.1 part (a) we see that (ω, s) 7→ I(τ(ω) < s) is
It-measurable. Moreover, by Exercise 6.1 part (b), (ω, s) 7→ f(s, ω)I(τ(ω) < s)
is It-measurable. This holds for each 0 ≤ t ≤ T , so g(ω, t) = f(ω, t)I(t < τ)
is progressively measurable.

Solution for Problem 6.3. First fix t ∈ [0, T ] and take fn(ω, s) equal to
f(ω, (k+ 1)t/2n) whenever s ∈ (kt/2n, (k+ 1)t/2n] and 0 ≤ k < 2n. To check
that the map fn : Ω × [0, t] → R is Ft × B([0, t])-measurable, we note that

{(ω, s) : fn(ω, s) ≤ x} = ∪k{ω : f(ω, (k + 1)t/2n) ≤ x} × (kt/2n, (k + 1)t/2n]

is a countable union of Ft × B([0, t]) rectangles. By the right-continuity of
f we have fn(ω, s) → f(ω, s) for all (ω, s), and the limit of a sequence of
Ft×B([0, t])-measurable functions is Ft×B([0, t])-measurable. Thus, for each
t ∈ [0, T ] the map f : Ω × [0, t] → R is Ft × B([0, t])-measurable, so f is
progressively measurable.

Solution for Problem 6.5. Taking the hint, we expand the isometry rela-
tion ‖I(f + g)‖2

L2(dP ) = ‖f + g‖2
L2(dP×dt) then remove the squared terms by

subtracting ‖I(f)‖2
L2(dP ) = ‖f‖2

L2(dP×dt) and ‖I(g)‖2
L2(dP ) = ‖g‖2

L2(dP×dt).

Solution for Problem 6.6. Both Xt and Yt have mean zero, so Itô’s isom-
etry gives Var(Xt) = (2/3)(2/π)1/2t3/2 and Var(Yt) = t3 +3t4/2+ t5/5. These
computations are simplified by recalling that Bs has the same distribution as√
sZ where Z ∼ N(0, 1) and by using the known moments of Z.

Solution for Problem 6.7. The proof just requires two observations. First,
by the argument given in equations (6.20)-(6.22) one finds that

n∑

k=1

B(k−1)/n(Bk/n −B(k−1)/n) converges in L2(dP ) to

∫ 1

0

Bt dBt.

Second, we have ǫk/
√
n

d
= Bk/n−B(k−1)/n and Sk−1/

√
n

d
= B(k−1)/n together

with the corresponding statements for all of the joint distributions.

Solution for Problem 6.8. For f(ω, s) = |Bs| 12 the martingale (6.27), page
114, and Doob’s stopping time theorem, tell us Var(X) = 1. Alternatively, one

can apply the Itô isometry to f(ω, s) = |Bs| 12 I(s ≤ τ)

Solution for Problem 6.9. Given g ∈ CB, we take ti = iT/n for 0 ≤ i ≤ n
and set

gn(ω, t) =

n−1∑

i=0

g(ω, ti)I(ti < t ≤ ti+1]. (15.52)

Since g(ω, ti) ∈ Fti
we see that gn ∈ H2

0 by the definition of H2
0 (page 104).

We also have for each fixed ω that
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sup
0≤t≤T

|gn(ω, t) − g(ω, t)| ≤ sup
s,t:|s−t|≤1/n

|g(ω, s) − g(ω, t)| ≡ µn(ω).

By the uniform continuity of t 7→ g(ω, t) on [0, T ], one has for each ω that
µn(ω) → 0 as n → ∞. Two applications of the DCT then show that gn → g
in L2(dP × dt).

Chapter 7

Solution for Problem 7.1. We argue by contradiction. If the limit were
not infinite, then since τM (ω) is nondecreasing we would have

lim
M→∞

τM (ω) = t∗ <∞.

The continuity of f then implies f(t∗) = ∞, but this contradicts the continuity
of f . The corollary is then immediate since f(Bt) is continuous on a set of
probability one.

Solution for Problem 7.2. Consider the nondecreasing stopping timesLook out for known
bug re: such stop-
ping times.

defined by setting νn(ω) = inf{t : |Xt| ≥ n, or t ≥ T }. For each ω, the
mapping t 7→ Xt(ω) is bounded on [0, T ] so for each ω there is an N(ω) such
that νn(ω) = T for all n ≥ N(ω). Also, by Doob’s stopping time theorem,
Xt∧νn

is a martingale, so by Jensen’s inequality φ(Xt∧νn
) is a submartingale.

This says that Yt∧νn
is a submartingale. Thus, {νn} has both of the qualities

needed to show that Yt is a local submartingale. Finally, taking Xt = Bt

and φ(x) = ex2

shows that Yt need not be an honest submartingale; in this
example Yt = φ(Bt) is not even integrable.

Solution for Problem 7.3. By following the argument of Proposition 7.10
(page 136) through equation (7.24) we find in the present case that

Xs∧τk
≤ E(Xt∧τk

| Fs) for all 0 ≤ s ≤ t ≤ T. (15.53)

Since τk → T as k → ∞, continuity gives us Xs∧τk
→ Xs and Xt∧τk

→ Xt.
Finally, |Xt∧τk

| ≤ X∗ ∈ L1(dP ) so the bound (15.53) and the DCT give us
the submartingale condition for {Xt}.
Solution for Problem 7.4. There are stopping times νn such that νn → ∞
with probability one and such that t 7→Mt∧νn

is a martingale for each n. We
then have E(Mt∧νn

) = 0, and Mt∧νn
≥ 0 so P (Mt∧νn

= 0) = 1. Now let
n→ ∞.

Solution for Problem 7.5. Since Mt is a local martingale with M0 = 0
there is a sequence of nondecreasing sequence of stopping times {τn} such
that τn → ∞ with probability one and such that t 7→ Mt∧τn

is a martingale
for each n. By Doob’s stopping time theorem Mt∧τn∧τ is also a martingale for
each n, so we have E(Mt∧τn∧τ ) = 0. By continuity Mt∧τn∧τ → 0 as n → ∞
so by the hypothesis on X and the DCT we have E(Mt∧τ ) = 0 as required.


