Stochastic Calculus and Financial Applications

Final Take Home Exam (Fall 2006)
SOLUTIONS

INSTRUCTIONS. You may consult any books or articles that you find useful.
If you use a result that is not from our text, attach a copy of the relevant
pages from your source. You may use any software, including the internet,
Mathematica, Maple, R, S-Plus, MatLab, etc. Attach any Mathematica
(or similar) code that you use.

You may NOT consult with any other person about these problems. If
you have a question, even one that is just about the meaning of a question,
please contact me directly rather than consult with a fellow student.

I may post “bug reports” or clarifications on our web page, and you should
regularly check for these.

You should strive to make your answers as clear and complete as pos-
sible. Neatness counts — especially of thought, but even of handwriting.
If T can’t read it, I can’t grade it.

Never, ever, write down anything that you know — or even vaguely suspect
— to be false. If you understand that your argument is incomplete or only
heuristic, this may be fine, but it must be properly labeled as incomplete
or heuristic.

Don’t skip steps. If I can’t go from line n to line n + 1 in my head,
something is missing. If you use Mathematica or a fact from a table,
please say so and document it. Otherwise, I stare and stare at line n
wondering how you got to n + 1 in your head while I can’t.

Use anything from anyplace, but do not steal. If you make use of an
argument from some source, give credit to the source. If you find the
complete (and correct!) solution to a problem in a book or on the internet,
just print out the pages and attach them. You will get full credit.

Write on only one side of a page. Use decent, homogeneous, high quality
paper. No napkins, hoagie sacks, Indian Chief Tablets, etc.

Begin each new solution on a new page.

Arrange your solutions in the natural numerical order. If you do not do
problem K, then include a self-standing page that says “Problem K was
not done.”

Staple your pages neatly with a high-quality stapler with appropriate
length and weight to do a clean and secure job.



e As discussed in class, you MUST use and complete the cover
page given at the website. Self-evaluation is hugely valuable.

GENERAL ADVICE

1. Avoid the temptation to just write down things that you think are relevant
even though these “things” do not add up to an honest solution. Such
near-nonsense lists just waste everyone’s time.

2. If you can explain clearly something that you tried that did not work,
this sometimes is worth a few points. Please do not abuse this offer. With
experience, one learns that many sensible ideas do not work. Almost by
definition, this is what separates the trivial from the non-trivial.

3. Try to keep in mind that a good problem requires that one “overcome
some objection.” What distinguishes a problem from an exercise is that
in a good problem a routine plan does not work. The whole point is to
go past the place where routine ideas take you. Still, don’t shy away from
the obvious; many of the “problems” here are exercises.

4. If you do something extra that is valid, you can get “bonus” points. These
special rewards cannot be determined in advance. They are usual small,
but they can be substantial — and they do add up.

5. The most common source of bonus points is for saying something partic-
ularly well. Clear, well-organize, solutions are gems. They deserve to be
acknowledged.

THE BIG PICTURE

Almost certainly these instructions will seem to be overly detailed to you.
It is true that they are detailed, but they evolved case by case. Each rule deals
with some previous mess or misunderstanding. When you start teaching (and
grading) I encourage you to follow this example. There is no dishonor in a
creative eccentricity or two.

There is a final — more important — motivation for this long list of rules
and suggestions. Detailed instructions provide honest coaching for ex-
cellence. This is the principal benefit. Nevertheless, I hope that no one minds
that these rules will also save many hours of everyone’s time.

Due Date and Place: The exam with its completed self-evaluation cover
sheet is due in my office JMHH 447 at 11am on Tuesday December 19.



Problems for Everyone

PROBLEM 1: A CONSTRUCTION OF BROWNIAN MOTION ON [0, c0)

Given that a Brownian motion {B(¢) : 0 < ¢ < 1} has been defined on the
unit interval, define an new process on all of 0 <t < co by setting

~ t tB(1)
Bt)=(1+t){B|—— | ———=;.
o=a+o{z(r) - 57
Confirm that this process is indeed a Brownian motion on [0, 00). Although this

construction of Brownian motion on [0, 00) has fewer seams than the one given
in the text, it is probably less obvious to most people.

SOLUTION 1: A CONSTRUCTION OF BROWNIAN MOTION ON [0, o0)
It is immediate that B(f) = 0 and that B(t) is a Gaussian process with

continuous paths. We also have E(B(t)) = 0, so we just need to check that
E(B(s)B(t)) = s whenever 0 < s < t. One does this simply by substituting the
definition of B, multiplying out terms, and using E(B(s')B(t')) = min(s’,t')
for s’ and ¢ in [0, 1].

PROBLEM 2: INTUITION ABOUT VOLATILITY FROM THREE PERSPECTIVES

Consider a European call option with the current stock price equal to the
current strike price. These are commonly called at-the-money options, though
there are more sophisticated definitions of “at-the-money.”

(a) Now suppose that volatility is zero. If you make the usual Black-Scholes
assumptions, explain how one can guess the value of the option by direct reason-
ing without using either the Black-Scholes formula or the Black-Scholes PDE.

(b) Now take the Black-Scholes PDE and let ¢ = 0. Does the value that you
obtained in Part (a) solve that simplified PDE and its terminal condition?

(¢) Finally, take the Black-Scholes formula, and calculate what you get when
o — 0. Be sure to handle any indeterminate expressions honestly.

Incidentally, Richard Feynman often said that you understand an equation
when “without solving the equation you can still say how the solutions behave.”
Feynman’s criterion is worth keeping in mind anytime one meets an equation
— new or old.

SOLUTION 2: INTUITION ABOUT VOLATILITY FROM THREE PERSPECTIVES

For Part (a) one could reason as follows. “If ¢ is zero, then at time T
the stock will be worth Sie#™, but if 4 # r then I would have an arbitrage
possibility. Hence, letting o be zero, forces u = r. Hence, at time 7" my stock
will be priced e”"S;, and an option owner can buy it for K. Hence at time T,
the option owner wins precisely w = e”"S; — K. Right now, that payout has



value e”""w = Sy — Ke™"". Accordingly, this must be the value of the option.”
To be sure, this is informal, but it is quite sensible.

When ¢ = 0 the Black-Scholes PDE becomes f; = —rxf, + rf, and it is
trivial to check that f(t,z) = x — Ke™™" does solve this equation.

For Part (c) one just notes that both D and D_ are asymptotic to r/7/o
and thus go to infinity as ¢ — 0. This gives ®(D;) — 1 and ®(D_) — 1 so the
Black-Scholes formula becomes S — e~ "7 K. This gives a second confirmation of
the intuitive reasoning in Part (a).

PROBLEM 3: Is IT BROWNIAN MOTION?

(a) Consider the process, X; = By — B, 0 < t < co. Is it a Gaussian
process? Can you find the mean and variance? Is it Brownian motion?

(b) Let X; and Y; be independent Brownian motions. Let Z; = (X;+Y;)/v/2.
Is it a Gaussian process? Can you find the mean and variance? Is it Brownian
motion?

SOLUTION 3: IS IT BROWNIAN MOTION?

(a) Yes, X; is a Gaussian process. We must check that for each (t1, %2, ..., t,)
that (X, Xt,,..., X3, ) is multivariate Gaussian. That is, we need to show that
for any 6i, 0s,.., 0,, the sum S = 61Xy, + 62X, + -+ + 0, X, is univariate
Gaussian. Since S can be written as a linear combination of values of Brownian
motion at various times and since Brownian motion is a Gaussian process, we see
the S is indeed Gaussian. Next, we trivially have E(X;) = 0 and Var(X;) =t
for all ¢. Finally, since Cov(Xs, X;) equals

E((BZS - Bs)(BQt - Bt) = E(BQSBZt - B2th - BSBQt + Bth)7

we see Cov(X,, X¢) = 3min(s,t) — min(2s,t) — min(s,2¢). For s = 2, ¢t = 3
this works out to 1, but the corresponding covariance for Brownian motion is 2.
Hence, {X;} is not Brownian motion.

(b) Yes, it’s immediate that Z; is a Gaussian process with mean zero and
variance t. Moreover, for s < t we have

E(Z:Zy) = (1/2)BE(X X + XYy + Y Xy + YY)
=(1/2)(s+0+0+s) =s.

Thus, Cov(Zs, Z;) = min(s,t), so we see {Z;} is a standard Brownian motion.

PROBLEM 4: INTEGRAND AND INTEGRAL SIZE

Suppose that ¢(w,t) is a stochastic integrand for which there is a constant
C such that
E(¢*(w,t)) < CtP for all t > 0. (1)

Show that the stochastic integral

t
Xt:/ o (w, s) dBy
0
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satisfies the bound

c o\ /2
E(|1X4]) < () tp+1)/2.
p+1

SOLUTION 4: INTEGRAND AND INTEGRAL SIZE
We combine the Cauchy-Schwarz inequality with the It6 isometry. Specifi-
cally, we have

E(|Xy|) < BE(X?)Y/? = { /d)2w s) }1/2.

Now, change the order of integration and expectation and replace the expecta-
tion E(¢?(w,s) by the bound C'sP.

PrROBLEM 5: A GREEK BOUND ON THE CALL PRICE
Let f(t,S;) denotes the time ¢ arbitrage-free price of a call option under the
usual Black—Scholes model, and explain why one has the bound

2
ag
f(t,8) < SiAy + ﬂsfrt,

where, as usual, we have A; = f,(¢,5;) and T'y = f.t, S¢).

SOLUTION 5: A GREEK BOUND ON THE CALL PRICE
This is almost free. The Black—Scholes PDE can be written as

rF(tS)) = filt, S)) + %UQSffm(t, S)) + 1Sy fu(t, S).

The key observation is that fi(¢,S;) < 0, which is financially obvious since,
if the only thing that changes is time, then the option must become steadily
less valuable. After guessing this relation, one gives a formal derivation by
differentiating the Black-Scholes formula an collecting terms.

PrROBLEM 6: A TEXT BOOK BLOOPER
A recently published text asserts that for each fixed v > 0 the collection of
random variables

C={X;=exp(yB; —*t/2) : 0 <t < o0}

is uniformly integrable. Prove that this statement is false.

Curiously enough, C is almost a “poster child” for a collection that fails to
be uniformly integrable. Dozens of papers offer conditions on a stopping time
7 that suffice to give Elexp(B; — 7/2)] = 1, and all of these would be irrelevant
if C were a uniformly mtegrable collection.



SoLuTION 6: A TEXT BOOK BLOOPER
Take any v > 0. By the law of large numbers for Brownian motion, the
exponent

YBy — ¥t/2 = ty(By/t —/2)

diverges to minus infinity as ¢t — oco. Hence for X; = eYB=7"1/2 we see that

tlim X: = 0 with probability one, yet E(X;) =1 for all ¢.
—00

On the other hand, for any uniformly integrable family {Y;} such that Y; con-
verges to Y in probability (or with probability one) we have E(Y;) — E(Y).
Indeed, this property largely accounts for the usefulness of the notion of uniform
integrability.

PrOBLEM 7: A HITTING TIME IDENTITY
Let 7 = min{t¢ : B; = 1}, and show that we have the nice identity

Elexp(-r/2)] = -

We know the density of 7, but direct integration would not be the most pleasing
way to obtain this expectation. What’s wanted here is a simple martingale
argument. Incidentally, this formula adds something to our intuition about 7.
We know that E(7) = oo, but this new formula says that “properly discounted”
T is “around” 2.

SOLUTION 7: A HITTING TIME IDENTITY We know that X; = exp(B; —t/2)
is a martingale, so by Doob’s stopping time theorem, so is Xir-. This gives
us E(Xip-) = 1 for all ¢ > 0. Since Xy, is nonnegative and bounded by e,
the fact that P(t < oo) = 1 and the DCT then gives us F(X;) = 1. Since
X, =exp(1l — 7/2), taking the expectation gives us our identity.

PROBLEM 8: A MARTINGALE AND AN INTEGRAL
Show that if g is a continuously differentiable function, then the process

¢
M, = g(t)B; —/ g'(s)Bs ds
0

is a martingale. Next, show that for 7 = min{t : B; = A or B; = —B} one has

Elsin(r)B,] = E < /0 " cos(s) B, ds> . 2)

SOLUTION 8: A MARTINGALE AND AN INTEGRAL



For f(t,x) = g(t)x we have f € C2(R™R), so Itd’s formula can be applied.
Since f, = ¢, fzz = 0, and f; = xg’ we then find

o(t)B, = / §/(s)B. ds + / o(s) dB..

Now, the second integral equals My, and, since g is bounded on any interval
[0, 7], this integral is a martingale. Finally, to prove the identity (2), we first
note by Doob’s stopping time theorem that M, is also a martingale, so we
have E(Min,) = 0. In other words, we have

E[Bopysin(r At)] = E ( /O " cos(s) B ds) .

Since |B;| < max(A, B) for t < 7, the DCT permits us to take limits inside both
of these expectations. Doing so completes the proof.

PROBLEM 9: ALL THAT GLITTERS IS NOT BROWNIAN MOTION

Suppose that X; and Y; are two continuous processes such that for each pair
of constants o and 3 with a? + 3% = 1 the process Z; = a X, + Y, is a standard
Brownian motion. First, show that for each ¢ the random variables X; and Y;
are independent. Second, show by example that the processes {X;} and {Y;}
need not be independent.

Bic HinT: OK, for part two, I’ll show you the example, but you still have to
check that it works. Consider independent Brownian motions By (t) and Bs(t),
and then set X; = B1(2t/3) — B2(t/3) and Y; = By (t/3) + B2(2t/3).

SOLUTION 9: ALL THAT GLITTERS IS NOT BROWNIAN MOTION

By taking o = 1 and 8 = 0 we see that X; is a standard Brownian motion
and taking @ = 0 and 8 = 1 shows that Y; is a standard Brownian motion.
The issue is to prove independence. By our hypothesis and the definition of
the multivariate Gaussian distribution, we see that for each s and ¢ the pair
(Xs,Y;) is bivariate Gaussian; thus to show independence, we just need to show
E(X.Y;) = 0. Take a = 8 = 1/v/2. We have Var[(X, + Y;)/v/2] = t from our
hypothesis, so we have

1 1
t= 3 Var(X;) + 3 Var(Y;) + Cov (X4, Y:).

Since Var(X;) = Var(Y;) = ¢ this gives Cov(X;,Y:) = 0. Since (X,,Y:) is
bivariate Gaussian this implies that X; and Y; are independent.

For the example, it is immediate that E(X?) = t, E(X?) = t, and one
easily checks F(X;Y;) = 0. Since (X;,Y;) bivariate Gaussian, we see that Z; is
Gaussian, mean zero, and Var(Z;) = t. The definition also shows that Z; has
independent increments, so Z; is a Brownian motion. To see that the processes



{X,} and {Y;} are dependent, just compute E(X,Y;) for some 0 < s < ¢. Taking
s =1and t = 2 gives 1/3, so the processes {X;} and {Y;} are not independent.

[Clyde D. Hansen, Jr. (1985)“A Spurious Brownian Motion,” Proceedings
of the American Mathematical Society, 93 (2), 350.]

Problems with a Challenge, but Still Solidly in Range

PRrROBLEM 10: THE BLACK—SCHOLES “LOWER CASE” TRANSFORMATION

Take the Black—Scholes formula, replace ® by ¢, and simplify. I mean really
simplify!. What do you get? I promise that you will remember the stunning
answer for the rest of your life. It’s also financially informative. Show your
work!

SOLUTION 10: THE BLACK—-SCHOLES “LOWER CASE” TRANSFORMATION

The answer is zero. You can give a proof that parallels our proof that
A = ®(Dy), but, with afterthought, there is a more elegant arrangement. First
we note

Zggj = exp (—;(Di - D2)) = exp (_;(D+ +D_)(D+ — D)> ,

and, as before, we have the two relations

1 K
QM and Dy —D_ = g7 = o\/T.
o\T

D++D_: T
o°T

From these we see

%(D+ +D_)(Dy —D_)=1og(S/K) +r7 = log <Kesi”) ,

and hence one finds the lovely — and conceptually informative — identity

p(Dy) _ Ke'"
<;5(DJ_F) I (3)

When the identity (3) is rewritten without fractions, it tells us that changing ®
to lower case ¢ in the Black-Scholes formula gives us zero. Moreover, the formula
(3) offers what is perhaps the best way to make intuitive sense of the ubiquitous
factors D_ and D;. Among other things it suggests that “moneyness” can be
viewed as a kind of likelihood ratio.

PrROBLEM 11: TExAs CHAIN RULE MASSACRE

Suppose that f(t, z) solves the Black-Scholes PDE with the usual terminal
condition f(T,z) = (x— K). Consider the new variable y and the new function
g(t,y) that are defined by the relations:

y=eTDe and g(t,y) =" f(t,2).



Show that g satisfies the more pleasant terminal value PDE

@4_102 2@

5 T3 yay2=0 and g(T,y) = (y — K)+. (4)

This certainly a nice simplification of the Black-Scholes equation, and it suggests
that the new variables are “better” variables. With time on our hands, we could
see what other simplifications might be achieved with using y and g in place of
x and f.

HiNT: This is only a chain rule exercise, but it is easily messed up. If you
make a mistake in your calculations and still arrive at the target formula, you
may have engaged in a willful fiction — which is not polite.

To succeed here is easy, if you start out right. The right way to start is
to first write the “old stuff’” as a function of the “new stuff.” You can then
do straightforward chain rule calculations of the derivatives associated with the
“old stuff,” plug these into the “old equation,” and get the “new equation.” Less
systematic approaches are often fought both with error and irrelevant algebra.

SOLUTION 11: TEXAS CHAIN RULE MASSACRE
We have z = e "(T=Yy and f(t,z) = e "TNg(t,y). We can’t forget that
dy/0x = e" T~ and

Ay/ot = —e " T Dgr = —py,
Now we just work out the various derivatives f using the chain rule:

filt,w) = re T Vg(t,y) + e T gyt y) — e T (—ry)gy (¢, y)
fa (ta .Z‘) = e_r(T_t)gy(tv y) (&y/ax) = gy(t7 y)
foa(t, @) = gyy(t,y)(Oy/0x) = eT(Tit)gyy(t»y)
Substitution into the Black—Scholes PDE f; = —(1/2)2%02 f — rafy +rf now
gives
re” T 0g(t,y) + e T Vgu(t,y) — T (—ry)gy (ty) =
_ (1/2)(e—r(T—t)y)2o_2er(T—t)gyy (t, y) . TG_T(T_t)ygy (t, y) + ,r,e—r(T—t)g(t7 y)
Direct cancelations now give use the simple PDE (4).

Incidentally, y and g are sometimes called the “forward” stock price and
option price, although this terminology can collide with other uses of the word
“forward.” One mathematical motivation for using a change of variables of the
form y = A(t)x and g(t,y) = A(t) f(t, x) is that the relation f.(t,z) = gy(t,v)

is baked into the cake. Also, with A(t) = ¢"T=% we have A(T) = 1 so the
boundary condition is unchanged.

PROBLEM 12: ONE OF TwO LINES



Consider the standard Brownian motion Z; = (X;,Y;) in R2, and let 7
denote the first time that either Y; = aX; + b or Y; = aX; — b. That is, we let
7 denote the first time that Z; hits the boundary of the strip S defined by the
parallel lines y = ax + b and y = ax — b. Show that one has

B(r) = /(1 +a%),

then pose — and prove — a three dimensional generalization.

SOLUTION: ONE OF TwoO LINES SOLUTION This is almost a freebie. The
key observation is that the process B; = (Y; — aX;)/v1+ a? is a standard
Brownian motion, and 7 is equal to the first time that B; hits A = b/v/1 + a?
or hits —B = —b/v1+a?. We've known forever that E(7) = AB and here
AB =b%/(1+ a?).

This method easily generalizes to give the expected time for a standard
Brownian motion (Xy,Y;, Z;) in R3 to hit the boundary of the slab S determined
by z = ax + by + c and z = ax + by — d where ¢ > 0 and d > 0. This time we
have the standard 1-dimensional Brownian motion

Bt = (Zt—CLXt —b)/t)/\/1+042+b2
so upon setting A = ¢/v1+a?+ 0% and B =d/v1+ a? + b* we find
E(1) = AB = cd/(1 + a*® + b?).

PrROBLEM 13: BM WITHOUT ASSUMING INDEPENDENCE

Let {X;} denote a mean zero Gaussian process and let A(s,t) = X; — X
denote the increment in the process from time s to time ¢. Assume that for
each choice of four times 0 < t; < ty < t3 < t4 the variance of the sum
S = A(tl,tg) + A(tg,tg) + A(tg,t4) is equal to t4 — tl. Show that {Xt} is
Brownian motion. The point here is that our assumption on S is enough to
show that {X;} has independent increments.

SOLUTION 13: BM WITHOUT ASSUMING INDEPENDENCE
First observe that by taking ¢; = s and t = ¢t = t3 = t4 we see that
E(A%(s,t) =t — s for all s <t. Next, since we have

(A(t1,ta) + Alta, t3))? = A%(t1, 12),
we can expand and take expectations to get
to —t1 + 2E(A(t1,t2)A(t2,t3)) +t3 — 1o =13 —17.

Cancelation shows E(A(ty1, t2)A(ta,t3)) = 0, so we see that adjacent increments
of {X,} are independent. Now we use this fact together with our full assumption

10



about S. Specifically, squaring S gives

S% = A%(ty,ta) + A%(tg, t3) + A%(t3,ty)
+2A(t1, t2)A b, t) + 2A(t1, 2) Alts, t4) + 2A(f2, t5) Alts, t4).

Hence, when we take expectations, we get
ta —t1 =ts —t1 + 2E(A(t1, t2) A(ts, ta)),

and cancelation shows A(tq,t2) and A(ts,t4) are uncorrelated. Since these are
two arbitrary time-disjoint increments, we see that the Gaussian process {X;}
has independent increments.

Source: Rényi, A. (1967). Remarks on the Poisson Process. Studia Scien-
tiarum Mathematicarum Hungarica, 2, 119-123.

PROBLEM 14: A STOPPING TIME INEQUALITY
Prove that for any stopping time 7 and any ¢ > 0 one has the inequality

E (exp(;BMT)) < {(E(exp(r/2))}V2 . (5)

Hint: You’ll want to get one of your favorite martingales into the game, and,
when a square root is in sight, it never hurts to consider Cauchy-Schwarz.

SOLUTION 14: A STOPPING TIME INEQUALITY
Since exp(B; — t/2) is a martingale, Cauchy-Schwarz and Doob’s stopping
time theorem give us

4 4

oot )} ()
(o) " (s

Remark: This shows that Kazamaki’s condition is weaker than Novikov’s con-
dition. I learned this from “On Criteria for the Uniform Integrability of Brow-
nian Stochastic Exponentials” by A.S. Cherny and A.N. Shiryaev (unpublished
manuscript), but the result probably goes back to Kazamaki.

1 1 1 1
E (exp(QBMT)> =F (exp(QBMT — =T At)exp(=T A t))

PROBLEM 15: BM AND A STOCHASTIC INTEGRAL
Consider the process

t
Xt:/ sign(Bs) dBs
0

11



where sign(z) = 1 for z > 0 and sign(z) = —1 for # < 0. Use Levy’s theorem to
check that X; is again a Brownian motion. Next, confirm that the two processes
X and By are uncorrelated. Finally show that

E(X,B}) = 2"t/ 3V/x, (6)

and explain why this implies that the processes X; and B; are not independent
— despite being uncorrelated and Gaussian processes.

SOLUTION 15: BM AND A STOCHASTIC INTEGRAL
Since the integrand sign(B;) is bounded, the stochastic integral that defines
X; is a martingale, and its quadratic variation is given by

¢ t
(X) = / sign®(By) ds = / lds=t.
0 0

Hence, X; is a continuous martingale with quadratic variation ¢, so by Lévy’s
characterization we see that X; is a Brownian motion. Next, since both X; and
B, have mean zero and both are in H?, their covariance is given by the polarized
It6 Isometry

E(BX,)=E (/Ot dB, /Ot sign(B,) st> - F (/Ot 1-sign(B,) ds) .

By symmetry, E(sign(B;)) = 0 for each s # 0, so, when we take the expectation
inside the integral, we get E(B;X;) = 0. Finally, to compute E(X;B?) we still
want to use the Itd Isometry, so we replace B? by its It6 integral representation.
We then compute with the polarized Itd Isometry:

E(X:B})=E (/Ot sign(Bs) dBs (2 /Ot Bs;dB; — t))

=2F (/Ot sign(B;) By ds) = Q/OtE(BSD ds.

Since E(|Bs|) = v/2s/+/7, our target formula (6) follows by integration.

PROBLEM 16: BM AND A STOPPING TIME

Show that for any bounded stopping time 7 for the Brownian filtration, one
has the bound

E(r%) < ¢E(BY) where c¢=(5+2v6)/3. (7)
Moreover, give an example that shows that this bound can fail for an unbounded
stopping time.

Hint: In your investigation you may want to exploit the observation that for
any x and y and any A > 0 one has 2xy < Az? +y2/\. This is a common device

12



for eliminating an awkward product. When the time is right, you then optimize
over the free parameter .

SOLUTION 16: BM AND A STOPPING TIME

It is natural to expect that we will need a martingale that contains the
summands By and #2. One that we have used before is M; = B} — 6tB? + 3t2,
so we give it a try. Doob’s stopping time theorem gives us F(M,) = 0, and this
gives us the identity

E(t%) = 2E(tB?) — %E(Bﬁ).

Now, using the bound 27 B2 < A2 + B2/, we find that for all 0 < A < 1 that
one has the bound

E(r?) < 3 A

< mE(B;%).

Optimizing over A gives A = 3 — /6 and substituting this choice in the bound
yields the constant ¢ of equation (7). Finally, to see that the boundedness
assumption cannot be ignored, consider the 7 = min{¢ : B, = 1}. We know 7 is
finite with probability one, but E(7) = co and B; = 1 so the inequality (7) is
rudely violated.

Problems that Are Harder but Still NOT Too Hard

PrROBLEM 17: TwIN BOUNDS ON AN EXIT TIME
Consider a process X; with Xy = 0 that satisfies dX; = o(X;) dB; where
o(x) is a smooth function constrained by the constant bounds

0 < olow < J(.’E) < Ohigh < 0O.

Let A > 0 and B > 0 and set 7 = min{t : X; = A or X; = —B}. After first
showing that E(7) < oo, show more precisely that one has the twin bounds:

AB /0t < B(1) < AB/o,. (8)

Here, one should note that if opign, = 010w then these bounds recover an equality
that we have met several times before.

SOLUTION 17: TWIN BOUNDS ON AN EXIT TIME
To follow the pattern of our other hitting time problems we consider the
martingale

t
M; = X} 7/ 0% (X,) ds.
0

By Doob’s stopping time theorem, we have E(M, ;) = 0, and this gives us

B[ ) ds = BX). 9)
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When we bound X2,, by max(A42, B®) and use the lower bound on ¢ in the
integral we get the crude bound

ot JE(T At) < max(A?, B?).

Fatou’s lemma now gives us E(7) < max(A?, B?)/o2 < 00, so, in particular,
we have P(1 < 00) = 1.

Given this, we take the limits in the identity (9) using the MCT on the left
and the DCT on the right to get our key result

E/T 0?(Xs)ds = E(X?) = AB. (10)

Here, the second equality comes from observing that X; is a continuous mar-
tingale. For such processes we always have

P(X,=A)=B/(A+B) and P(X,=-B)=A/(A+B).

and these imply E(X2) = AB. Finally, since we have the trivial bounds,
B < E [ 0*(X)ds < o B(7), (1)
0

substitution from the key result (10) completes the job. Incidentally, this can
also be done in many ways. My first proof was based on aa direct appeal to the
Ito isometry, and it was a little longer and a little trickier. You can also give a
proof by writing X; as a time change of Brownian motion.

PrOBLEM 18: THE Famous Fr. WORTH Two STEP OPTION

Price an option in Black-Scholes world that pays you one buck at time T
if S > K; and pays you two bucks if S7 > Ko where 0 < K; < K5 are two
given “strike prices.” Include the details for your computations, or, if you use
Mathematica, provide your code and out-put (all cleaned up, but executable).
Actually, this computation is easily done by hand and the answer is not more
complicated than the Black-Scholes formula.

As a hint, let me suggest that you use the risk-neutral pricing approach
rather than the PDE approach. This should make things pretty straightforward.
To get the full experience, be sure to include the details of any integrals or
probabilities that you compute.

SoLuTION 18: THE FAMous Fr. WORTH TwO STEP OPTION
Consider the arbitrage price V (S, K, 7,7, 0) of an option that pays one buck
if S > K. The Ft. Worth Two Step has arbitrage price

V(S,Ky,7,1,0)+V(S,Ka,T,7,0).
Now consider the fundamental pricing formula with X = I(Sy > K) and recall

that under the equivalent martingale measure (or risk-neutral measure) the
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stock price process is a geometric Brownian motion with growth parameter r
and volatility parameter o. If S; = S and 7 = T — ¢ then under ) we see that
St has the the same distribution as

Sexp ((r—o®)T+0\7Z)
where Z is a standard normal, i.e. Po(Z < z) = ®(z). Hence, we have

Po(Sr 2 K|Sy = 8) = Po((r — 0)7 + 0\/TZ 2 log(K/S))
=Py (—o/7Z <1og(S/K) + (r — o°)7) = ®(D_),

where in the last line we used the symmetry of the distribution of Z. Hence we
have
V(S,K,r,r,0) =e ""®(D_),

and nothing more is needed.

Envoi

I hope that at least some of these problems are interesting to you. Perhaps
one or two may even offer a mild epiphany. They have been created for your
enjoyment.

These problems should be fully accessible to everyone. Still, easy or hard, I
hope that at least a few will scratch out some higher, more conceptual messages.
That is the intention behind their design.

There are a few problems that will provide some challenge to almost anyone,
but even if you took a brief “break” from the course, don’t count yourself out.
You can still do all of these problems if that is your desire and if you have time
to give them an honestly try.

Still, life is short. You should do the problems you want to do and skip the
rest. Whatever problems you chose to solve, I promise to read your solutions
carefully. I will do my best to understand your ideas.

Good luck to all!
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