Appendix I: Problem Hints and Solutions

Chapter 1

Solution for Problem 1.1. Let $T_{i, j}$ denote the expected time to go from level i to level j, and note by formula (1.16) that $T_{25,20}=15$ and $T_{21,20}=3$. check! By first-step analysis we also have

$$
T_{20,19}=\frac{1}{10} \cdot 1+\frac{9}{10} \cdot\left\{1+T_{21,20}+T_{20,19}\right\}
$$

so substituting $T_{21,20}=3$ and solving gives $T_{20,19}=37$. Similarly, we have

$$
T_{19,18}=\frac{1}{3} \cdot 1+\frac{2}{3} \cdot\left\{1+T_{20,19}+T_{19,18}\right\}
$$

so substituting $T_{20,19}=37$ and solving gives $T_{19,18}=77$. Finally, one finds

$$
T_{25,18}=T_{25,20}+T_{20,19}+T_{19,18}=15+37+77=129
$$

Solution for Problem 1.2. We get (1.26) just by substitution, and we also have

$$
N_{n}=\sum_{k: 2 k \leq n} \mathbb{I}\left(S_{2 k}=0\right) \quad \text { and } \quad E\left(N_{n}\right)=\sum_{k: 2 k \leq n} P\left(S_{2 k}=0\right),
$$

so (1.26) and integral comparison give us

$$
\sum_{k: 2 k \leq n} P\left(S_{2 k}=0\right) \sim \sum_{1 \leq k \leq n / 2} 1 / \sqrt{\pi k} \sim \sqrt{2 n / \pi} \quad \text { as } n \rightarrow \infty
$$

Solution for Problem 1.3. First set $N_{\infty}=\lim N_{n}$ and then note that $P\left(N_{\infty} \geq k\right)=r^{k}$ since the event $\left\{N_{\infty} \geq k\right\}$ entails k successes of independent events each of which has success probability r. Now, if it were truely the case that $0 \leq r<1$, then we would have

$$
E\left(N_{n}\right) \leq E\left(N_{\infty}\right)=\sum_{k=1}^{\infty} P\left(N_{\infty} \geq k\right)=\sum_{k=1}^{\infty} r^{k}=\frac{r}{1-r}<\infty
$$

but by Exercise 1.2 we know $E\left(N_{n}\right) \sim \sqrt{2 n / \pi}$, so we must have $r=1$.
Solution for Problem 1.4. First-step analysis gives us

$$
P\left(\tau_{0}=2 k\right)=\frac{1}{2} P\left(\tau_{0}=2 k \mid X_{1}=1\right)+\frac{1}{2} P\left(\tau_{0}=2 k \mid X_{1}=-1\right)
$$

but by symmetry and the identity (1.24) we have

$$
P\left(\tau_{0}=2 k \mid X_{1}=1\right)=P\left(\tau_{0}=2 k \mid X_{1}=-1\right)=\frac{1}{2 k-1}\binom{2 k}{k} 2^{-2 k}
$$

from which (1.28) follows. The asymptotic formula (1.29) follows directly from Stirling's formula, and the relation $E\left(\tau_{0}\right)=\infty$ is also straightforward. With just a little more work, one can use (1.29) to check that $E\left(\tau_{0}^{\alpha}\right)<\infty$ for all $\alpha<\frac{1}{2}$ and that $E\left(\tau_{0}^{\alpha}\right)=\infty$ for all $\alpha \geq \frac{1}{2}$.
Solution for Problem 1.5. To prove the first identity of (1.31), note that for $k \geq 1$ the event $\left\{L_{k}>0\right\}$ cannot occur unless the first step of the random walk is to +1 . If the first step is to +1 , then $\left\{L_{k}>0\right\}$ occurs if and only if the walk hits k before it hits 0 . By (1.2) this occurs with probability $1 / k$. When we put these two independent requirements together, we see that $P\left(L_{k}>\right.$ $0)=(1 / 2)(1 / k)$.

To prove the second identity of (1.31), we consider a time at which the walk hits level k, and we make two observations. If on its next step the walk goes up, then it is guaranteed to hit level k at least one more time before it hits level 0 . On the other hand, if the walk goes down on the next step after hitting level k, then by (1.2) the walk will hit level k a least one more time with probability $(k-1) / k$. These observations combine to give us (1.31).

Finally, to prove (1.30), we note that

$$
\begin{aligned}
P\left(N_{k}>j\right) & =P\left(N_{k}>0\right) P\left(N_{k}>1 \mid N_{k}>0\right) \cdots P\left(N_{k}>j \mid N_{k}>j-1\right) \\
& =\frac{1}{2 k}\left(\frac{1}{2}+\frac{1}{2} \frac{k-1}{k}\right)^{j}=\frac{1}{2 k}\left(\frac{2 k-1}{2 k}\right)^{j}
\end{aligned}
$$

If we now sum over $0 \leq j<\infty$ we get $E\left(N_{k}\right)$ on the left, while on the right we see that geometric summation gives us exactly 1.

Incidentally, this problem has an elegant generalization to biased random walk where $p<q$. If we repeat our argument but use the ruin probability formula (1.13) in place of the formula (1.2) for unbiased ruin probabilities, we discover that $E\left(L_{k}\right)=(p / q)^{k}$. For $p=q$ this recaptures the formula (1.30), and, in a way, it explains why $E\left(L_{k}\right)$ does not depend on k for unbiased walk.

Solution for Problem 1.6. Let $N_{(1,1)(\alpha+\beta, \alpha-\beta)}$ denote the total number of random walk paths from $(1,1)$ to $(\alpha+\beta, \alpha-\beta)$ and let

$$
N_{(1,1)(\alpha+\beta, \alpha-\beta)}^{\text {DoTouch }} \quad \text { and } \quad N_{(1,1)(\alpha+\beta, \alpha-\beta)}^{\text {DoNotTouch }}
$$

denote the corresponding number of paths that respectively do and do not touch the axis. By the reflection principle and path counting we find

$$
\begin{aligned}
N_{(1,1)(\alpha+\beta, \alpha-\beta)}^{\text {DoNotTouch }} & =N_{(1,1)(\alpha+\beta, \alpha-\beta)}-N_{(1,1)(\alpha+\beta, \alpha-\beta)}^{\text {DoTouch }} \\
& =N_{(1,1)(\alpha+\beta, \alpha-\beta)}-N_{(1,-1)(\alpha+\beta, \alpha-\beta)} \\
& =\binom{\alpha+\beta-1}{\alpha-1}-\binom{\alpha+\beta-1}{\alpha}=\frac{\alpha-\beta}{\alpha+\beta}\binom{\alpha+\beta}{\alpha}
\end{aligned}
$$

so the probability that A leads throughout the counting process is

$$
N_{(1,1)(\alpha+\beta, \alpha-\beta)}^{\text {DoNotTouch }} / N_{(0,0)(\alpha+\beta, \alpha-\beta)}=N_{(1,1)(\alpha+\beta, \alpha-\beta)}^{\text {DoNotTouch }} /\binom{\alpha+\beta}{\alpha}=\frac{\alpha-\beta}{\alpha+\beta} .
$$

Chapter 2

Solution for Problem 2.1. The solutions of the equation

$$
1=E\left(y^{X_{1}}\right)=0.52 y^{-1}+0.45 y+0.03 y^{2}
$$

are $y=1, y=1.01849$, and $y=-17.01849$, and for any one of these $M_{n}=y^{S_{n}}$ is a martingale. Since $y=1$ gives a trivial martingale and since $y=-17.01849$ becomes unruly when raised to a high power, we take $y=1.01849$ to define M_{n}. We then argue as before that $E\left(M_{\tau}\right)=1$, and this gives us

$$
1=y^{100} P\left(S_{\tau}=100\right)+y^{101} P\left(S_{\tau}=101\right)+y^{-100} P\left(S_{\tau}=-100\right)
$$

Now, if we let $p=P\left(S_{\tau}=100\right)+P\left(S_{\tau}=101\right)$, the fact that $y>1$ gives us

$$
1<y^{101} p+y^{-100}(1-p) \quad \text { and } \quad 1>y^{100} p+y^{-100}(1-p)
$$

Solving for p and substituting for y gives

$$
\frac{1-y^{-100}}{y^{101}-y^{-100}}<p<\frac{1-y^{-100}}{y^{100}-y^{-100}} \quad \text { or } \quad 0.1353<p<0.1379
$$

so p is determined within an error of 3×10^{-3}.
Incidentally, by taking advantage of high-precision arithmetic (say as provided by Mathematica), one can use the pair of martingales determined by $y=1.01849$ and $y=-17.01849$ to obtain a system of two equations in two unknowns which can be solved exactly for all of the values $P\left(S_{\tau}=100\right)$, $P\left(S_{\tau}=101\right)$, and $P\left(S_{\tau}=-100\right)$. This pleasing trick often helps, and it suggests a general principle: Two martingales can be better than one!

The full answer?
Solution for Problem 2.2. Since $\left\{A_{n}\right\}$ is bounded and adapted, we see that \widetilde{M}_{n} is in \mathcal{F}_{n} and integrable for each $n \geq 0$. To check the martingale identity we note

$$
\begin{aligned}
E\left(\widetilde{M}_{n} \mid \mathcal{F}_{n-1}\right) & =E\left(\widetilde{M}_{n-1}+A_{n}\left(M_{n}-M_{n-1}\right) \mid \mathcal{F}_{n-1}\right) \\
& =\widetilde{M}_{n-1}+A_{n} E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right) \geq \widetilde{M}_{n-1}
\end{aligned}
$$

since $A_{n} E\left(M_{n}-M_{n-1} \mid \mathcal{F}_{n-1}\right)$ is nonnegative.
Solution for Problem 2.3. First we notice that we can assume without loss of generality that $M_{0}=0$ since

$$
E\left[M_{\nu}\right] \leq E\left[M_{\tau}\right] \quad \Longleftrightarrow \quad E\left[M_{\nu}-M_{0}\right] \leq E\left[M_{\tau}-M_{0}\right]
$$

Now we apply the result of Problem 2.2 with the choice

$$
\begin{equation*}
A_{k}=\mathbb{I}(\nu<k \leq \tau)=1-\mathbb{I}(\tau \leq k-1)-\mathbb{I}(\nu \leq k-1) \tag{15.39}
\end{equation*}
$$

By the first equation of (15.39), we see that A_{k} is nonnegative and bounded. By the second equation of (15.39) and the assumption that ν and τ are stopping times, we see that $A_{k} \in \mathcal{F}_{k-1}$. By the boundedness of ν and τ we can choose a constant N such that $\nu \leq N$ and $\tau \leq N$, and the definition of the transformed process $\left\{\widetilde{M}_{n}: n \geq 0\right\}$ then gives us

$$
M_{\tau}-M_{\nu}=\widetilde{M}_{N}
$$

By Problem 2.2 the process $\left\{\widetilde{M}_{n}: n \geq 0\right\}$ is a submartingale, so we have $0=E\left(\widetilde{M}_{0}\right) \leq E\left(\widetilde{M}_{N}\right)$ which now entails $E\left(M_{\nu}\right) \leq E\left(M_{\tau}\right)$.
Solution for Problem 2.4. If we set $X_{i}=\mathbb{I}\left(A_{i}\right)-P\left(A_{i}\right)$ and form the sum $M_{n}=X_{1}+X_{2}+\cdots+X_{n}$, then M_{n} is a martingale. By Doob's stopping time theorem we then have $E\left(M_{n \wedge \tau_{k}}\right)=0$, or, to be explicit,

$$
\begin{equation*}
E\left(\sum_{i=1}^{n \wedge \tau_{k}} P\left(A_{i}\right)\right)=E\left(\sum_{i=1}^{n \wedge \tau_{k}} \mathbb{I}\left(A_{i}\right)\right) \quad \text { for all } n \tag{15.40}
\end{equation*}
$$

Now, by the monotone convergence theorem and the finiteness of τ_{k}, we have

$$
\lim _{n \rightarrow \infty} E\left(\sum_{i=1}^{n \wedge \tau_{k}} P\left(A_{i}\right)\right)=E\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n \wedge \tau_{k}} P\left(A_{i}\right)\right)=E\left(\sum_{i=1}^{\tau_{k}} P\left(A_{i}\right)\right)=E\left[\phi\left(\tau_{k}\right)\right]
$$

while by the monotone convergence theorem and the definition of τ_{k}, we have

$$
\lim _{n \rightarrow \infty} E\left(\sum_{i=1}^{n \wedge \tau_{k}} \mathbb{I}\left(A_{i}\right)\right)=E\left(\lim _{n \rightarrow \infty} \sum_{i=1}^{n \wedge \tau_{k}} \mathbb{I}\left(A_{i}\right)\right)=E(k)=k
$$

Therefore, by taking limits in (15.40), we obtain our target identity (2.30).
Solution for Problem 2.5. Induction and the recursive definition (2.31) of A_{n} make the first two properties obvious. We really only need to check that when N_{n} is defined by setting $N_{n}=M_{n}^{2}-A_{n}$ the process $\left\{N_{n}\right\}$ is a martingale. For this, we just note

$$
\begin{aligned}
E\left(N_{n+1} \mid \mathcal{F}_{n}\right) & =E\left(M_{n+1}^{2}-A_{n+1} \mid \mathcal{F}_{n}\right)=E\left(M_{n+1}^{2} \mid \mathcal{F}_{n}\right)-A_{n+1} \\
& =E\left(M_{n+1}^{2} \mid \mathcal{F}_{n}\right)-A_{n}-E\left[\left(M_{n+1}-M_{n}\right)^{2} \mid \mathcal{F}_{n}\right] \\
& =2 E\left(M_{n+1} M_{n} \mid \mathcal{F}_{n}\right)-M_{n}^{2}-A_{n}=M_{n}^{2}-A_{n}=N_{n}
\end{aligned}
$$

where in the last line we used $E\left(M_{n+1} M_{n} \mid \mathcal{F}_{n}\right)=M_{n} E\left(M_{n+1} \mid \mathcal{F}_{n}\right)=M_{n}^{2}$.
Solution for Problem 2.6. If X equals x with probability $1 / 2$ and equals y with probability $1 / 2$, then Jensen's inequality tells us that $E(|X|)^{p} \leq E\left(|X|^{p}\right)$, so, when we work or the expectations, we have

$$
\left(\frac{|x|+|y|}{2}\right)^{p} \leq \frac{|x|^{p}+|y|^{p}}{2}
$$

which may be rearranged to give the bound (2.32).
Solution for Problem 2.7. For the first part, we take a hint from the proof of Doob's inequality (especially the formula (2.22) page 29); we multiply the hypothesis (2.33) by $p \lambda^{p-1}$ and integrate. From the hypothesis (2.33) we have

$$
p \lambda^{p-1} P(X / 3 \geq \lambda) \leq p \lambda^{p-1} P(Y / \geq \lambda)
$$

so by integration over $\lambda \in[0, \infty)$ we find $E\left[(X / 3)^{p}\right] \leq E\left[(Y / 7)^{p}\right]$, which is just what we needed.

Next, since $P(X \geq 2 \lambda) \leq P(X \geq 2 \lambda, Y \leq \lambda)+P(Y \geq \lambda)$, the hypothesis of Part (b) gives us

$$
4 \lambda^{3} P(X / 2 \geq \lambda) \leq \frac{1}{20} 4 \lambda^{3} P(X \geq \lambda)+4 \lambda^{3} P(Y \geq \lambda)
$$

This time when we integrate we find

$$
E\left[(X / 2)^{4}\right] \leq \frac{1}{20} E\left(X^{4}\right)+E\left(Y^{4}\right)
$$

which quickly simplifies to give $E\left(X^{4}\right) \leq 80 E\left(Y^{4}\right)$.
Solution for Problem 2.8. Starting with Fatou's Lemma we find

$$
\begin{aligned}
E\left(\left|M_{\tau}\right| \mathbb{I}(\tau<\infty)\right) & =E\left(\lim _{n \rightarrow \infty}\left|M_{n \wedge \tau} \mathbb{I}(\tau<\infty)\right|\right) \leq \liminf _{n \rightarrow \infty} E\left(\left|M_{n \wedge \tau}\right|\right) \\
& \leq \sup E\left(\left|M_{n \wedge \tau}\right|\right) \leq \sup E\left(\left|M_{n}\right|\right)
\end{aligned}
$$

where in the last step we used Exercise 2.3 and the fact that $\left|M_{n \wedge \tau}\right|$ is a submartingale by Doob's stopping time theorem. Remark: Lamb (1973) uses this inequality to give a very brief proof of the convergence theorem for L^{1} bounded martingales.
Solution for Problem 2.9. We have $E\left(\left|M_{n}\right|\right) \leq E\left(\left|M_{n}\right|^{p}\right)^{1 / p} \leq B^{1 / p}<\infty$ by Jensen's inequality, so $\left\{M_{n}: n \geq 0\right\}$ is also an L^{1}-bounded martingale. The L^{1} convergence theorem tells us that there is an $M_{\infty} \in L^{1}$ such that M_{n} converges almost surely to M_{∞}, confirming the first assertion of (2.35).

To prove the second assertion, we first note by Fatou's Lemma that

$$
E\left(\left|M_{\infty}\right|^{p}\right)=E\left(\liminf _{n \rightarrow \infty}\left|M_{n}\right|^{p}\right) \leq \liminf _{n \rightarrow \infty} E\left(\left|M_{n}\right|^{p}\right) \leq B<\infty
$$

so $M_{\infty} \in L^{p}$. If we set $D=\sup _{n}\left|M_{n}\right|$, then $D \in L^{p}$ by Doob's maximal inequality (2.23), so by the elementary Jensen bound (2.32), we have

$$
\left|M_{n}-M_{\infty}\right|^{p} \leq 2^{p-1}\left\{\left|M_{n}\right|^{p}+\left|M_{\infty}\right|^{p}\right\} \leq 2^{p-1}\left\{D^{p}+\left|M_{\infty}\right|^{p}\right\}
$$

Since $D^{p}+\left|M_{\infty}\right|^{p} \in L^{1}$, we can therefore apply the dominated convergence theorem to the sequence $\left|M_{n}-M_{\infty}\right|^{p}$ to obtain

$$
\lim _{n \rightarrow \infty} E\left(\left|M_{n}-M_{\infty}\right|^{p}\right)=E\left(\lim _{n \rightarrow \infty}\left|M_{n}-M_{\infty}\right|^{p}\right)=0
$$

in other words, $\lim _{n \rightarrow \infty}\left\|M_{n}-M_{\infty}\right\|_{p}=0$, just as we hoped.

Chapter 3

Solution for Problem 3.1. For part (a), complete the square in the exponent to get

$$
\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{t x} e^{-x^{2} / 2} d x=e^{t^{2} / 2}\left\{\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-(x-t)^{2} / 2} d x\right\}
$$

and observe that the braced integral is equal to one since $e^{-(x-t)^{2} / 2} / \sqrt{2 \pi}$ is the density of a Gaussian random variable with mean $\mu=t$ and variance 1 .

For (b) one can equate the coefficients in

$$
\begin{equation*}
E\left[e^{t X}\right]=e^{t^{2} / 2} \quad \Leftrightarrow \quad \sum_{n=0}^{\infty} E\left(X^{n}\right) \frac{t^{n}}{n!}=\sum_{n=0}^{\infty} \frac{t^{2 n}}{2^{n} n!} \tag{15.41}
\end{equation*}
$$

or one can use integration by parts to get a recursion,

$$
\begin{aligned}
E\left(X^{2 n}\right) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{2 n} e^{-x^{2} / 2} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} x^{2 n-1}\left(x e^{-x^{2} / 2}\right) d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}(2 n-1) x^{2 n-2} e^{-x^{2} / 2} d x=(2 n-1) E\left(X^{2 n-2}\right)
\end{aligned}
$$

Finally, for (c), one expands, uses the moments, and recognizes the sum:

$$
E\left(e^{i t X}\right)=\sum_{n=0}^{\infty} E\left(X^{n}\right) \frac{i^{n} t^{n}}{n!}=\sum_{n=0}^{\infty} \frac{(-1)^{n} t^{2 n}}{2^{n} n!}=e^{-t^{2} / 2}
$$

For an unlikely (but instructive) alternative, one can also prove (c) by noting

$$
f(t)=E\left(e^{i t X}\right)=\operatorname{Re} E\left(e^{i t X}\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-x^{2} / 2} \cos (t x) d x
$$

so, by differentiation under the integral and integration by parts, one has

