
Appendix I: Problem Hints and Solutions

Chapter 1

Solution for Problem 1.1. Let Ti,j denote the expected time to go from
level i to level j, and note by formula (1.16) that T25,20 = 15 and T21,20 = 3. check!
By first-step analysis we also have

T20,19 =
1
10
· 1 +

9
10
· {1 + T21,20 + T20,19}

so substituting T21,20 = 3 and solving gives T20,19 = 37. Similarly, we have

T19,18 =
1
3
· 1 +

2
3
· {1 + T20,19 + T19,18},

so substituting T20,19 = 37 and solving gives T19,18 = 77. Finally, one finds

T25,18 = T25,20 + T20,19 + T19,18 = 15 + 37 + 77 = 129.

Solution for Problem 1.2. We get (1.26) just by substitution, and we also
have

Nn =
∑

k:2k≤n

I(S2k = 0) and E(Nn) =
∑

k:2k≤n

P (S2k = 0),

so (1.26) and integral comparison give us
∑

k:2k≤n

P (S2k = 0) ∼
∑

1≤k≤n/2

1/
√

πk ∼
√

2n/π as n →∞.

Solution for Problem 1.3. First set N∞ = limNn and then note that
P (N∞ ≥ k) = rk since the event {N∞ ≥ k} entails k successes of independent
events each of which has success probability r. Now, if it were truely the case
that 0 ≤ r < 1, then we would have
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E(Nn) ≤ E(N∞) =
∞∑

k=1

P (N∞ ≥ k) =
∞∑

k=1

rk =
r

1− r
< ∞,

but by Exercise 1.2 we know E(Nn) ∼
√

2n/π, so we must have r = 1.

Solution for Problem 1.4. First-step analysis gives us

P (τ0 = 2k) =
1
2
P (τ0 = 2k | X1 = 1) +

1
2
P (τ0 = 2k | X1 = −1),

but by symmetry and the identity (1.24) we have

P (τ0 = 2k | X1 = 1) = P (τ0 = 2k | X1 = −1) =
1

2k − 1

(
2k

k

)
2−2k

from which (1.28) follows. The asymptotic formula (1.29) follows directly from
Stirling’s formula, and the relation E(τ0) = ∞ is also straightforward. With
just a little more work, one can use (1.29) to check that E(τα

0 ) < ∞ for all
α < 1

2 and that E(τα
0 ) = ∞ for all α ≥ 1

2 .

Solution for Problem 1.5. To prove the first identity of (1.31), note that
for k ≥ 1 the event {Lk > 0} cannot occur unless the first step of the random
walk is to +1. If the first step is to +1, then {Lk > 0} occurs if and only if the
walk hits k before it hits 0. By (1.2) this occurs with probability 1/k. When
we put these two independent requirements together, we see that P (Lk >
0) = (1/2)(1/k).

To prove the second identity of (1.31), we consider a time at which the
walk hits level k, and we make two observations. If on its next step the walk
goes up, then it is guaranteed to hit level k at least one more time before it
hits level 0. On the other hand, if the walk goes down on the next step after
hitting level k, then by (1.2) the walk will hit level k a least one more time
with probability (k − 1)/k. These observations combine to give us (1.31).

Finally, to prove (1.30), we note that

P (Nk > j) = P (Nk > 0)P (Nk > 1 | Nk > 0) · · ·P (Nk > j | Nk > j − 1)

=
1
2k

(
1
2

+
1
2

k − 1
k

)j

=
1
2k

(
2k − 1

2k

)j

.

If we now sum over 0 ≤ j < ∞ we get E(Nk) on the left, while on the right
we see that geometric summation gives us exactly 1.

Incidentally, this problem has an elegant generalization to biased random
walk where p < q. If we repeat our argument but use the ruin probability
formula (1.13) in place of the formula (1.2) for unbiased ruin probabilities, we
discover that E(Lk) = (p/q)k. For p = q this recaptures the formula (1.30),
and, in a way, it explains why E(Lk) does not depend on k for unbiased walk.

Solution for Problem 1.6. Let N(1,1)(α+β,α−β) denote the total number
of random walk paths from (1, 1) to (α + β, α− β) and let
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NDoTouch
(1,1)(α+β,α−β) and NDoNotTouch

(1,1)(α+β,α−β)

denote the corresponding number of paths that respectively do and do not
touch the axis. By the reflection principle and path counting we find

NDoNotTouch
(1,1)(α+β,α−β) = N(1,1)(α+β,α−β) −NDoTouch

(1,1)(α+β,α−β)

= N(1,1)(α+β,α−β) −N(1,−1)(α+β,α−β)

=
(

α + β − 1
α− 1

)
−

(
α + β − 1

α

)
=

α− β

α + β

(
α + β

α

)
,

so the probability that A leads throughout the counting process is

NDoNotTouch
(1,1)(α+β,α−β)/N(0,0)(α+β,α−β) = NDoNotTouch

(1,1)(α+β,α−β)/

(
α + β

α

)
=

α− β

α + β
.

Chapter 2

Solution for Problem 2.1. The solutions of the equation

1 = E(yX1) = 0.52 y−1 + 0.45y + 0.03y2

are y = 1, y = 1.01849, and y = −17.01849, and for any one of these Mn = ySn

is a martingale. Since y = 1 gives a trivial martingale and since y = −17.01849
becomes unruly when raised to a high power, we take y = 1.01849 to define
Mn. We then argue as before that E(Mτ ) = 1, and this gives us

1 = y100P (Sτ = 100) + y101P (Sτ = 101) + y−100P (Sτ = −100).

Now, if we let p = P (Sτ = 100) + P (Sτ = 101), the fact that y > 1 gives us

1 < y101 p + y−100(1− p) and 1 > y100p + y−100(1− p).

Solving for p and substituting for y gives

1− y−100

y101 − y−100
< p <

1− y−100

y100 − y−100
or 0.1353 < p < 0.1379,

so p is determined within an error of 3×10−3.
Incidentally, by taking advantage of high-precision arithmetic (say as pro-

vided by Mathematica), one can use the pair of martingales determined by
y = 1.01849 and y = −17.01849 to obtain a system of two equations in two
unknowns which can be solved exactly for all of the values P (Sτ = 100),
P (Sτ = 101), and P (Sτ = −100). This pleasing trick often helps, and it
suggests a general principle: Two martingales can be better than one! The full answer?

Solution for Problem 2.2. Since {An} is bounded and adapted, we see
that M̃n is in Fn and integrable for each n ≥ 0. To check the martingale
identity we note
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E(M̃n | Fn−1) = E
(
M̃n−1 + An(Mn −Mn−1) | Fn−1

)

= M̃n−1 + AnE
(
Mn −Mn−1 | Fn−1

) ≥ M̃n−1

since AnE
(
Mn −Mn−1 | Fn−1

)
is nonnegative.

Solution for Problem 2.3. First we notice that we can assume without
loss of generality that M0 = 0 since

E[Mν ] ≤ E[Mτ ] ⇐⇒ E[Mν −M0] ≤ E[Mτ −M0].

Now we apply the result of Problem 2.2 with the choice

Ak = I(ν < k ≤ τ) = 1− I(τ ≤ k − 1)− I(ν ≤ k − 1). (15.39)

By the first equation of (15.39), we see that Ak is nonnegative and bounded.
By the second equation of (15.39) and the assumption that ν and τ are stop-
ping times, we see that Ak ∈ Fk−1. By the boundedness of ν and τ we can
choose a constant N such that ν ≤ N and τ ≤ N , and the definition of the
transformed process {M̃n : n ≥ 0} then gives us

Mτ −Mν = M̃N .

By Problem 2.2 the process {M̃n : n ≥ 0} is a submartingale, so we have
0 = E(M̃0) ≤ E(M̃N ) which now entails E(Mν) ≤ E(Mτ ).

Solution for Problem 2.4. If we set Xi = I(Ai)−P (Ai) and form the sum
Mn = X1 +X2 + · · ·+Xn, then Mn is a martingale. By Doob’s stopping time
theorem we then have E(Mn∧τk

) = 0, or, to be explicit,

E

(n∧τk∑

i=1

P (Ai)
)

= E

(n∧τk∑

i=1

I(Ai)
)

for all n. (15.40)

Now, by the monotone convergence theorem and the finiteness of τk, we have

lim
n→∞

E

(n∧τk∑

i=1

P (Ai)
)

= E

(
lim

n→∞

n∧τk∑

i=1

P (Ai)
)

= E

( τk∑

i=1

P (Ai)
)

= E[φ(τk)],

while by the monotone convergence theorem and the definition of τk, we have

lim
n→∞

E

(n∧τk∑

i=1

I(Ai)
)

= E

(
lim

n→∞

n∧τk∑

i=1

I(Ai)
)

= E(k) = k,

Therefore, by taking limits in (15.40), we obtain our target identity (2.30).

Solution for Problem 2.5. Induction and the recursive definition (2.31)
of An make the first two properties obvious. We really only need to check
that when Nn is defined by setting Nn = M2

n − An the process {Nn} is a
martingale. For this, we just note
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E(Nn+1|Fn) = E(M2
n+1 −An+1|Fn) = E(M2

n+1|Fn)−An+1

= E(M2
n+1|Fn)−An − E[(Mn+1 −Mn)2|Fn]

= 2E(Mn+1Mn|Fn)−M2
n −An = M2

n −An = Nn,

where in the last line we used E(Mn+1Mn|Fn) = MnE(Mn+1|Fn) = M2
n.

Solution for Problem 2.6. If X equals x with probability 1/2 and equals y
with probability 1/2, then Jensen’s inequality tells us that E(|X|)p ≤ E(|X|p),
so, when we work or the expectations, we have

( |x|+ |y|
2

)p

≤ |x|p + |y|p
2

,

which may be rearranged to give the bound (2.32).

Solution for Problem 2.7. For the first part, we take a hint from the proof
of Doob’s inequality (especially the formula (2.22) page 29); we multiply the
hypothesis (2.33) by pλp−1 and integrate. From the hypothesis (2.33) we have

pλp−1P (X/3 ≥ λ) ≤ pλp−1P (Y/ ≥ λ),

so by integration over λ ∈ [0,∞) we find E
[
(X/3)p

] ≤ E
[
(Y/7)p

]
, which is

just what we needed.
Next, since P (X ≥ 2λ) ≤ P (X ≥ 2λ, Y ≤ λ) + P (Y ≥ λ), the hypothesis

of Part (b) gives us

4λ3P (X/2 ≥ λ) ≤ 1
20

4λ3P (X ≥ λ) + 4λ3P (Y ≥ λ).

This time when we integrate we find

E
[
(X/2)4

] ≤ 1
20

E(X4) + E(Y 4),

which quickly simplifies to give E(X4) ≤ 80E(Y 4).

Solution for Problem 2.8. Starting with Fatou’s Lemma we find

E (|Mτ |I(τ < ∞)) = E( lim
n→∞

|Mn∧τ I(τ < ∞)|) ≤ lim inf
n→∞

E(|Mn∧τ |)
≤ sup E(|Mn∧τ |) ≤ sup E(|Mn|)

where in the last step we used Exercise 2.3 and the fact that |Mn∧τ | is a
submartingale by Doob’s stopping time theorem. Remark: Lamb (1973) uses
this inequality to give a very brief proof of the convergence theorem for L1

bounded martingales.

Solution for Problem 2.9. We have E(|Mn|) ≤ E(|Mn|p)1/p ≤ B1/p < ∞
by Jensen’s inequality, so {Mn : n ≥ 0} is also an L1-bounded martingale.
The L1 convergence theorem tells us that there is an M∞ ∈ L1 such that Mn

converges almost surely to M∞, confirming the first assertion of (2.35).
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To prove the second assertion, we first note by Fatou’s Lemma that

E(|M∞|p) = E(lim inf
n→∞

|Mn|p) ≤ lim inf
n→∞

E(|Mn|p) ≤ B < ∞,

so M∞ ∈ Lp. If we set D = supn |Mn|, then D ∈ Lp by Doob’s maximal
inequality (2.23), so by the elementary Jensen bound (2.32), we have

|Mn −M∞|p ≤ 2p−1{|Mn|p + |M∞|p} ≤ 2p−1{Dp + |M∞|p}.
Since Dp + |M∞|p ∈ L1, we can therefore apply the dominated convergence
theorem to the sequence |Mn −M∞|p to obtain

lim
n→∞

E(|Mn −M∞|p) = E( lim
n→∞

|Mn −M∞|p) = 0;

in other words, limn→∞ ||Mn −M∞||p = 0, just as we hoped.

Chapter 3

Solution for Problem 3.1. For part (a), complete the square in the expo-
nent to get

1√
2π

∫ ∞

−∞
etxe−x2/2 dx = et2/2

{
1√
2π

∫ ∞

−∞
e−(x−t)2/2 dx

}

and observe that the braced integral is equal to one since e−(x−t)2/2/
√

2π is
the density of a Gaussian random variable with mean µ = t and variance 1.

For (b) one can equate the coefficients in

E[etX ] = et2/2 ⇔
∞∑

n=0

E(Xn)
tn

n!
=

∞∑
n=0

t2n

2nn!
, (15.41)

or one can use integration by parts to get a recursion,

E(X2n) =
1√
2π

∫ ∞

−∞
x2ne−x2/2 dx =

1√
2π

∫ ∞

−∞
x2n−1(xe−x2/2) dx

=
1√
2π

∫ ∞

−∞
(2n− 1)x2n−2e−x2/2 dx = (2n− 1)E(X2n−2).

Finally, for (c), one expands, uses the moments, and recognizes the sum:

E(eitX) =
∞∑

n=0

E(Xn)
intn

n!
=

∞∑
n=0

(−1)nt2n

2nn!
= e−t2/2.

For an unlikely (but instructive) alternative, one can also prove (c) by noting

f(t) = E(eitX) = Re E(eitX) =
1√
2π

∫ ∞

−∞
e−x2/2 cos(tx) dx,

so, by differentiation under the integral and integration by parts, one has


