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Solution for Problem 2.10. To calculate E(Mn+1|Fn), first note that
Mn+1 is equal to (An+1)/(An+Bn+1) with probabilityMn = An/(An+Bn)
and Mn+1 equals An/(An +Bn + 1) with probability 1 −Mn. Thus,

E(Mn+1|Fn) =
An + 1

(An +Bn + 1)

An

An +Bn
+

An

(An +Bn + 1)

Bn

An +Bn

=
1

(An +Bn + 1)

{
An(An +Bn + 1)

An +Bn

}

=
An

An +Bn
= Mn.

Since {Mn} is bounded between 0 and 1, the martingale convergence theorem
tells us that with probability one {Mn} converges to some random variable
Y . Incidentally, one can further show that Y has the uniform distribution on
[0, 1], and this model is equivalent to the simplest case of the famous Pólya
urn model.

Solution for Problem 2.11. We haveE(|Mn|) ≤ E(|Mn|p)1/p ≤ B1/p <∞
by Jensen’s inequality, so {Mn : n ≥ 0} is also an L1-bounded martingale.
The L1 convergence theorem tells us that there is an M∞ ∈ L1 such that Mn

converges almost surely to M∞, confirming the first assertion of (2.36).
To prove the second assertion, we first note by Fatou’s Lemma that

E(|M∞|p) = E(lim inf
n→∞

|Mn|p) ≤ lim inf
n→∞

E(|Mn|p) ≤ B <∞,

so M∞ ∈ Lp. If we set D = supn |Mn|, then D ∈ Lp by Doob’s maximal
inequality (2.23), so by the elementary Jensen bound (2.32), we have

|Mn −M∞|p ≤ 2p−1{|Mn|p + |M∞|p} ≤ 2p−1{Dp + |M∞|p}.

Since Dp + |M∞|p ∈ L1, we can therefore apply the dominated convergence
theorem to the sequence |Mn −M∞|p to obtain

lim
n→∞

E(|Mn −M∞|p) = E( lim
n→∞

|Mn −M∞|p) = 0;

in other words, limn→∞ ||Mn −M∞||p = 0, just as we hoped.

Chapter 3

Solution for Problem 3.1. For part (a), complete the square in the expo-
nent to get

1√
2π

∫ ∞

−∞
etxe−x2/2 dx = et2/2

{
1√
2π

∫ ∞

−∞
e−(x−t)2/2 dx

}

and observe that the braced integral is equal to one since e−(x−t)2/2/
√

2π is
the density of a Gaussian random variable with mean µ = t and variance 1.
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For (b) one can equate the coefficients in

E[etX ] = et2/2 ⇔
∞∑

n=0

E(Xn)
tn

n!
=

∞∑

n=0

t2n

2nn!
, (15.41)

or one can use integration by parts to get a recursion,

E(X2n) =
1√
2π

∫ ∞

−∞
x2ne−x2/2 dx =

1√
2π

∫ ∞

−∞
x2n−1(xe−x2/2) dx

=
1√
2π

∫ ∞

−∞
(2n− 1)x2n−2e−x2/2 dx = (2n− 1)E(X2n−2).

Finally, for (c), one expands, uses the moments, and recognizes the sum:

E(eitX) =
∞∑

n=0

E(Xn)
intn

n!
=

∞∑

n=0

(−1)nt2n

2nn!
= e−t2/2.

For an unlikely (but instructive) alternative, one can also prove (c) by noting

f(t) = E(eitX) = ReE(eitX) =
1√
2π

∫ ∞

−∞
e−x2/2 cos(tx) dx,

so, by differentiation under the integral and integration by parts, one has

f ′(t) = − 1√
2π

∫ ∞

−∞
xe−x2/2 sin(tx) dx

=
−t√
2π

∫ ∞

−∞
e−x2/2 cos(tx) dx = −tf(t),

from which one deduces that f(t) = e−t2/2 since e−t2/2 is the unique solution
of the equation f ′(t) = −tf(t) with f(0) = 1.

Solution for Problem 3.2. Suppose X is Gaussian, consider an indepen-
dent U such that P (U = 1) = 1/2 = P (U = −1), and set Y = UX .

Solution for Problem 3.3. By the independent increment and Gaussian
properties of Brownian motion, the required density is given by

f(x1, x2, x3) =
e−x2

1/2t1

√
2πt1

e−(x2−x1)
2/2(t2−t1)

√
2π(t2 − t1)

e−(x3−x2)
2/2(t3−t2)

√
2π(t3 − t2)

. (15.42)

Using this density one then formally obtains

P (ES) =

∫ b1

a1

∫ b2

a2

∫ b3

a3

f(x1, x2, x3) dx1 dx2 dx3. (15.43)

There are times when the explicit densities and integrals such as (15.42) and
(15.43) are useful, but in the vast majority of Brownian motion problems they
are of limited value. For n ≥ 5, even the numerical computation of P (ES) is
(close to) infeasible. Thus, in most cases, one is driven to search for indirect
methods for computing probabilities.
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Solution for Problem 3.4. For the upper bound of (3.25), we modify the
argument of Lemma 3.2; specifically, for x > 0 we have

P (Z ≥ x) =
1√
2π

∫ ∞

x

e−u2/2 du ≤ 1

x
√

2π

∫ ∞

x

ue−u2/2 du =
1√
2π

e−x2/2

x
.

For the lower bound, we first note (u−1e−u2/2)′ = −(1 + u−2)e−u2/2, so we
have

P (Z ≥ x) =
1√
2π

∫ ∞

x

e−u2/2 du ≥ 1√
2π

∫ ∞

x

1 + u−2

1 + x−2
e−u2/2 du

=
1√
2π

1

1 + x−2

e−x2/2

x
=

1√
2π

e−x2/2

(x+ x−1)
.

Finally, the two bounds of (3.26) follow immediately from the observation

that 1/
√

2eπ ≤ e−x2/2/
√

2π ≤ 1/
√

2π for all |x| ≤ 1.

Solution for Problem 3.5. Since Bt is equal in distribution to
√
tB1, the

identity (3.27) holds with

c = E

(
1

|B1|2
)

=

∫ ∞

0

∫ 2π

0

∫ π

0

1

r2

{
1

(2π)3/2
e−r2/2

}
r2 sin(ϕ) dϕdθ dr

= (2π)
1

(2π)3/2

∫ ∞

0

e−r2/2 dr

∫ π

0

sin(ϕ) dϕ = (2π)
1

(2π)3/2

(
1

2

√
2π

)
2 = 1.

Solution for Problem 3.6. For the first part we note that

∫ 1

0

H0(x)f(x) dx =

∫ 1

0

H1(x)f(x) dx =
1

4
and

∫ 1

0

H3(x)f(x) dx =
1

2
√

2
,

but all other Hn inner products with f are zero. Thus, as elements of L2[0, 1]
we have

f(x) =
1

4
H0(x) +

1

4
H1(x) +

1

2
√

2
H3(x).

For second part, we just note (1) each f ∈W is trivially in the span of V and
(2) each f ∈W is in the span of W by direct computation as in the first part.

Solution for Problem 3.7. By the scaling law (3.20) we have

τA = min{t : |Bt| = A} d
= min{t :

1√
λ
|Bλt| = A}

= min{t : |Bλt| = A
√
λ} =

1

λ
min{s : |Bs| = A

√
λ}.

Solution for Problem 3.8. For (a), first note that ∆n(1) = 0 for n ≥ 1
and ∆0(t) = t, so just by substitution one has B1 = λ0Z0. From this and a
second substitution, one gets



Problem Hints and Solutions 347

Ut
def
= Bt − λ0Z0∆0(t) = Bt − tB1. (15.44)

For (b), we take 0 ≤ s ≤ t, apply (15.44), and expand

Cov(Us, Ut) = E(BsBt − sB1Bt − tBsB1 + stB2
1) = s− st− st+ st = s(1− t).

For (c) take 0 ≤ s ≤ t ≤ 1 and note Cov(Xs, Xt) = g(s)g(t)min(h(s), h(t)).
To limit the search, take g(s) = s and assume that h is monotone decreasing;
we would then need sth(t) = s(1− t). By taking g(s) = s and h(t) = (1− t)/t,
we therefore find that the Gaussian process Xt = g(t)Bh(t) has covariance
s(1 − t), so it is the Brownian bridge.

Finally, for (d), Yt is a Gaussian process, so we just need to calculate the
covariance function. For 0 ≤ s ≤ t <∞ we have

Cov(Ys, Yt) = E[(1 + s)Us/(1+s)(1 + t)Ut/(1+t)]

= (1 + s)(1 + t){s/(1 + s)}{1 − t/(1 + t)} = s = min(s, t).

Chapter 4

Solution for Problem 4.1. For the first part, take ǫ > 0 and note that
A = {ω : U − V > ǫ} is G-measurable. The hypothesis then gives us that
E((U − V )IA) = 0, but E((U − V )IA) ≥ ǫP (A) so we must have P (A) = 0;
that is P (U > V + ǫ) = 0. By symmetry, we also have P (V > U + ǫ) = 0,
so P (|U − V | ≤ ǫ) = 1 for all ǫ > 0, and consequently, P (U = V ) = 1.
For the deduction, take A ∈ G and note that the definition of conditional
expectation tells us that Y1 and Y2 are G-measurable, E(Y1IA) = E(XIA),
and E(Y2IA) = E(XIA); hence, E(Y1IA) = E(Y2IA) for all A ∈ G and the
first part applies.

Solution for Problem 4.2. For part (a) set Z = E(X | G) and note that
since Ω ∈ G the definition of E(X | G) implies E(ZIΩ) = E(XIΩ). Thus,
since E(ZIΩ) = E(Z) and since E(XIΩ) = E(X), we have our target identity
(4.26).

For part (b) let Z1 = IAE(X | G), Z2 = E(IAX | G), and take B ∈ G. We
have E(IBZ1) = E(IBIAX) = E(IA∩BX) and

E(IBZ2) = E
(
IBE(IAX | G)

)

= E(IB{IAX}) by definition of E(IAX | G)

= E(IBIAX) = E(IA∩BX) .

Thus, we have E(IBZ1) = E(IBZ2) for all B ∈ G so by the uniqueness lemma
of Exercise 4.1, we have Z1 = Z2 with probability one.

By part (b) and the linearity of the conditional expectation, we automat-
ically get the identity (4.28) for linear combinations of indicator functions. In
particular, if we let
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Yn
def
=

n2∑

k=−n2

(k/n)I(k/n ≤ Y < (k + 1)/n),

then since each of the sets {k/n ≤ Y < (k + 1)/n} is in G we have

E(XYn|G) = YnE(X |G) for all n = 1, 2, ... (15.45)

Since Yn is bounded, there is a constant C such that |Yn(ω)| ≤ C for all
ω and |XYn| ≤ C|X | ∈ L1, so the sequence {XYn} is L1-dominated. By
construction, Yn converges to Y for all ω, so we can let n→ ∞ in the identity
(15.45) and apply the dominated convergence theorem to complete the proof
of the factorization identity (4.28).

Solution for Problem 4.3. First let Z1 = E(X | H) and Z2 = E(E(X |
G) | H). Both Z1 and Z2 are H measurable, so to prove they are equal it
suffices to show that E[IAZ1] = E[IAZ2] for all A ∈ H. For A ∈ H the
definition of E(· | H) gives us E(IAZ1) = E(IAX), so now we calculate

E[IAZ2] = E[IAE(X | G)] by definition of E(· | H)

= E[E(XIA | G)] since A ∈ H ⊂ G (Factorization Property)

= E[IΩE(XIA | G)] by definition of Ω

= E[IΩXIA] = E[XIA] by definition of E(· | G) and Ω ∈ H.

Here one should note the need for the third equality; since Ω ∈ G this step
sets up the use of the definition of an appeal to the definition of E(· | G)].
Without some such appeal to this definition, one has very likely “cheated.”

Solution for Problem 4.4. We can define fn on [0, 1) by setting

fn(x) = 2n

∫ (i+1)2−n

i2−n

f(u) du for all x ∈ [i2−n, (i+ 1)2−n) and 0 ≤ i < 2n,

alternatively, for x ∈ [i2−n, (i + 1)2−n) we have that fn(x) is the average
value of f on [i2−n, (i + 1)2−n). The martingale property follows from the
tower property of conditional expectations; specifically, one has

E(fn+1 | Fn) = E(E(f |Fn+1) | Fn)) = E(f | Fn) = fn.

For the L2 boundedness, one has by Jensen’s inequality that

E(f2
n) = E({E(f | Fn)}2) ≤ E({E(f2 | Fn)}) = E(f2) <∞.

To prove part (c), for each x and n we let I(x, n) be the interval in the sequence
[i2−n, (i+ 1)2−n), i = 0, 1, ..., that contains x. By the explicit formula for fn,
we have infu∈I(x,n) f(u) ≤ fn(x) ≤ supu∈I(x,n) f(u), but, by the continuity of
f , both of these bounds converge to f(x) as n→ ∞.
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Solution for Problem 4.5. The countable additivity of Q follows from the
monotone convergence theorem for the P -expectations. When we expand the
definition of Q we find

(EQ[Z])q = (E[ZXp]/E[Xp])q and EQ[Zq] = E[ZqXp]/E[Xp],

so, in longhand, Jensen’s inequality tells us that

(
E[ZXp]

E[Xp]

)q

≤ E[ZqXp]

E[Xp]
. (15.46)

To get closer to Hölder’s inequality, we would like to set ZXp = XY , and,
since Z is completely at our disposal, we simply take Z = Y/Xp−1. This
choice also gives us ZpXq = Y q since (p− 1)q = p, and we then see that the
bound (15.46) immediately reduces to Hölder’s inequality.

This proof may not be as succinct as the customary derivation via the real
variable inequality xy ≤ xp/p+yq/q, but, from the probabilist’s point of view,
the artificial measure method has a considerable charm. At a minimum, this
proof of Hölder’s inequality reminds us that each of our probability inequalities
may hide treasures that can be brought to light by leveraging the generality
that is calmly concealed in the abstract definition of a probability space.

Solution for Problem 4.6. Taking the hint, we have

P (τ > kN) = P (τ > kN and τ > (k − 1)N) = E
[
I(τ > kN)I(τ > (k − 1)N)

]

= E
[
I(τ > (k − 1)N)E(I(τ > kN) | F(k−1)N )

]

≤ (1 − ǫ)E
[
I(τ > (k − 1)N

]
≤ (1 − ǫ)k,

where in the first inequality we used the hypothesis (4.30) and in the second
we applied induction. The corollary E[τp] <∞ then follows by the traditional
tail bound method (see, for example, page 4).

Solution for Problem 4.7. By Markov’s inequality one has

P (|Xn −X | ≥ ǫ) = P (|Xn −X |α ≥ ǫα) ≤ ǫ−αE(|Xn −X |α),

and part (a) then follows immediately. For (b) note that since Xn → X in
probability we can choose nk such that

P (|Xnk
−X | ≥ 1/k) ≤ 2−k.

Since these probabilities have a finite sum, the Borel-Cantelli lemma tells
us that with probability one |Xnk

− X | ≥ 1/k for all but a finite set of
values of k. Hence Xnk

converges to X with probability one. For (c), choose
a subsequence mk such that Xmk

converges with probability one to X , then
choose a subsequence nk of mk such that Xnk

converges with probability one
to Y . Now, since Xnk

also converges with probability one to X , we have that
X = Y with probability one.
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For (d) we take Ω = [0, 1] and take P (A) equal to the length (or the
Lebesgue measure) of the set A ⊂ [0, 1]. We then note that any n ≥ 1 can be
written uniquely as n = 2j + k where 0 ≤ k < 2j , and we set

Xn(ω) =

{
1 for ω ∈

[
k/2j, (k + 1)/2j

)

0 otherwise.

If we set X(ω) = 0 for all ω ∈ [0, 1], then we have E(|Xn −X |) = 1/2j and
j → ∞ as n → ∞, so E(|Xn − X |) → 0 as n → ∞. On the other hand,
by drawing the picture, we see that for every ω ∈ [0, 1), each of the sets
{n : Xn(ω) = 1} and {n : Xn(ω) = 0} is infinite, so {Xn} fails converge for
all ω in a set with probability one. In fact, for all ω ∈ [0, 1] we have

lim inf
n→∞

Xn(ω) = 0 and lim sup
n→∞

Xn(ω) = 0.

Solution for Problem 4.8. For 0 < s < t the increment Yt − Ys is mea-
surable with respect to the σ-field G = σ{Bu : 1/t ≤ u < 1/s} and Ys is
measurable with respect to G′ = σ{Bu : 1/s ≤ u}. Since Brownian motion
has independent increments, G and G′ are independent; hence, Yt − Ys and
Ys are independent. Thus, {Yt : 0 ≤ t < ∞} is a process with mean zero and
independent increments, and consequently {Yt : 0 ≤ t < ∞} is a martingale.
For part (b) one just expands the definition of Yt and uses E(B1/sB1/t = 1/t)
for s < t. For part (c) the solution, we use an important device; specifically,
we exploit the idea that a continuous process may be studied by examining
what happens along a countable sequence {tk} along with what happens in
the associated “gaps” [tk+1, tk], 1 ≤ k <∞.

For any ǫ > 0, we have P (|Xt| > ǫ) = P (X2
t > ǫ2) ≤ ǫ−2t by Markov’s

inequality, so if we take tk = 2−k, then the Borel-Cantelli lemma gives us
P (lim supk→∞ |Xtk

| > ǫ) = 0. For s > 0 the process Mt = Xt+s − Xs is a

martingale, so for ∆(s, t)
def
= sups≤u≤t |Xu −X − s| we have

P (∆(s, t) > ǫ) ≤ P (∆2(s, t) > ǫ2) ≤ ǫ−2E(∆2(s, t)) (Markov’s inequality)

≤ ǫ−22E(|Xt −Xs|2) = ǫ−22(t− s) (Doob’s L2 inequality).

If we set ∆k = ∆(tk+1, tk), then we have by the Borel-Cantelli lemma that
P (lim supk→∞∆k > ǫ) = 0. Finally, we note

{lim sup
t→0

|Xt| > 2ǫ) ⊂ {lim sup
k→∞

|Xtk
| > ǫ} ∪ {lim sup

k→∞
|∆k| > ǫ},

so by our results for ∆k and Xtk
we see that Xt converges almost surely to

zero as t → 0.

Solution for Problem 4.9. By Doob’s stopping time theorem, Mt = Xt∧τ

is a martingale, so for all t we have 1 = E(M0) = E(Mt). We have Mt → Xτ

as t→ ∞ since τ is almost surely finite, and Mt is bounded above by eαA and
bounded below by 0, so by the DCT we have
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1 = lim
t→∞

E(Mt) = E( lim
t→∞

Mt) = E(Xτ ).

Now, by symmetry, Xτ is equal to exp(αA−α2τ/2) with probability one-half
and equal to exp(−αA− α2τ/2) with probability one-half. Hence,

1 =
1

2
exp(αA)E(exp(−α2τ/2)) +

1

2
exp(−αA)E(exp(−α2τ/2)),

so since cosh(x) = (ex + e−x)/2 we have

E(exp(−α2τ/2)) = 1/ cosh(αA), or φ(λ) = E(exp(−λτ)) = 1/ cosh(A
√

2λ).

Now we just need to calculate φ′′(0) = E(τ2), but it is tedious to differentiate
this ratio twice. Instead, one can look up the Taylor series

1

coshx
= 1 − x2

2
+

5x4

24
− · · · or

1

coshA
√

2λ
= 1 −A2λ+

5

6
A4λ2 − · · · ,

from which we find φ′′(0) = E(τ2) = 5
3A

4.
The problem we face when we consider the nonsymmetric ruin problem

[A,−B] is that the probability that we hit A or −B will depend on τ . Later,
in Exercise 8.10, page 173, we will see that one can circumvent this problem
by making use of two martingales!

Solution for Problem 4.10. The candidate (4.32) for a(x) clearly satisfies
a(x) → ∞ as x → ∞, so it just remains to show the convergence of the
integral (4.33). From the definition of xk we have

∫ ∞

xk

P (|X | ≥ x) dx = 2−k for k ≥ 1,

so for x ∈ [xk, xk+1] we have a(x) ≤ (2−(k+1))−α = 2α(k+1) and hence

∞∑

k=0

∫ xk+1

xk

a(x)P (|X | ≥ x) dx ≤
∞∑

k=0

2α(k+1)

∫ xk+1

xk

P (|X | ≥ x) dx

≤
∞∑

k=0

2α(k+1)2−k <∞.

Solution for Problem 4.11. The proof is almost immediate. By Lemma
4.5 we can choose a convex φ such that φ(x)/x → ∞ as x→ ∞ and

E[φ(|Z|)] <∞;

so, from Jensen’s inequality, we have

E[φ(|E(Z|G)|)] ≤ E((E(φ(|Z|)|G)) ≤ E(φ(|Z|)) <∞.

Now, by Lemma 4.4, the last bound is all we need to establish the required
uniform integrability.



352 Problem Hints and Solutions

Solution for Problem 4.12. Since E(Xt) = 1 for all t ≥ 0 and Xt ≥ 0
we see that {Xt : 0 ≤ t < ∞} is uniformly bounded in L1. By the law of
large numbers, Bt/t converges almost surely to zero as t→ ∞, so the process
Xt = exp(−t{ 1

2 −Bt/t}) also converge almost surely to zero as t→ ∞. On the
other hand, since E(Xt) = 1 for all t ≥ 0, so Xt certainly does not converge to
0 in L1. Therefore, the process {Xt : 0 ≤ t <∞} is not uniformly integrable,
or else we would have a contradiction to Lemma 4.1, page 69.

Solution for Problem 4.13. For Yn = Xn∧τ , Doob’s maximal inequality
gives P (Xn 6= Yn for some n = 1, 2, ...) = P (supn |Xn| > λ) ≤ B/λ, so setting
λ = B/ǫ gives us property number three. Taking Z = λ+ |Xτ |I(τ <∞) then
gives |Yn| ≤ Z for all n, and to show E(Z) <∞ we just note

E[|Xτ |I(τ <∞)] = E[ lim
n→∞

|Xn∧τ |I(τ <∞)]

≤ lim inf
n→∞

E[|Xn∧τ |I(τ <∞)]

≤ sup
n
E[|Xn∧τ |] ≤ sup

n
E[|Xn|] ≤ B,

where the first inequality used Fatou’s lemma, the second was trivial, and the
third used the bound E[|Xn∧τ |] ≤ E[|Xn|] which follows from the fact that
|Xn| is a submartingale.

Solution for Problem 4.14. We first note that {Mn : n = 0, 1, 2, . . .} is a
discrete-time martingale, so by Exercise 2.11 there is a random variable M∞
such that Mn converges to M∞ with probability one and in Lp(dP ). Also, for
all integers m ≥ 0 and all real t ≥ m, we have the trivial bound

|Mt −M∞| ≤ |Mm −M∞| + sup
{t:m≤t<∞}

|Mt −Mm|, (15.47)

and we already know that |Mm −M∞| → 0 with probability one, so (15.47)
gives us

lim sup
t→∞

|Mt −M∞| ≤ lim
m→∞

sup
{t:m≤t<∞}

|Mt −Mm|. (15.48)

To estimate the last term, we note that {Mt−Mn : n ≤ t <∞} is a continuous
martingale, so our freshly-minted maximal inequality (4.17) tells us that for
λ > 0 we have

P
(

sup
{t:m≤t≤n}

|Mt −Mm| > λ
)
≤ λ−pE(|Mn −Mm|p).

Now, since Mn converges to M∞ in Lp(dP ), we just let n → ∞ in the last
inequality to find
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P
(

sup
{t:m≤t<∞}

|Mt −Mm| > λ
)
≤ λ−pE(|M∞ −Mm|p). (15.49)

If we let m → ∞ in the bound (15.49), then the Lp convergence of Mm

implies that the right-hand side converges to zero and the dominated conver-
gence theorem tells us that we can take the limit inside the probability, so we
find

P
(

lim
m→∞

sup
{t:m≤t<∞}

|Mt −Mm| > λ
)

= 0. (15.50)

Finally, we see from (15.48) and (15.50) that Mt →M∞ with probability one,
thus completing the proof of the first assertion of (4.35).

The second assertion of (4.35) is proved by a similar, but simpler, argu-
ment. We first note that for all m we have

||Mt −M∞||p ≤ ||Mm −M∞||p + ||Mt −Mm||p.

Since St = |Mt −Mm| is a submartingale, we find that for all n > t we have
||Mt −Mm||p ≤ ||Mn −Mm||p, so we also find for all m we have

lim sup
t→∞

||Mt −M∞||p ≤ ||Mm −M∞||p + sup
{n:n≥m}

||Mn −Mm||p.

Because Mm converges to M∞ in Lp, the last two terms go to zero as m→ ∞,
establishing the Lp convergence of Mt.

Solution for Problem 4.15. If we let τn = inf{t : |Mt| ≥ n}, then by
Doob’s stopping time theorem the process {Mt∧τn

: 0 ≤ t < ∞} is a martin-
gale for each n ∈ N. By the definition of τn and the continuity of Mt, we have
that |Mt∧τn

| ≤ n for all 0 ≤ t < ∞. In particular {Mt∧τn
: 0 ≤ t < ∞} is L2

bounded, so, by Problem 4.14, we see that Mt∧τn
converges with probability

one as t→ ∞. Since Mt(ω) = Mt∧τn
(ω) for all t if τn(ω) = ∞, we see that as

t→ ∞ the process Mt(ω) converges for almost all ω ∈ Tn ≡ {ω : τn(ω) = ∞}.
Now, by Doob’s maximal inequality (4.18) applied to the submartingale

|Mt|, we have for all T that

P
(

sup
0≤t≤T

|Mt| ≥ λ
)
≤ E(|MT |)/λ ≤ B/λ;

so, by letting T → ∞, we have P (sup0≤t<∞ |Mt| ≥ λ) ≤ B/λ. By the
definition of τn, the last inequality tells us that for all n ≥ 1 we have
P (Tn) = P (τn = ∞) ≥ 1 − B/n. So, when we take unions, we find that for
T ≡ ∪∞

n=1Tn we have P (T ) = 1. But Mt(ω) converges for almost all ω ∈ T ,
so Mt converges with probability one. If M∞ denotes the value of this limit,
then by Fatou’s lemma and the bound E(|Mt|) ≤ B we have E(|M∞|) ≤ B.

Incidentally, a sequence such as {τn} is relate to the notion of a a local-
izing sequence. In this particular problem, {τn} helps us to localize a prob-
lem concerning the large set L1(dP ) to one that deals with the smaller set
L2(dP ) ⊂ L1(dP ).


