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Introduction 
 
 Because financial markets price securities with payoffs extending out in time the 
hope that they can be used to forecast the future has long fascinated both scholars and 
practitioners.  Nowhere has this been more apparent than with the studies of the term 
structure of interest rates with its enormous literature devoted to examining the predictive 
content of forward rates.  But with the exception of foreign exchange and some futures 
markets, a similar line of research has not developed in other markets and, most notably, 
not in the equity markets. 
 

While we have a rich market in equity options and a well-developed theory of 
how to use their prices to extract the martingale risk neutral probabilities (see Cox and 
Ross (1976a, 1976b)), there has been a theoretical hurdle to using them to make forecasts 
or, for that matter, to speak to issues in the natural world.  Risk neutral returns are natural 
returns that have been ‘risk adjusted’.  In the risk neutral measure the expected return on 
all assets is the risk free rate because the risk neutral measure is the natural measure with 
the risk premium subtracted out.  The risk premium is a function both of risk and of the 
market’s risk aversion, and to use risk neutral prices to inform about real or natural 
probabilities we have to know the risk adjustment so we can add it back in.  In models 
with a representative agent this is equivalent to knowing that agent’s utility function and 
that is not directly observable.  Instead, we infer it from fitting or ‘calibrating’ market 
models.  

 
Furthermore, efforts to empirically measure the aversion to risk have led to more 

controversy than consensus.  For example, measurements of the coefficient of aggregate 
risk aversion range from 2 or 3 to 500 depending on the model.  The data are less helpful 
than we would like because we have a lengthy history in which U.S. stock returns seemed 
to have consistently outperformed fixed income returns – the equity premium puzzle 
(Prescott and Mehra [1985])– and that has given rise to a host of suspect proscriptions for 
the unwary investor.  These conundrums have led some to propose that finance has its 
equivalent to the dark matter cosmologists posit to explain the behavior of their models 
for the universe when observables don’t seem to be sufficient.  Our dark matter is the 
very low probability of a catastrophic event and the impact that changes in that perceived 
probability can have on asset prices (see, e.g., Barro [2006] and Weitzmann [2007]).  
Apparently, though, such events are not all that remote and five sigma events seem to 
occur with a frequency that belies their supposed low probability.   

 
When we extract the risk neutral probabilities of such events from the prices of 

options on the S&P 500, we find the risk neutral probability of, for example, a 25% drop 
in a month, to be higher than the probability calculated from observed stock returns.  But, 
since the risk neutral probabilities are the natural probabilities adjusted for the risk 
premium, either the market forecasts a higher probability of a stock decline than occurred 
historically or the market requires a very high risk premium to insure against a decline.  
Without knowing which, it is impossible to separate the two out and find the market’s 
forecast of the event probability. 
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Finding the market’s forecast for returns is important for other reasons as well.  
The natural expected return of a strategy depends on the risk premium for that strategy 
and, consequently, it has long been argued that any tests of efficient market hypotheses 
are simultaneously, tests of a particular asset pricing model and of the efficient market 
hypothesis (Fama [1970]).  But if we knew the kernel we could estimate how variable the 
risk premium is (see Ross [2005]), and a bound on the variability of the kernel would 
limit how predictable a model for returns could be and still not violate efficient markets.  
In other words, it would provide a model free test of the efficient markets hypothesis.  

 
A related issue is the inability to find the current market forecast of the expected 

return on equities.  Unable to read this off of prices as we do with forward rates, we are 
left to using historical returns and resorting to opinion polls of economists and investors - 
asking them to reveal their estimated risk premiums.  It certainly doesn’t seem that we 
can derive the risk premium directly from option prices because by pricing one asset – 
the derivative – in terms of another, the underlying, the elusive risk premium doesn’t 
appear in the resulting formula. 

 
 But, in fact, all is not quite so hopeless.   While quite different, our results are in 
the spirit of Dybvig and Rogers [1997], who showed that if stock returns follow a 
recombining tree (or diffusion) then from observing an agent’s portfolio choice along a 
single path we can reconstruct the agent’s utility function.  We borrow their nomenclature 
and call our results recovery theorems as well.  Section 1 provides an overview of 
previous approaches to these problems.  It estimates the pricing kernel by dividing the 
risk neutral martingale density derived from the market by the estimated natural 
distribution.  As an alternative, it calibrates some standard models for preferences and 
uses the resulting marginal rates of substitution for the kernel to derive the natural 
distribution.  Section 2 develops the basic analytic framework tying the natural 
probabilities to the risk neutral probabilities and proves the Recovery Theorem.  Here we 
introduce the key idea of the paper, a technique to estimate the natural probability of asset 
returns and the market’s risk aversion, the kernel, from the state price transition process 
alone.  Section 3 derives a second recovery theorem, the Multinomial Recovery Theorem, 
which offers an alternative route for recovering the natural distribution for binomial and 
multinomial processes.  Section 4 examines the application of these results to some 
examples and examines some extensions.  Section 5 estimates the state price densities at 
different horizons from the S&P 500 option prices on a randomly chosen recent date, 
April 27, 2011.  As a prelude we tidy up some loose ends in the literature on no arbitrage 
pricing of options.  Section 6 estimates the state price transition matrix and applies the 
Recovery Theorem to derive the kernel and the natural probability distribution.  We 
compare the model’s estimate of the natural probability with the histogram of historical 
stock returns.  In particular, we shed some light on the dark matter of economics by 
highlighting the difference between the odds of a catastrophe as derived from observed 
state prices with that obtained from historical data.  The analysis of Sections 5 and 6 is 
meant to be illustrative and is far from the much needed empirical analysis, but it 
provides the first estimate of the natural density of stock returns.  Section 7 derives a 
model free test of efficient market hypotheses.  Section 8 concludes and summarizes the 
paper and points to some future research directions.    
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Section 1:  Estimating Natural Probabilities, Risk Aversion and Risk Neutral      
        Probabilities 
 
 Consider a one period world with asset payoffs x(θ) at time T, contingent on the 
realization of a state of nature, θ ε Ω.  From the Fundamental Theorem of Asset Pricing 
(see Dybvig and Ross [1987, 2003]), no arbitrage (‘NA’) implies the existence of positive 
state space prices, i.e., Arrow Debreu contingent claims prices, p(θ) (or allowing for 
lumpy states, the distribution function, P(θ)), paying $1 in state θ and nothing in any 
other states.  If the market is complete, then these state prices are unique.  The current 
value of the asset is given by 
 

  

 
Since the sum of the contingent claims prices is the current value of a dollar for sure in 
the future, letting r denote the riskless rate we can rewrite this in the familiar forms 
 

 

 
 
where an asterisk denotes the expectation in the martingale measure and where the 
pricing kernel, i.e., the state price/probability �(θ) is the Radon-Nikodym derivative of 
P(θ) with respect to the natural measure which we will denote as F(θ).  With continuous 
distributions, �(θ) = p(θ)/f(θ) where f(θ) is the natural probability.  The risk neutral 
probabilities, are given by π*(θ) = p(θ)/∫p(θ) = erTp(θ). 
 
 Equivalently we can rewrite this in terms of (gross) returns, 
 

    

 
Notice, that the interest rate, r, could be dependent on the current state, a possibility we 
will allow below.   
 
 Denoting by Y, the stock market index value at time T, and the current value of 
the stock market index as S, in a one period model the absence of arbitrage implies the 
existence of a monotone increasing concave utility function for which the optimum 
portfolio problem has a solution (see Dybvig and Ross [1987, 2003]).  In addition, if 
individuals maximize expected utility, then in a complete market, there will be a unique 
utility function for the representative agent, U(Y), that is maximized at Y such that 
  



 5

,   

 
where δ is the subjective time discount factor between today and time T.  Indeed, the 
assumed existence of such a representative agent is the foundation for the intuition of a 
market risk aversion.   
  

This equation tells us that the state price density, �, relating risk neutral 
probabilities and natural probabilities is the marginal rate of substitution for the payoffs 
in a one period world.  This is the barrier between relating the one to the other and why 
we cannot simply use risk neutral probabilities as though they were natural probabilities.   

 
Oddly, it is often said that while we observe the natural probabilities from the data 

on stock returns we don’t observe the martingale probabilities.  In fact, the opposite is 
true in the financial markets; the martingale risk neutral probability density π*(θ) is 
observable and it is the natural probability measure, f(θ) that must be estimated.  Figure 1 
illustrates the estimated π*(θ) derived from six month option prices on March 15, 2011 
(in Section 5 we show how this was done).  Figure 2 displays an estimated lognormal 
density for actual stock returns and Figure 3 displays the resulting pricing kernel, 
p(S)/f(S) (S at time 0 is set at 1). 

 
The ridiculously high value for the kernel at low stock prices has two possible 

interpretations.  First, it could mean that the estimated distribution of stock returns has 
too small a left tail and that the actual probabilities used by the market are higher.  
Alternatively, it could mean that these probabilities are correct but that the market assigns 
a very high degree of risk aversion to these outcomes. 

 
To improve on this let’s estimate the natural distribution not by fitting it to a 

given parametric density function such as the log normal but, rather, by letting the ‘data 
speak for itself and using a bootstrap to estimate the return density.  Figure 4 shows the 
result from bootstrapping (with replacement) 5000 six month return samples from 
monthly returns in the fifty year period, January, 1960 to December, 2010.  Figure 5 
displays the resulting pricing kernel. 

  
While we can at least display the density, this is only because we’ve learned our 

lesson and plotted the kernel in the range where the histogram of actual returns is 
positive.  Of course this is cheating because the martingale measure gives positive 
probability to the tails where there are no histogram observations and we know that the 
martingale measure is absolutely continuous with respect to the natural measure.  Again, 
the data is telling us that there are fat tails with high probabilities of bad outcomes or with 
high risk aversion or both. Since all of the action, i.e., the real volatility and pricing 
impact of the kernel is in the left tail this approach clearly misses the point.  The resulting 
computed volatility of the kernel, .0058, is unreasonably low as well precisely because of 
this truncation. 
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Let’s try a different approach.  Rather than estimating the natural distribution of 
stock returns, let’s posit a utility function, derive the kernel as the marginal rates of 
substitution, and divide the martingale measure by the marginal rates of substitution to 
obtain an estimate of the natural distribution.  The most common functional form for the 
utility function is a constant relative risk aversion, 

 

 
1

  

 
with the associated kernel, 
 

,      

 
For simplicity, we have omitted the subjective rate of time discount.  Figures 6 and 7 plot 
the kernel for three choices of risk aversion, R = 0, risk neutrality, R = 0 .5 and  
R = 5.0.  Figure 8 plots the respective distributions of the natural probabilities.  Notice 
that with risk aversion, R = 0, the natural density is just the risk neutral density.  
 
 Not surprisingly, the lower the risk aversion the tighter the bound on the kernel 
and we have that E[�2 ] = 1, 1.03 and 56 for R = 0, 0.5, and 5.0 respectively.  Without 
comparing this with the measured empirical distribution, though, there is no obvious way 
to choose amongst these estimates.  Furthermore, we know that if we simply follow the 
usual path of estimating or calibrating the kernel marginal rates of substitution to return 
data we are just going down the path where whatever estimate we find will have some 
insensibility, e.g., too high a risk premium, too low a risk aversion coefficient or too 
much required volatility 

 
What have we learned from these exercises?  Contrary to what we might have 

thought and what we will illustrate below, it is the martingale measure that is directly 
observable and the natural measure that can only be estimated with unacceptable errors 
for our purposes.  In the next sections we will take a closer look at the theory and show 
the full range of information that we can glean from the risk neutral measure.    
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Section 2:  The Recovery Theorem 
 
 In this section we set up the basic analytic model and derive the Recovery 
Theorem, which enables us to find the natural measure and the pricing kernel from state 
prices alone. 
 
 We will continue to assume that we have observed the martingale measure (for 
example, by observing a full spectrum of option prices).  That means that we have not 
only observed the current state prices but, also, the martingale transition probabilities.  
Let x denote the current state and y a state one period forward.  We assume that this is a 
full description of the state of nature including the stock price itself and other information 
that is pertinent to the future evolution of the stock market index, thus the stock price can 
be written as S(x).  From the forward equation for the martingale probabilities 
 

, ,  , , , ,   

 
where Q(x,y,τ) is the forward probability transition function for going from state x to 
state y in τ periods and where the integration is over the intermediate state at time t, z.  
Notice that we have made the transition a function independent of calendar time and a 
function only of the time interval.    

 
This is a very general framework and allows for many interpretations.  For 

example, the state could be composed of parameters that describe the motion of the 
process, e.g., the volatility of returns, v, as well as the current stock price, S, i.e., x = 
(S,v).  If the distribution of martingale returns is determined only by the volatility, then a 
transition could be written as a move from x = (S,v) to y = (S(1+R),z) where R is the rate 
of return and 

 
, , , , 1 , ,  

 
To simplify notation we will use state prices rather than the martingale 

probabilities so that we won’t have to be continually correcting for the interest factor.  
Defining the state price matrix as 

 
, , ,  , , ,  

 
and, assuming a time homogeneous process, period by period we have,  

 
,  ,  

 
Notice that the risk free rate is allowed to be state dependent.  This is appropriate and if 
we were to fix it across states we will see below that the model would degenerate.   
 

Letting f denote the natural (time homogeneous) transition density, the kernel in 
this framework is defined as the price per unit of probability, 
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,  
,
,

  

 
Specializing this to an intertemporal model with additively time separable 

preferences and a constant discount factor, δ, and letting c denote consumption at time t 
as a function of the state, the kernel can be written as 

 

,  
,
,

   

 
 Since this equation is simply the first order condition for the optimum for a 
representative agent,  
 

,  , ,
. .     ,       

 
the equation for the kernel is the equilibrium solution for an economy with complete 
markets in which, for example, consumption is exogenous and prices are defined by the 
first order condition for the optimum.  In a multiperiod model with complete markets and 
state independent intertemporally additive separable utility, there is a unique 
representative agent utility function that satisfies the above optimum condition and 
determines the kernel as a function of aggregate consumption (see Dybvig and Ross 
[1987, 2003]).  Notice, too, that we don’t have state dependent utility; the pricing kernel 
depends only on the marginal rate of substitution between future and the current 
consumption.  The existence of such a representative agent will be a maintained 
assumption of our analysis below.      
 
 Rewriting the equilibrium equation with additively time separable utility we have, 
  

,  ,  
 
 To gain some insight into this equation and to position the apparatus for empirical 
work it’s useful to look at a discrete state model  
 

 
 
where  

 
 
and writing this in terms of the kernel 
 
 

 1, /  
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 We can interpret the marginal utilities, Ui′, as the marginal utility of consumption 
in state i, c(i), and while it is monotone declining in consumption it need not be monotone 
declining in the asset value, S(i).  In practice, we will define the states from the motion of 
the stock value, so that the kernel is the projection of the kernel across the broader state 
space onto the more limited space defined by the filtration of the asset price.   
 
 Rewriting the state equations in matrix form we have 
 

  
 

where P is an mxm matrix, F is the mxm matrix of the natural probabilities and D is the 
diagonal matrix with the marginal utilities on the diagonal 
 

 
0 0

0 0
0 0

  
0 0

0 0
0 0

 

 
 With a discrete or compact state space for prices we will have to make sure that 
the model doesn't admit of arbitrage.  In the model with exogenous consumption whose 
motion is governed by the specified state transition density the absence of arbitrage is a 
simple consequence of an equilibrium with positive state prices which assures that the 
carrying cost net of the dividend compensates for any position that attempts to profit from 
the rise out of the lowest asset value or the decline from the highest value. 
 
 Returning to our analysis, keep in mind that we observe the martingale prices, P, 
and our objective is to see what, if anything, we can infer about the natural measure, F, 
and the pricing kernel, i.e., the marginal rates of substitution.  Solving for F as a function 
of P, 
 

1
 

 
 Clearly if we knew D, we would know F.  It appears that we only have m2 
equations in the m2 unknown probabilities, the m marginal utilities, and the discount rate, 
δ, and this appears to be the current state of thought on this matter.  We know the risk 
neutral measure but without the marginal rates of substitution across the states, i.e., the 
risk adjustment, there appears to be no way to close the system and solve for the natural 
measure, F.  Fortunately, though, this must satisfy an additional set of m constraints, 
namely that F is a stochastic matrix whose row sums to 1. 
 

 
 
where e is the vector with 1 in all the entries. 
 
 Using this condition we have 
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1
  

 
or  
 

  
where 
 

  
 
This is a characteristic root problem and offers some hope that the solution set will be 
discrete and not an arbitrary large linear space.  The theorem below verifies this intuition 
and provides us with a powerful result. 
 
 
Theorem 1 – The Recovery Theorem 
 
 In a world with a representative agent, if the pricing matrix, P, is positive or 
irreducible, then there exists a unique (positive) solution to the problem of finding F, the 
discount rate, and the pricing kernel.  That is for any given set of state prices there is one 
and only one corresponding natural measure and, therefore, a unique pricing kernel, �.  If 
P has a single absorbing state but the matrix of the remaining m-1 states is irreducible, 
then it has a unique positive solution for states other than for the absorbing state and if 
the diagonal entry of the absorbing state is greater than the positive characteristic root of 
the other states, then there is a unique strictly positive solution.   
 
Proof: 
 
 Existence follows immediately from the fact that P is assumed to be generated 
from F and D as shown above, but as a byproduct of our solution we will show existence 
even if this were not the case.  The problem of solving for F is equivalent to finding the 
characteristic roots (eigenvalues) and characteristic vectors (eigenvectors) of the matrix 
of state prices, P.  If we know δ and z such that  
 

  
 
then the kernel can be found from z = D-1e.   
 
 Since P is the matrix of state prices it is a nonnegative matrix.  Suppose first that 
it is strictly positive.  Since the martingale measure is absolutely continuous with respect 
to the natural measure, there are no states that are unattainable and could have zero 
prices.  The Perron-Frobenius Theorem (see Meyer [2000]) tells us that all such matrices 
have a unique positive characteristic vector, z, and an associated positive characteristic 
root, λ, and that there are no other strictly positive characteristic vectors.  Since P satisfies      
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we know that a positive D must exist that yields P from some given F hence, we have 
now found it.  The characteristic root λ = δ is the subjective rate of time discount. 
 
 Now suppose that P is nonnegative and irreducible but not positive, i.e., suppose 
that there are some zero entries.  A zero in the ij entry means that state j cannot be 
attained from state i in a single step, but the matrix is irreducible if all states are attainable 
from each other states in n steps.  The current price for this state, occurring n periods out, 
would thus be positive.  In this case the Perron-Frobenius Theorem holds and as before 
there is a unique positive characteristic vector associated with a unique positive 
characteristic root.  
 
 Lastly, suppose that one state has zeros at all points except on the diagonal.  This 
could occur very naturally if the most calamitous state, say state 1, was absorbing and 
once entered it cannot be left.  In this case the entry p11 > 0 and the remaining entries in 
the first row are zero.  As is well known from the theory of Markov chains, P is a 
reducible matrix since for all n, the entries in the first row of Pn other than the first will 
remain zero.  If P is reducible then there is not a lot known in general about the 
characteristic roots, however, if we restrict ourselves to the case described above where 
the worst case is the single absorbing state and the rest of the entries of P are positive we 
do have a result.   
 
 Partition P as follows where B is (m-1) x (m-1), and C is (m-1) x 1, 
 

 0
 

 
and partition the possible characteristic vector as 
 

 

 
where y is a scalar and x is dimension m-1. 
 
 To be a characteristic vector we require that 
 

   

 
 If we set y = 0, then a characteristic vector is given by the solution to Bx = λx 
which is positive and unique since B is irreducible.  To find a strictly positive solution, 
without loss of generality scale y = 1.  Now we must solve the system 
 

  
 
If p11 = λ this generally has no solution; the characteristic matrix 
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is singular and the system can be solved only if C is in its span. 
 
In the general case where p11 ≠ λ, the unique solution is given by 
 

   
 
Since λ is the maximal characteristic root, the inverse is negative for  
p11 > λ and since C > 0 this assures that x is strictly positive.  
 

□ 
 
 
Letting x denote the unique the unique positive characteristic vector with root λ, 

we can solve for the kernel as 
 

1
  

1
 

 
Since x can be arbitrarily scaled without changing the marginal rates of substitution we 
can choose a reference state, c for the current state, and divide each entry by this marginal 
utility.  From our previous analysis,  
 

1
 

 and  
 

1 1 1
 

 
 
Corollary 1 
 
 The subjective rate of discount, δ, is bounded above by the largest interest factor. 
 
Proof: 
 
 From The Recovery Theorem the subjective rate of discount, δ, is the positive 
character root of the price transition matrix, P.  From the Perron-Frobenius Theorem (see 
Meyer [2000]) this root is bounded above by the maximum row sum of P.  Since the 
elements of P are the pure contingent claim state prices, it follows that the row sums are 
the interest factors and that the maximum row sum is the maximum interest factor.  

 
 
□ 
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 Now let’s turn to the case where the riskless rate is the same in all states. 
 
 
Theorem 2 
 
 If the riskless rate is state independent then the unique natural density associated 
with a given set of risk neutral prices is the martingale density itself, i.e., pricing is risk 
neutral.   
 
Proof: 
 
 In this case we have 
 

  
 
where γ is the interest factor.  It follows that Q = (1/γ)P is the risk neutral martingale 
probability matrix and, as such, e is its unique positive characteristic vector and 1 is its 
characteristic root.   
 
 
 From Theorem 1   

1
 

 
□ 

 
 
Given the apparent ease of creating intertemporal models satisfying the usual 

assumptions without risk neutrality this result seems a bit odd, but it’s a consequence of 
having a finite irreducible process for state transition.  Apparently when we extend the 
recovery result to multinomial processes that are unbounded this is no longer the case. 

 
Before going on to implement these results, there is a simple extension of this 

approach that appears not to be well known and is of interest in its own right. 
 
 

Theorem 3 
 
 The risk neutral martingale density for consumption and the natural density for 
consumption have the single crossing property and the natural density stochastically 
dominates the risk neutral density.  Equivalently, in a one period world, the market 
natural density stochastically dominates the risk neutral density. 
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Proof:  
 

From 
 

,  
,
,

  

 
we know that � is declining in c(y).  Since both densities integrate to one and since � 
exceeds 1/δ for c(y) < c(x), it follows that p > f for c(y) < c(y*) where δU′(c*(y*)) = 
U′(c(x)) and p < f for c > c*.  This is the single crossing property and verifies that f 
stochastically dominates p.  In a single period model, terminal wealth and consumption 
are the same.  
 

 
□ 
 
 

Corollary 2 
 
 In a one period world the market displays a risk premium, i.e., the expected return 
on the asset is greater than the riskless rate. 
 
Proof: 
 
 In a one period world consumption coincides with the value of the market.  From 
stochastic dominance at any future date, T,  
 

 ~   
 
where the asterisk denotes the price in the martingale risk neutral measure, Z is strictly 
nonnegative and ε is a mean zero error term.  Taking expectations we have  
 

. 
 
 
□ 

 
 
 Before leaving this section we should note that the continuous state space problem 
has the same form as that for the Recovery Theorem, 
 

,  ,  

 
and solving for f 
 



 15

,
1

,  

 
The resulting integral equation analogous to the matrix equation above that f must satisfy 
is given by 
 

,  1 

 
implying that 
 
 

1
,  

1
 

 
  
 This is an integral form of the matrix equation to which we applied the Perron-
Frobenius Theorem to demonstrate that it had a unique positive solution.  Extensions of 
the Perron Frobenius Theorem to positive integral operators are available which would 
allow us to find a unique (up to a scalar multiplier) positive solution for U’(S) and a 
unique positive root δ.  There is, however, more work to be done to satisfy the 
requirements of these extensions, e.g., behavior in the tails, and undertaking that would 
take us beyond the scope of this paper.  Here we have developed the central argument 
and its intuitions and derived a sufficiently powerful framework for the subsequent 
empirical analysis.  The next section examines the application of this framework to some 
examples created to illustrate how it can be applied.   
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Section 4:  A Binomial and Multinomial Recovery Theorem 
j 
 While we will see below that the Recovery Theorem can be applied to a binomial 
or multinomial process, these processes are so ubiquitous in finance (see Cox, Ross 
Rubinstein [1979]), that it is useful to look at them separately.  Throughout this analysis 
the underlying metaphorical model is a tree of height H that grows exogenously and bears 
exogenous fruit, ‘dividends’, that is wholly consumed.  Tree growth is governed by a 
multinomial process and the state of the economy is <H, i>, i = 1, …, m.  The 
multinomial process is state dependent and the tree grows to ajH with probability fij.  In 
every period the tree pays a consumption dividend kH where k is a constant.  Notice that 
the state only determines the growth rate and the current dividend depends only on the 
height of the tree and not of the state.  The value of the tree, the market value of the 
economy’s assets, is given by S = S(H, i).  Since tree height and, therefore, consumption 
follow a multinomial process, S also follows a multinomial, but, in general, jump sizes 
will change with the state.   
 
 The initial marginal utility of consumption is U′(kH) which is independent of the 
state variable, i, and, without loss of generality we can set U′(kH) = 1.  The equilibrium 
equations are  
 

  
 
or, in terms of the undiscounted kernel,  
 

  
 
In matrix notation, 
 

  
 

1
 

 
and since F is a stochastic matrix 
 

1
 

 
or 
 

  
 
Assuming P is of full rank, this solves for the kernel, D, as 
 

1
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Now F is recovered as 
 

1
 

 
Proceeding along the tree in the same fashion, node by node, we can recover the 
distribution at all future nodes.  
 
 Notice that this analysis only determines δD and not δ and � separately.  By 
taking advantage of the recombining feature of the process, though, we can recover δ and 
� separately.  For simplicity, consider a binomial process with jumps to a or b.  The 
binomial is recurrent, i.e., it eventually returns arbitrarily close to any starting position.  
Along with the transition matrix being of full rank, this was one of the key assumptions 
of the Recovery Theorem.  For a binomial, with jumps of a and b, if we were to expand it 
into an infinite matrix the matrix would have only two nonzero elements in any row, and 
at a particular node we would only see the marginal price densities at that node.  To 
observe the transition matrix we want to return to that node from a different path.  For 
example, if the current stock price is 1 and there is no exact path that returns to 1, then we 
can get arbitrarily close to 1 along a path where the number of a steps, i and the number 
of down steps, n – i, satisfy 
   

  
log
log

 

     
for large n. 
 
 Sparing the obvious continuity analysis, we will simply assume that the binomial 
recurs in two steps, i.e., ab = 1.  That implies that it must satisfy the further state equation 
when it returns to H from having gone to aH,  
 

1
 

 
Since we can recover δ�a = (P-1)ae, we can solve separately for δ and �a and, more 
generally, for δ and �.  The analysis is similar for the general multinomial case.   
 
 If the riskless rate is state independent, then P has identical row sums and if it is 
of full rank, then, as with the first Recovery Theorem, we must have risk neutrality.  To 
see this, let 
 
 

  
 
Hence 
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1
 

1
 , 

  
all the marginal utilities are identical and the natural probabilities equal the martingale 
probabilities.   
 
 If P is not of full rank, by the maintained assumption we know that there is a 
solution to 
 

 
 
In general, though, there is a linear subspace of potential solutions with dimension equal 
to the rank of P and, not surprisingly, while we can restrict the range of potential 
solutions, we cannot uniquely recover the kernel and the probability matrix.  In particular, 
if x is a solution to Px = e, and y is orthogonal to P, then, x + y is also a solution.    In the 
special case where the interest rate is state independent, though, even if the matrix is of 
less than full rank than it’s easy to see from the above that risk neutrality is one of the 
potential solutions.  We summarize these results in the following theorem. 
 
 
Theorem 4 - The Multinomial Recovery Theorem 
 
 Under the assumed conditions on the process, the kernel, the transition probability 
matrix and the subjective rate of discount of a binomial (multinomial) process can be 
recovered at each node from a full rank state price transition matrix alone.  If the state 
prices are independent of the state, then the kernel must be risk neutral.  If the transition 
matrix is of less than full rank, then we can restrict the potential solutions, but we cannot 
recover uniquely. 
 
Proof: 
 
 See above.  

 
 
□ 
 
 

 These results are, of course, implicit in the much studied work on the binomial 
model, but perhaps because they haven’t been the focus of study or perhaps because of 
the assumption that because of the arbitrary choice of a kernel it would not be possible to 
separate risk aversion from probabilities, they appear to have gone unnoticed.  Which 
Recovery Theorem should be used in any particular case depends on the exact 
circumstances.   
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Constant Relative Risk Aversion 
 
 An alternative approach to recovery that allows for more flexibility on the process 
is to make an assumption on the functional form of the kernel.  Suppose, for example, 
that we make the common assumption of a constant relative risk aversion utility function 
and that we specialize the model to a binomial with tree growth of a or b, a > b.  State 
prices are given by 
 

 ,  
Hence, 
 

,  , ,  
and 
 

,  , ,  
 
 
Assuming constant relative risk aversion this system becomes linear, 
 

,   

with the linear solution 
 

 
where  
 

1 1
1 1

1
1

 

 
 Thus the stock value S follows a binomial process and at the next step takes on 
the values S(a,aH) or S(b,bH) depending on the current state and the transition, 
 

,   ,  ,  
 

 ,    ,  ,   
 
Notice, though, that even if ab = 1, the binomial for S is not a recombining tree.  If it 
starts at S(a,aH), and then first goes up and then down it returns to S(b,abH) = S(b, H) ≠ 
S(a, H), but if it first goes down and then up it does return to S(a,baH) = S(a,H). 
 
The state price equations for this system are given by: 
 

 
 

1  
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1  
and 

 
  
These are four independent equations in the four unknowns,  
 

, , ,  
and the solution is given by 

1
1

1
 

 

ln 1

ln 
 

and 
  

 
 This example also further clarifies the importance of state dependence.  With state 
independence there are only two equilibrium state equations in the three unknowns, R, f, 
and δ,  
 

 
 

1  
 
Nor can this be augmented by recombining since, assuming ab = 1, 
 

1
 

 
which is identical to the first equation.  In other words, while the parametric assumption 
has reduced finding the two element kernel to recovering a single parameter, R, it has 
also eliminated one of the equations.  Nor is it possible to recover without the assumption 
on preferences since while that can allow recombining to provide a third independent 
equation, it also adds a new variable to the kernel.  As we have shown, though, assuming 
meaningful state dependency once again allows full recovery.  
 
 This approach also allows for recovery if the rate of consumption is state 
dependent.  Suppose, for example, that consumption is ka or kb in the respective states, a 
and b.  The equilibrium state equations are now 
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1  

1  

and 
 

 
 These are four independent equations which can be solved for the four unknowns, 

, , ,  .   
 
 To recover the natural distribution in Section 5 below we will use the Recovery 
Theorem but we could also use the binomial and multinomial recovery models.  Which 
will work better will ultimately be an empirical question. 
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Section 4:  Some Examples, Extensions and Observations 
 
Example 1 
 
 Consider a ‘tree’ model with a lognormally distributed payoff at time T and a 
representative agent with a constant relative risk aversion utility function, 
 

U ST  
ST

R

1 R
 

 
 
The future stock payoff, the consumed ‘fruit’ dividend, is lognormal,  
 

ST  e µ  T √T     , 
 
where the parameters are as usual and z is a unit standard normal variable. 
 
The pricing kernel is given by 
 

  

 
 
where S is the current stock dividend that must be consumed at time 0.   
 
 Given the natural measure and the kernel, state prices are given by 
 

,   
ln 1

2
√

 

 
 
where n(∙) is the normal density function.  
 
 In this model we know both the natural measure and the state price density and 
our objective is to see how accurately we can recover the natural measure and, thus, the 
kernel from the state prices alone using the Recovery Theorem.  Setting T = 1, Table 9 
displays natural transition probability matrix, F, the pricing kernel, the time discount, δ, 
and the matrix P of transition prices.  The units of relative stock movement, ST /S, are the 
grid of units of sigma from -5 to +5.  Sigma can be chosen as the standard deviation of 
the derived martingale measure from P, but alternatively we chose the current at-the-
money implied volatility from option prices as of March 15, 2011.   
 
 With an assumed market return of 8%, a standard deviation of 20% and calculate 
the characteristic vector of P.  As anticipated there is one positive vector and it exactly 
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equals the pricing kernel shown in Figure 9 and the characteristic root is e-.02 = .9802 as 
was assumed.  Solving for the natural transition matrix, F, we have exactly recovered the 
posited lognormal density. 
 
 This example fits the assumptions of the Recovery Theorem closely except for 
having a continuous distribution rather than a discrete one.  The closeness of the results 
with the actual distribution and kernel provides comfort that applying the theorem by 
truncating the tails is an appropriate approach.  Notice that since we can take the 
truncated portions as the cumulative prices of being in those regions, there is no loss of 
accuracy in estimating cumulative tail probabilities.   
 
Example 2 
 
 The second example deals explicitly with the case where returns are state 
dependent and can lead to growing values.  This would occur, for example, in any model 
where future prices are some return multiplied by current prices.  For this example, once 
again assume a lognormal distribution but now it is applied to returns and not terminal 
wealth, 
  

ST  Se µ  T √T     , 
 
There are several ways to approach modeling preferences in this example.  We could 
simply assume that there is a representative agent with preferences over consumption 
which, in this simple example, could be a dividend from the stock price.  An easier and 
more straightforward approach is to assume that preferences are over returns.  In the 
absence of arbitrage this is equivalent in a one period setting to preferences over terminal 
outcomes.  Again using the constant relative risk aversion utility function, the kernel is 
given by 
 

  

 
While this looks the same as before it is not; here we are not holding the distribution of 
the terminal value constant, rather we assume a distribution for the relative value. 
 
 If the distribution was assumed independent over time, then we would have an 
awkward problem because the ex ante equilibrium would be the same independent of the 
return realization and that would make the interest rate constant which would mean that 
the only equilibrium would be one in which the characteristic vector of implied prices is 
the same across states, i.e., the model degenerates to risk neutrality. 
 
 An easy way to see this is to look closely at the discrete pricing equation 
 

 
 
Since preferences depend on the relative return the pricing equation is amended to  
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where both the return, R, and the probability are assumed independent of the previous 
return.  It follows, then that 
 

    
 
independent of state i.  Hence, the resulting transition pricing matrix has all the same 
rows and it must have the same interest rate for all states.  This is very similar to the 
paradox that occurs in an intertemporal equilibrium portfolio model where the 
opportunity set is unchanging and, as a consequence, asset prices don’t change either 
making any assumed capital gains process inconsistent.  Once again, one possible 
solution is that the natural probabilities equal the martingale probabilities, but the space 
of possible solutions is m-1 dimensional and the natural distribution cannot be recovered.                
 
 To make the model interestingly state dependent so that we can apply the 
Recovery Theorem we make the distribution of current returns depend on past returns 
through the linkage of returns and implied volatility.  A simple regression of implied 
volatility, v, on past returns produces a very significant relation of the form, 
 

ln /  ln  
  
Where, for this example, we set β = 0.5.  Now the transition probability matrix from state 
i returns, Ri to state j returns, Rj is given by 
 
 

,  
ln 1

2
√

 

 
and 
 

  
 
which is assumed independent of the initial state, i. 

 
Keep in mind that even though we might have modeled preferences incorrectly, 

we are working backwards from the observed state prices and have found the unique set 
of probabilities and prices that could have generated it given the assumed model.  Our 
problem is to interpret the resulting pricing kernel because we it exists by assumption and 
our construction has found the unique one associated with the observed state prices.   
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 We were able to find the exact solution in this case by applying the Recovery 
Theorem because we made preferences a function of returns and not of levels as would 
be more usual in a typical intertemporal consumption model.  As such, we didn’t need to 
have the utility function generating the kernel be a constant relative risk aversion 
function, but, if it is, then the model and the example are identical, i.e., the marginal rates 
of substitution as a function of levels actually depend only on the relative returns just as if 
we had assumed that was the case.  If we do assume a constant relative risk aversion 
function, though, we can just proceed as we have and use the Recovery Theorem to 
extract its single parameter, the constant coefficient of relative risk aversion, R.  The 
numerical results are shown in Table 10. 
 
Example 3 
 
 This has the identical return distribution as Example 2, but rather than have 
preferences have constant relative risk aversion, to make levels matter we assume 
preferences are represented by a constant absolute utility function.  Now the kernel is 
given by 
 

,   

 
where A is the coefficient of absolute risk aversion, St is the index value at time t, and Rij 
is the gross return from the transition from state i to state j.  Notice that unlike Example 2, 
the kernel depends on the level of the index as well as on the return, and the state 
transition will be a transition from one level to another and one volatility level to another. 
 
 For a numerical example we will set A = 1 and the initial stock level at 1.  We 
will also truncate the distribution at + 5 and - 5 sigma and assume that the marginal utility 
is constant beyond those extremes.  For empirical work such a truncation is necessary.  
The results are displayed in Table 11.  The recovered kernel and the recovered natural 
distribution agree perfectly with their assumed values.  In a second exercise we changed 
the marginal utilities at the extreme values, -5 and +5 sigma, and again we were able to 
perfectly recover the assumed distribution and kernel.  
 
 Implicitly in these exercises we are recovering an assumed constant marginal 
utility beyond the extreme values and we are recovering that value.  In practice we will 
observe the state prices from market prices and we will recover the constant marginal 
utility that would be consistent with the prices beyond the extremes, e.g., the cumulative 
distribution of prices above + 5 sigma and below -5 sigma. 
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Example 4  Binomials – Applying the Recovery Theorem 
 
 The natural densities in the above examples are well known limits of binomial 
processes as the jumps grow more frequent and the jump sizes diminish (see Cox, Ross 
Rubinstein [1979]).  For state dependent binomials we can apply the Multinomial 
Recovery Theorem, recover the jump probability, f, the subjective discount factor, δ, and 
the pricing kernel or, more precisely, the projection of the kernel onto the space generated 
by the binomial.  Suppose, though, that the process is state independent.  Now we can 
solve by making an assumption that alters the process by truncating it in the tails for very 
large and very small outcomes. 
 
 Making the appropriate assumption in the tails, it is possible to fully recover the 
kernel, f and δ, by applying the Recovery Theorem.  For simplicity, suppose that the 
process exactly recovers in k up steps and n – k down steps, 
 

1 
 
Order the possible states achievable in n or less steps, from 1,…,m where a given state i 
is  
 

,   0   
 
 Letting a(i) denote the number of up jumps in state i and b(i) denote the number 
of down jumps, for all but the bottom and top states, (i,j) ≠ (1,1) or (m,m), the state 
probability transition matrix is given by 
 

  1, , 
 1   , 1  

 0   
 
For the bottom state, we set  
 

1  
 
and for the top state we set 
 

 
 
 In other words, we truncate the process at 1 and m and lump together the infinity 
of states below 1 and above m.   
 
 Since the process is recurrent in n steps the matrix F is irreducible and we can 
now fully recover F and, therefore, f, δ, and the pricing kernel, �.  Given that we were 
unable to recover the process from the state equations for the simplest recombining 
process, this is a quite surprising result.  Let us look again, then, at the simple 
recombining example.     
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 For this example, let’s truncate the process after a single step, i.e., lump all the 
states above aS and all below bS.  Since ab = 1, any state is of the form  
 

      1 f i j 
 
Thus, there are no states between a and b other than S = 1, the starting state and state 1 is 
b, state 2 is 1, and state 3 is S.   
 
 The transition probability matrix is given by 
 

 
1 0
1 0

0 1
 

 
The projection of the kernel onto the three states is given by 
 

 
1

 

 
where, without loss of generality, we scale the first element to be unity.  Defining D as 
the diagonal matrix with the kernel elements on the diagonal, the pricing matrix, P, is 
given by 
 

  
 
and since F is irreducible, P is as well and we can apply the Recovery Theorem to obtain 
the underlying parameters.  But, how is this possible given our previous results for this 
simple model requiring state dependence or, to put it somewhat differently what equation 
did we add to close the system? 
 
 Ignoring zeros, we have the following 6 state equations in the original 4 
unknowns, f, δ, �2 and �3.   
 

1  
 

 
 

1  
 

 
 

1  
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 This system can be solved by applying the Recovery Theorem or, equivalently by 
solving it directly.  The solution is  
 

  
 
 

 

 

 

and 
 

 

 
  
 The Recovery Theorem was able to solve the system because we closed the model 
and put it into an irreducible form.  The third and fourth equations govern the transition 
from the current state, S = 1, up and down and they are identical to the two original state 
equations for the first jump.  Combining the second and third equations or, equivalently, 
the fourth and fifth equations, is identical to the new equation introduced by the 
recombination in the original equation system.  The new equations that are added are the 
first and the last which lump together the states at or below b and at or above a 
respectively, and it is the addition of these equations which enables us to solve the 
system.   In other words, the market is assumed to be indifferent between going from the 
really calamitous to the even more calamitous and between nirvana and more nirvana, 
fixing the marginal rates of substitution in the extreme mega states unity. 
 
 Alternatively, we could set the (undiscounted) kernel at a for the lower mega state 
and b for the upper mega state.  The equilibrium state equations are now 
 

  
 
where A is a diagonal matrix with a11 = a, bmm = b, and aii = 1, i ≠ 1,m.  Applying the 
Recovery Theorem to PA-1 we can recover the kernel, F and δ as before.  A natural way 
to determine A would be to make estimate a and b as functions of the interior kernel 
elements, i.e., A = A(D).  The problem would then be a fixed point one of finding D that 
satisfies the above state equations, e.g., for a given D(j) we determine A(D), apply the 
Recovery Theorem, find D(j+1), and iterate until the process converges.          
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Section 5:  The Risk Neutral Transition Pricing Matrix 
 
 With the rich market for derivatives on the S&P 500 index, the market is 
effectively complete along dimensions related to the index, both value and the states of 
the return process.  The Recovery Theorem relies on knowledge of the martingale 
transition matrix and in this section we will show how to obtain this information from 
option prices.  Given the wide spread interest in estimating models for pricing derivative 
securities it is not surprising that the literature on this problem is very extensive (see 
Rubinstein [1994], Rubinstein and Jackwerth [1996] and Jackwerth [1999], Derman and 
Kani [1994] and [1998], Dupire [1994]).  We draw on only the most basic findings of this 
work and make no effort to extend it.     
 
 We first check that option prices are, in fact, arbitrage free.  We begin by clearing 
up some loose ends on no arbitrage (NA) in the options market. 
 
The Vol Surface and NA 
 
 Figure 9 displays the surface of implied volatilities on S&P puts and calls, the 'vol 
surface', on March 20, 201drawn as a function of time to maturity, 'tenor', and the strike.  
Option prices are typically quoted in terms of implied volatilities from the Black-Scholes, 
i.e., the volatilities that when put into the model give the market premium for the option, 
but doing so in no way is a statement of the validity of the Black-Scholes model, rather it 
is simply a transformation of the market determined premiums.  The source of the data 
used in this paper is a bank over the counter bid/offer sheet.  While the data is in broad 
agreement with exchange traded options, we chose this source since the volume on the 
over the counter market is approximately six times that on the exchange even for 
common at-the-money contracts.   
 
 The surface displays a number of familiar features.  There is a ‘smile’ with out of 
the money and in the money options having the highest implied volatilities.  The shape is 
actually a ‘smirk’ with more of a rise in implied volatility for out of the money puts (in 
the money calls).  One explanation for this is that there is an excess demand for out of the 
money puts to protect long equity positions relative to the expectations the market has 
about future volatilities.  Notice, too, that the surface has the most pronounced curvature 
for short dated options and that it rises and flattens out as the tenor increases.  A story 
supporting this is the demand for long dated calls by insurance companies that have sold 
variable annuities.  Whatever the merit of these explanations, these are persistent features 
of the vol surface at least since the crash in 1987.  As an empirical matter, as we 
employed in Example 2 in the previous section, implied vols move inversely with the 
market, and, more generally, the surface changes stochastically over time, but the basic 
shape displayed in Figure 12 is common.      
 
 Implied volatilities are a function of the risk neutral probabilities, the product of 
the natural probabilities and the pricing kernel - risk aversion.  Does the skew indicate 
that the market assigns a high probability to a significant decline or does it mean that the 
probability of that occurring is no higher than the long run average of frequency of such 



 30

events, but that the risk aversion is very high?    We will apply the Recovery Theorem to 
the state prices implicit in the vol surface to answer this question but first we clean some 
loose ends in the literature on option prices. 
 
No Arbitrage (NA) and Implied Vols 
 
 To use the information in the vol surface we first must check that it doesn’t admit 
of arbitrage.  It is well known (see Merton [1974]) that for any given tenor the vol surface 
has to be downward sloping and convex as a function of the strike.  The set of necessary 
conditions for options (of a given tenor) to be arbitrage free is: 
 
The Option Conditions (OC) 

 
  Letting C(K) denote the price of a call option as a function of its strike, the 

familiar necessary conditions for the absence of arbitrage are: 
  

C(K) > 0 
C′K) < 0 
C″(K) > 0 
C(K)↓0 as K → ∞  
C(0) = S (the initial stock price) 
 
 
Theorem 5 
 
 No Arbitrage (NA) if and only if the OC are satisfied. 
 
Proof: 
 
 Necessity is well known (see Merton (1974)).  For sufficiency, let α denote a 
proposed arbitrage portfolio satisfying: 
 

  0 , . .
0

 

 
with strict inequality on a set of positive measure (we are only considering portfolios with 
adequate regularity conditions and not considering portfolios with atoms) .  From 
Breeden Litzenberger (1978), α(s) = g″(s).  If C(k) denotes the cost of a call with a fixed 
maturity and with a strike of k, it follows that the cost of the portfolio α is: 
 

∞

0
 

∞

0
∞ ∞ 0 0  

∞

0
 

 
Since 

    0 0 
0
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 Restricting our attention to α such that C(K)g′(K) → 0 as K ↑ we have 

∞

0
 

∞

0

  ∞ ∞ 0 0   
∞

0

∞

0
 

Denoting the state price density by p(S) we have 

      

And 

0      ∞ 0
∞

0
 

 
By assumption g > 0 and since C″(K) > 0 it follows that the portfolio must have a positive 
cost making arbitrage impossible.   
 
 

□ 
 
  

 For any given surface it is straight forward to check that the OC conditions are 
satisfied.   
 
 Since all contracts can be formed as portfolios of options (Ross [1976]) it is not 
surprising that from the vol surface we can derive the state price distribution, p(S): 
 

   

 
and differentiating twice we obtain the Breeden Litzenberger  [1978]) result that 
 

 
 
 Numerically approximating this second derivative as a second difference along 
the surface at each tenor yields the distribution of state prices looking forward from the 
current state.  Setting the grid size of index movements at 0.5% the S&P 500 call options 
on April 27, 2011 produced the marginal state price densities reported in Table 12.  The 
results are broadly sensible with the exception of the relatively high implied interest rates 
at longer maturities which we will address below. 
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Section 6: The Recovered Natural Distribution, 
 
 Unfortunately, there isn’t a rich forward market for options and we don’t directly 
observe the price transition function, P = [pij].  Instead we will derive it from the state 
price distributions at different tenors.   
 

, ,  , , , ,   

 
where Q(x,y,τ) is the forward probability transition function for going from state x to 
state y in τ periods and where the integration is over the intermediate state at time t, z.   
 
 The forward equation for state prices is given by: 
 

, ,  , , , ,   

  
where p(x, y, T) is the state price of one dollar in state y at time T given that at time 0 the 
state is x, and P(z, y, T – t) is the transition price function of a dollar in state y given that 
the current state is x and T – t is the remaining time.  With appropriate regularity 
conditions this can be solved for P given that we know the current p vectors.  For a 
discrete system with m states we have the mxm matrix: 
 

,          
 
At the current date we are in some state, θ, and observe the current prices of options 
across strikes and tenors, and, as shown above, we can extract from the state prices at 
each future date T, 
 

 1, , … , ,   
 
 Letting the stock price and the past return index the states (this allows, for 
example, for states to depend on price paths) and denoting the current stock price as S, p1 
is column S of P.  To solve for the remaining elements of P we apply the forward 
equation recursively to create the sequence of m-1 equations: 
 

, 1, … ,  
 
This is a system of m2 individual equations in the m2 variables Pij and since we know the 
current prices, pt it can be solved by recursion.   
 
 Since our intention is illustrative we ignore the potential state dependence on past 
returns and identify the states only by the price level.  For relatively short periods this 
may not be much different than if we also used returns since the final price over, say a 
quarter, is a good surrogate for the price path.  Friday, April 27, 2011. The grid is chosen 
to be from -5 to + 5 standard deviations with a standard deviation of 9%/quarter.  This 
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seemed a reasonable compromise between fineness and coverage in the tails.  The 
analysis above was then implemented numerically to derive the transition pricing matrix, 
P by varying the choice of P so as to minimize the sum of squared deviations between the 
resulting prices and the state price vectors of Table 12.  The resulting forward transition 
price matrix, P, is shown in Table 12 under the table of the marginal state price densities.    
 
 The final step is to apply the Recovery Theorem to the transition pricing matrix, 
P.  Table 13 displays the recovered pricing kernel and the resulting natural probability 
transition matrix.  The kernel declines monotonically as the stock value rises, but this 
need not be the case.  Interestingly the nearly block diagonal form for the probability 
transition matrix mirrors the subordinated log normal with volatility dependent on past 
returns of Examples 2 and 3 of Section 4.  Figure 10 displays the pricing kernel, normed 
with the current marginal utility set at 1, and compares it with a best fit constant relative 
risk aversion utility function chosen to minimize the sum of squared deviations.  Notice 
that the fitted kernel function is higher in the region of low and high returns than the 
recovered kernel indicating that its impact on pricing will be exaggerated in these 
regions.  There are no doubt better utility functions to use, but it does give some pause 
about the ubiquitous use of these functions in intertemporal financial portfolio analysis.  
Intriguingly, the best fit is close to a log utility function, i.e., the growth optimal criterion. 
 
 Table 14 shows the recovered marginal distributions at the future dates and 
compares them with the historical distribution estimated by a bootstrap of S&P 500 
returns from 60 years of data (1960 – 2010).  Table 14 also displays the implied 
volatilities from the option prices on April 27, 2011.  Not surprisingly, the densities 
display a slight upward drift as the horizon (tenor) increases.  The summary statistics 
display some significant differences between the recovered and the historical 
distributions.  For the recovered, which is a forward looking measure, the annual 
expected return at all horizons is approximately 5%/year as compared with 10%/year for 
the historical measure.  The standard deviation, on the other hand, is comparable at about 
15%/ year; a not surprising result given the greater accuracy inherent in implied 
volatilities and the fact that with diffusions they coincide – albeit with bias - more closely 
with realized volatilities than do expected returns and realized returns.   
 
 The state prices should sum to the riskless interest factor.  The rates are relatively 
accurate out to about 1 but then rise from 1.85% at 1 year to 7.93% at 3 years.  This is 
significantly higher than 3 year (swap) rates at the time and indicative of a bias in the 
computation of the state prices.  With this high and incorrect rate the risk premium turns 
negative 2 years out, and, the Sharpe ratio also must turn negative as well.  Some of this 
is explainable by the omission of dividends, but it is no doubt mostly a consequence of 
the error in our computation of state prices and the risk free rates and speaks to the need 
for a more refined estimation.   
 
 Notice that the at-the-money implied volatilities are significantly higher than 
those derived from the recovered distribution.   This is a phenomena closely related to the 
observation that implied volatilities are generally significantly greater than realized 
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volatility and it is not surprising that the volatilities from the recovered distribution have 
a similar relation to realized volatility. 
 
 Table 15 displays and compares the recovered natural density and distributions 
with those obtained from the bootstrap, and Figure 11 plots these densities.  Of particular 
interest is what they say about the long standing concern with tail events.  Rietz [1988] 
argued that a large but unobserved probability of a catastrophe – ‘tail risk’ - could explain 
the equity risk premium puzzle, i.e., the apparent dominance of stocks over bonds and 
related questions.  Barro [2006] lent support to this view by expanding the data set to 
include a wide collection of catastrophic market drops beyond what one would see with a 
single market and Weitzmann [2007] provided a deep theoretical argument in support of 
fat tails.  Somewhat more pithily, Merton Miller observed after the 1987 crash that 10 
standard deviation events seemed to be happening every few years.  
 
 As we said in the introduction, tail risk is the economists’ version of the 
cosmologists’ dark matter.  It is unseen and not directly observable but it exerts a force 
that can change over time and that can profoundly influence markets (or galaxies).  By 
separating the risk-averse kernel from the subjective probabilities embedded in option 
prices, though, we get can shed some light on the dark matter and estimate the market’s 
probability of a catastrophe.  As Figure 11 show, the recovered density has a fatter left 
tail than the historical distribution.  Table 15 puts the probability of a six month drop in 
excess of 32% at .0008 or 4 in 5000 bootstraps.  By contrast, the recovered density puts 
this probability at 1.2%.  Similarly, the historical probability of a drop in excess of 26% 
in a six month period is .002 (10 times in 5000 bootstraps) while the recovered market 
probability of .0223 is 10 times greater at over 2%.    
 
 This is only a crude first pass at applying the Recovery Theorem, and it is 
intended to be indicative rather than conclusive.  There is an enormous amount of work to 
be done beginning with a more careful job of estimating the state price density from 
option prices and, from there, estimating the state price transition matrix from the state 
price density at different horizons and strikes.  There are also many improvements 
required to accurately recover the kernel and the natural measure implicit in the state 
prices.  
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Section 7:  Testing the Efficient Market Hypothesis 
 
 It has long been thought that tests of efficient market hypotheses are necessarily 
joint tests of both market efficiency and a particular asset pricing model.  Using the 
Recovery Theorem we can separate these two assumptions and derive model free tests of 
the efficient market hypothesis. 
 
 One way of approaching this question actually requires no such separation.  A 
somewhat traditional approach makes use of the data in option prices directly.  Let x(S) 
be the (date T) payoff on a proposed strategy for ‘beating the market’.  By assumption, 
x(S) is a self-financing strategy so the null hypothesis is that the market is efficient and 
that any self-financing strategy must have zero current value: 
  

 0
∞

0
 

 
But, any strategy x(S) can be written as a combination of call options 
 

     

 
where the β coefficients are from the projection of x(S) on the calls.  The value of x is 
now given by 
 

0   

    

 
The test of efficiency is simply a test of the above restriction 
 

 
∞

0
0  

 
 More interestingly, though, we can follow through on a completely different tack.  
In Ross [2005] an approach to testing efficient market hypotheses was proposed that 
depended on finding an upper bound to the volatility of the pricing kernel.   
 
 Assume that μ is stochastic and depends on some unspecified or unobserved 
conditioning information set, I.  From the Hansen – Jagannathan bound [1991] we have a 
lower bound on the volatility of the pricing kernel 
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where μ is the excess return and σ is the standard deviation on any asset which implies 
that σ(�) is bounded from below by the discounted maximum observed Sharpe ratio.  
 
 Equivalently, this is also an upper bound on the Sharpe ratio for any investment.   
From the recovered marginal density function reported in Table 14 we can compute the 
variance of the kernel at, say, one year out.  The computation is straightforward and the 
resulting variance is 

 .1065 
   
or an annual standard deviation of 

 .3264 
 
 Ignoring the small interest factor, this is the upper limit for the Sharpe ratio for 
any strategy to be consistent with efficient markets and not be ‘too good’ a deal (see 
Cochrane [1999] and Bernado and Ledoit [1999] for a discussion of good deals and Ross 
[1976] for an early use of the bound for asset pricing).   
 
 Similarly, we can decompose excess returns on some asset or portfolio strategy as 
 

    , 
 
where the mean depends on the particular information set, I, and where the residual term  
 

   
 
Hence, we have an upper bound to the R2 of the regression in an efficient market 
  

2  
2

2   
2

2    2 2  

 
i.e., the R2 is bounded above by the volatility of the pricing kernel.  Of course, the kernel 
can have arbitrarily high volatility by simply adding orthogonal noise to it, so the proper 
maximum to be used is the volatility of the projection of the kernel on the stock market, 
and, hence, these are tests on strategies that are based on stock returns and the filtration 
they generate.   
 
 Using our estimate of the variance of the pricing kernel we find that the maximum 
it can contribute to the R2 of an explanatory regression is about 10%.  In other words, 
10% of the annual variability of an asset return is the maximum amount that can be 
attributed to movements in the pricing kernel and 90% should be idiosyncratic in an 
efficient market.  (This bound is the same for any time unit of observation.)  Hence any 
test of an investment strategy that uses, say, publicly available data, and has the ability to 
predict future returns with an R2 > 10% would be a violation of efficient markets 
independent of the asset pricing model being used.   Of course, any such strategy must 
overcome transactions cost to be an implementable violation, and a strategy that could 
not overcome those costs would be purely of academic interest.   
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Section 8:  Summary and Conclusions 
 
 If we can observe or estimate the transition price matrix then the Recovery 
Theorems allow us to recover the pricing kernel, i.e., the marginal rates of substitution of 
the representative agent, and the (ex ante) natural distribution of asset returns implicit in 
market prices.  Armed with the market’s risk aversion – the pricing kernel – and the 
market’s subjective assessment of the distribution of returns, there is a cornucopia of 
applications.   Currently economists and investors are regularly asked to fill out surveys 
to determine some consensus estimate for the expected return on the stock market.  Now 
we can directly assess this much as we use forward rates as forecasts of future spot rates.  
Institutional asset holders, such as pension funds, use historical estimates of the risk 
premium on the market as an input into asset allocation models.  The market’s current 
subjective forecast would probably be superior and certainly of interest.  Risk control 
models such as VAR, typically use historical estimates to determine the risk of various 
books of business and this, too, would be improved by using the recovered distribution. 
 
 These results are also applicable across a variety of markets, e.g., currency, 
futures, and fixed income.  For the stock market, they can be used to examine the host of 
market anomalies and, more specifically, market efficiency for which we have presented 
one of many possible tests based on the recovered distribution.  The ability to better 
assess the market’s perspective of the likelihood of a catastrophic drop will have both 
practical and theoretical implications.  The kernel is important on its own since it 
measures the degree of risk aversion in the market.  For example, just as the market 
portfolio is a benchmark for performance measurement and portfolio selection, the 
pricing kernel serves as a benchmark for preferences.  Knowledge of both the kernel and 
the natural distribution will also shed light on the controversy of whether the market is 
too volatile to be consistent with rational pricing models (see, e.g., Leroy and Porter 
[1981], Shiller [1981]).           
 
 There is certainly much work to be done on the theoretical front.  We need to 
further explore recovery along binomial (multinomial) trees.  We don’t yet know what 
approach will prove the most practical and applicable version of the Recovery Theorem.  
We also need to examine the recovery theory in a continuous time and state setting and, 
in particular, we need to specialize it to particular processes such as state dependent 
diffusions where recovery will be about the parameters governing the return processes.  
More generally, we need to carefully examine the boundaries of recovery, and 
particularly the robustness of the underlying assumptions on the existence of the state 
independent kernel.      
 
 In conclusion, contrary to finance folklore, it is possible to separate risk aversion 
from the natural distribution and estimate each of them from market prices.  With a pun 
intended, we have only scratched the surface of discovering what investors are 
forecasting for the future development of the market and the economy.    
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Figure 1 
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Figure 2 
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Figure 3 
 
 
 
 

 
 

  

0

1000000000000000000000

2000000000000000000000

3000000000000000000000

4000000000000000000000

5000000000000000000000

6000000000000000000000

7000000000000000000000

8000000000000000000000

0.10 0.35 0.60 0.85 1.10 1.35 1.60 1.85

Stock Price

‐ state price/probability



 41

Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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Figure 8 
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Table 9 
 
 
 

 
 
 
 

  

Sigmas ‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Sigmas S0 \ ST    0.37 0.45 0.55 0.67 0.82 1.00 1.22 1.49 1.82 2.23 2.72

‐5 0.37 0.0000 0.0000 0.0005 0.0046 0.0152 0.0186 0.0084 0.0014 0.0001 0.0000 0.0000

‐4 0.45 0.0000 0.0000 0.0009 0.0084 0.0278 0.0339 0.0152 0.0025 0.0002 0.0000 0.0000

‐3 0.55 0.0000 0.0001 0.0017 0.0152 0.0506 0.0618 0.0278 0.0046 0.0003 0.0000 0.0000

‐2 0.67 0.0000 0.0001 0.0031 0.0278 0.0922 0.1126 0.0506 0.0084 0.0005 0.0000 0.0000

‐1 0.82 0.0000 0.0002 0.0056 0.0506 0.1680 0.2052 0.0922 0.0152 0.0009 0.0000 0.0000

0 1.00 0.0000 0.0004 0.0102 0.0922 0.3061 0.3738 0.1680 0.0278 0.0017 0.0000 0.0000

1 1.22 0.0000 0.0008 0.0186 0.1680 0.5577 0.6812 0.3061 0.0506 0.0031 0.0001 0.0000

2 1.49 0.0000 0.0014 0.0339 0.3061 1.0162 1.2412 0.5577 0.0922 0.0056 0.0001 0.0000

3 1.82 0.0000 0.0025 0.0618 0.5577 1.8516 2.2616 1.0162 0.1680 0.0102 0.0002 0.0000

4 2.23 0.0001 0.0046 0.1126 1.0162 3.3739 4.1209 1.8516 0.3061 0.0186 0.0004 0.0000

5 2.72 0.0001 0.0084 0.2052 1.8516 6.1476 7.5087 3.3739 0.5577 0.0339 0.0008 0.0000

20.09 11.02 6.05 3.32 1.82 1.00 0.55 0.30 0.17 0.09 0.05

Sigmas ‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Sigmas S0 \ ST    0.37 0.45 0.55 0.67 0.82 1.00 1.22 1.49 1.82 2.23 2.72

‐5 0.37 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

‐4 0.45 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

‐3 0.55 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

‐2 0.67 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

‐1 0.82 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

0 1.00 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

1 1.22 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

2 1.49 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

3 1.82 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

4 2.23 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

5 2.72 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

The State Space Transition Matrix, P

Fixed future payoff ‐ Lognormal Distribution, 

Constant Relative Risk Aversion, R = 3

The Natural Probability Transition Matrix, F

�  =
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Table 10 

 
 

 
 

 
 

  

Sigmas ‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Sigmas S0 \ ST    0.37 0.45 0.55 0.67 0.82 1.00 1.22 1.49 1.82 2.23 2.72

‐5 0.37 0.0000 0.0001 0.0015 0.0136 0.0442 0.0528 0.0232 0.0037 0.0002 0.0000 0.0000

‐4 0.45 0.0000 0.0001 0.0020 0.0186 0.0630 0.0784 0.0359 0.0060 0.0004 0.0000 0.0000

‐3 0.55 0.0000 0.0001 0.0026 0.0254 0.0895 0.1163 0.0555 0.0098 0.0006 0.0000 0.0000

‐2 0.67 0.0000 0.0001 0.0034 0.0344 0.1268 0.1720 0.0859 0.0158 0.0011 0.0000 0.0000

‐1 0.82 0.0000 0.0002 0.0044 0.0463 0.1787 0.2540 0.1328 0.0255 0.0018 0.0000 0.0000

0 1.00 0.0000 0.0002 0.0056 0.0618 0.2506 0.3738 0.2052 0.0414 0.0031 0.0001 0.0000

1 1.22 0.0000 0.0002 0.0070 0.0818 0.3491 0.5484 0.3169 0.0674 0.0053 0.0002 0.0000

2 1.49 0.0000 0.0003 0.0087 0.1070 0.4827 0.8012 0.4892 0.1099 0.0091 0.0003 0.0000

3 1.82 0.0000 0.0003 0.0106 0.1382 0.6615 1.1648 0.7546 0.1798 0.0158 0.0005 0.0000

4 2.23 0.0000 0.0003 0.0127 0.1758 0.8968 1.6833 1.1624 0.2953 0.0276 0.0009 0.0000

5 2.72 0.0000 0.0004 0.0148 0.2196 1.2007 2.4151 1.7871 0.4865 0.0487 0.0018 0.0000

7.39 4.95 3.32 2.23 1.49 1.00 0.67 0.45 0.30 0.20 0.14

Sigmas ‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Sigmas S0 \ ST    0.37 0.45 0.55 0.67 0.82 1.00 1.22 1.49 1.82 2.23 2.72

‐5 0.37 0.0000 0.0001 0.0035 0.0461 0.2232 0.3977 0.2607 0.0629 0.0056 0.0002 0.0000

‐4 0.45 0.0000 0.0001 0.0031 0.0423 0.2133 0.3961 0.2706 0.0680 0.0063 0.0002 0.0000

‐3 0.55 0.0000 0.0001 0.0027 0.0386 0.2033 0.3938 0.2807 0.0736 0.0071 0.0003 0.0000

‐2 0.67 0.0000 0.0001 0.0023 0.0351 0.1929 0.3906 0.2909 0.0797 0.0080 0.0003 0.0000

‐1 0.82 0.0000 0.0000 0.0020 0.0316 0.1823 0.3865 0.3015 0.0865 0.0091 0.0004 0.0000

0 1.00 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

1 1.22 0.0000 0.0000 0.0015 0.0251 0.1600 0.3750 0.3233 0.1025 0.0120 0.0005 0.0000

2 1.49 0.0000 0.0000 0.0012 0.0220 0.1483 0.3673 0.3346 0.1121 0.0138 0.0006 0.0000

3 1.82 0.0000 0.0000 0.0010 0.0191 0.1362 0.3579 0.3459 0.1230 0.0161 0.0008 0.0000

4 2.23 0.0000 0.0000 0.0008 0.0163 0.1238 0.3467 0.3572 0.1354 0.0189 0.0010 0.0000

5 2.72 0.0000 0.0000 0.0006 0.0136 0.1111 0.3335 0.3681 0.1495 0.0223 0.0012 0.0000

Returns ‐ Lognormal Distribution, Constant 

Relative Risk Aversion of returns, R = 2

The State Space Transition Matrix, P

�     =

The Natural Probability Transition Matrix, F
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Table 11 
 
 

 
  

Sigmas ‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Sigmas S0 \ ST    0.37 0.45 0.55 0.67 0.82 1.00 1.22 1.49 1.82 2.23 2.72

‐5 0.37 0.6706 0.2403 0.0525 0.0041 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

‐4 0.45 0.2807 0.3961 0.2450 0.0545 0.0043 0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

‐3 0.55 0.0496 0.2245 0.3938 0.2485 0.0562 0.0045 0.0001 0.0000 0.0000 0.0000 0.0000

‐2 0.67 0.0032 0.0437 0.2179 0.3906 0.2508 0.0573 0.0046 0.0001 0.0000 0.0000 0.0000

‐1 0.82 0.0001 0.0029 0.0414 0.2115 0.3865 0.2515 0.0578 0.0047 0.0001 0.0000 0.0000

0 1.00 0.0000 0.0001 0.0027 0.0394 0.2054 0.3814 0.2502 0.0575 0.0046 0.0001 0.0000

1 1.22 0.0000 0.0000 0.0001 0.0025 0.0376 0.1997 0.3750 0.2467 0.0562 0.0044 0.0001

2 1.49 0.0000 0.0000 0.0000 0.0001 0.0024 0.0360 0.1944 0.3673 0.2405 0.0538 0.0042

3 1.82 0.0000 0.0000 0.0000 0.0000 0.0001 0.0022 0.0348 0.1896 0.3579 0.2311 0.0571

4 2.23 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0339 0.1854 0.3467 0.3130

5 2.72 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0021 0.0334 0.1819 0.8746

0.69 0.64 0.58 0.51 0.44 0.37 0.29 0.22 0.16 0.11 0.07

Sigmas ‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Sigmas S0 \ ST    0.37 0.45 0.55 0.67 0.82 1.00 1.22 1.49 1.82 2.23 2.72

‐5 0.37 0.0000 0.0001 0.0035 0.0461 0.2232 0.3977 0.2607 0.0629 0.0056 0.0002 0.0000

‐4 0.45 0.0000 0.0001 0.0031 0.0423 0.2133 0.3961 0.2706 0.0680 0.0063 0.0002 0.0000

‐3 0.55 0.0000 0.0001 0.0027 0.0386 0.2033 0.3938 0.2807 0.0736 0.0071 0.0003 0.0000

‐2 0.67 0.0000 0.0001 0.0023 0.0351 0.1929 0.3906 0.2909 0.0797 0.0080 0.0003 0.0000

‐1 0.82 0.0000 0.0000 0.0020 0.0316 0.1823 0.3865 0.3015 0.0865 0.0091 0.0004 0.0000

0 1.00 0.0000 0.0000 0.0017 0.0283 0.1714 0.3814 0.3123 0.0940 0.0104 0.0004 0.0000

1 1.22 0.0000 0.0000 0.0015 0.0251 0.1600 0.3750 0.3233 0.1025 0.0120 0.0005 0.0000

2 1.49 0.0000 0.0000 0.0012 0.0220 0.1483 0.3673 0.3346 0.1121 0.0138 0.0006 0.0000

3 1.82 0.0000 0.0000 0.0010 0.0191 0.1362 0.3579 0.3459 0.1230 0.0161 0.0008 0.0000

4 2.23 0.0000 0.0000 0.0008 0.0163 0.1238 0.3467 0.3572 0.1354 0.0189 0.0010 0.0000

5 2.72 0.0000 0.0000 0.0006 0.0136 0.1111 0.3335 0.3681 0.1495 0.0223 0.0012 0.0000

The State Space Transition Matrix, P constant marginal utility beyond ends

�     =

The Natural Probability Transition Matrix, F



 49

 
Figure 9 

 
The Vol Surface on March 20, 2011 
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Table 12 
 

State Prices and the State Space Price Transition Matrix, P,  
on April 27, 2011 

 
 

 

 
 

 
 
  

Tenor 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500 2.5000 2.7500 3.0000

‐35% 0.0054 0.0226 0.0383 0.0496 0.0578 0.0636 0.0681 0.0713 0.0734 0.0747 0.0755 0.0758

‐29% 0.0066 0.0185 0.0260 0.0301 0.0325 0.0338 0.0345 0.0346 0.0346 0.0346 0.0343 0.0336

‐23% 0.0177 0.0410 0.0461 0.0498 0.0513 0.0515 0.0513 0.0504 0.0496 0.0487 0.0476 0.0462

‐16% 0.0446 0.0640 0.0726 0.0733 0.0719 0.0698 0.0679 0.0662 0.0636 0.0606 0.0582 0.0564

‐8% 0.1641 0.1562 0.1415 0.1282 0.1176 0.1094 0.1024 0.0962 0.0905 0.0854 0.0807 0.0764

0% 0.4775 0.3023 0.2338 0.1976 0.1732 0.1555 0.1412 0.1295 0.1196 0.1109 0.1032 0.0963

9% 0.2762 0.3157 0.2783 0.2452 0.2192 0.1979 0.1796 0.1643 0.1514 0.1401 0.1297 0.1205

19% 0.0066 0.0701 0.1286 0.1554 0.1661 0.1672 0.1637 0.1582 0.1518 0.1448 0.1374 0.1302

30% 0.0000 0.0024 0.0158 0.0358 0.0553 0.0718 0.0846 0.0937 0.0997 0.1033 0.1051 0.1054

41% 0.0000 0.0001 0.0009 0.0038 0.0092 0.0171 0.0264 0.0358 0.0449 0.0533 0.0610 0.0672

54% 0.0000 0.0000 0.0000 0.0000 0.0002 0.0004 0.0007 0.0011 0.0016 0.0022 0.0028 0.0033

interest 0.9988 0.9988 0.9928 0.9819 0.9679 0.9517 0.9327 0.9113 0.8876 0.8623 0.8355 0.8077

factor

Sigmas ‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Sigmas S0 \ ST    0.37 0.45 0.55 0.67 0.82 1.00 1.22 1.49 1.82 2.23 2.72

‐5 0.37 0.6711 0.2407 0.0529 0.0048 0.0013 0.0006 0.0009 0.0005 0.0005 0.0004 0.0000

‐4 0.45 0.2803 0.3959 0.2447 0.0541 0.0038 0.0001 0.0004 0.0000 0.0000 0.0000 0.0000

‐3 0.55 0.0494 0.2244 0.3937 0.2484 0.0560 0.0044 0.0002 0.0000 0.0000 0.0000 0.0000

‐2 0.67 0.0057 0.0436 0.2177 0.3903 0.2503 0.0565 0.0033 0.0000 0.0000 0.0000 0.0000

‐1 0.82 0.0060 0.0067 0.0410 0.2108 0.3853 0.2490 0.0537 0.0025 0.0000 0.0000 0.0000

0 1.00 0.0054 0.0066 0.0177 0.0446 0.1641 0.4775 0.2762 0.0066 0.0000 0.0000 0.0000

1 1.22 0.0005 0.0005 0.0009 0.0038 0.0399 0.2040 0.3820 0.2508 0.0580 0.0049 0.0001

2 1.49 0.0010 0.0008 0.0012 0.0020 0.0057 0.0421 0.2040 0.3733 0.2431 0.0546 0.0043

3 1.82 0.0015 0.0010 0.0012 0.0017 0.0026 0.0062 0.0408 0.1947 0.3612 0.2323 0.0571

4 2.23 0.0005 0.0003 0.0004 0.0005 0.0007 0.0009 0.0033 0.0352 0.1866 0.3474 0.3130

5 2.72 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0003 0.0321 0.1813 0.8746

The State Price Transition Matrix, P
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Table 13 
 

The Recovered Pricing Kernel and the Natural Probability Transition 
Matrix 

 
 
 
 
 
 

 
 
 
 
 

Sigmas ‐5 ‐4 ‐3 ‐2 ‐1 0 1 2 3 4 5

Sigmas S0 \ ST    ‐35% ‐29% ‐23% ‐16% ‐8% 0% 9% 19% 30% 41% 54%

‐5 ‐35% 0.6699 0.2530 0.0607 0.0062 0.0019 0.0010 0.0020 0.0014 0.0018 0.0021 0.0000

‐4 ‐29% 0.2657 0.3952 0.2666 0.0662 0.0054 0.0001 0.0008 0.0000 0.0000 0.0000 0.0000

‐3 ‐23% 0.0429 0.2053 0.3930 0.2785 0.0729 0.0072 0.0003 0.0000 0.0000 0.0000 0.0000

‐2 ‐16% 0.0044 0.0355 0.1934 0.3896 0.2899 0.0813 0.0058 0.0000 0.0000 0.0000 0.0000

‐1 ‐8% 0.0040 0.0047 0.0314 0.1814 0.3846 0.3088 0.0805 0.0047 0.0000 0.0000 0.0000

0 0% 0.0029 0.0038 0.0109 0.0308 0.1318 0.4767 0.3330 0.0100 0.0000 0.0000 0.0000

1 9% 0.0002 0.0002 0.0004 0.0022 0.0265 0.1686 0.3813 0.3137 0.0949 0.0114 0.0005

2 19% 0.0004 0.0003 0.0005 0.0009 0.0030 0.0277 0.1625 0.3727 0.3176 0.1016 0.0127

3 30% 0.0004 0.0003 0.0004 0.0006 0.0011 0.0031 0.0248 0.1485 0.3605 0.3302 0.1302

4 41% 0.0001 0.0001 0.0001 0.0001 0.0002 0.0003 0.0014 0.0189 0.1308 0.3467 0.5013

5 54% 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0001 0.0140 0.1128 0.8731

1.86 1.77 1.62 1.44 1.24 1.00 0.83 0.66 0.50 0.35 0.22

The Natural Probability Transition Matrix, F

Kernel    =
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Figure 10 
 

The Pricing Kernel and the Closest Fitted Constant Relative Risk 
Aversion Kernel 
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0.49 0.65 0.87 1.15 1.53 2.03

Recovered Marginal Utility ‐ Kernel Constant Relative Risk Aversion = 1.02
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Table 14 

 
The Recovered and the Bootstrapped Natural Marginal Distributions 

 

 
 
 
 

 
 
 
 
 
 

  

Marginal Distributions

Tenor 0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500 2.5000 2.7500 3.0000

‐35% 0.0029 0.0120 0.0201 0.0257 0.0295 0.0322 0.0342 0.0358 0.0368 0.0377 0.0385 0.0391

‐29% 0.0038 0.0103 0.0143 0.0164 0.0175 0.0180 0.0183 0.0183 0.0183 0.0184 0.0184 0.0183

‐23% 0.0109 0.0250 0.0278 0.0296 0.0301 0.0300 0.0296 0.0291 0.0286 0.0283 0.0279 0.0274

‐16% 0.0308 0.0438 0.0491 0.0489 0.0474 0.0456 0.0441 0.0428 0.0412 0.0395 0.0383 0.0376

‐8% 0.1318 0.1242 0.1110 0.0993 0.0900 0.0829 0.0771 0.0722 0.0681 0.0645 0.0615 0.0590

0% 0.4767 0.2986 0.2277 0.1901 0.1647 0.1465 0.1322 0.1208 0.1117 0.1042 0.0978 0.0925

9% 0.3330 0.3765 0.3274 0.2849 0.2519 0.2252 0.2030 0.1852 0.1709 0.1589 0.1484 0.1398

19% 0.0100 0.1047 0.1897 0.2264 0.2392 0.2384 0.2319 0.2235 0.2146 0.2058 0.1971 0.1892

30% 0.0000 0.0047 0.0306 0.0683 0.1042 0.1341 0.1569 0.1733 0.1845 0.1921 0.1973 0.2005

41% 0.0000 0.0002 0.0024 0.0102 0.0247 0.0455 0.0697 0.0943 0.1184 0.1413 0.1629 0.1822

54% 0.0000 0.0000 0.0000 0.0002 0.0007 0.0016 0.0029 0.0047 0.0068 0.0093 0.0120 0.0145

1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

Summary statistics (annualized)

0.2500 0.5000 0.7500 1.0000 1.2500 1.5000 1.7500 2.0000 2.2500 2.5000 2.7500 3.0000

mean 0.0463 0.0502 0.0546 0.0566 0.0577 0.0582 0.0581 0.0573 0.0562 0.0549 0.0533 0.0517

sigma 0.1247 0.1441 0.1494 0.1520 0.1534 0.1546 0.1553 0.1551 0.1543 0.1532 0.1518 0.1501

risk free 0.0048 0.0024 0.0096 0.0185 0.0264 0.0336 0.0406 0.0476 0.0544 0.0611 0.0675 0.0738

E ‐ r 0.0415 0.0478 0.0450 0.0381 0.0313 0.0247 0.0175 0.0098 0.0018 ‐0.0062 ‐0.0142 ‐0.0221

Sharpe 0.3330 0.3317 0.3011 0.2508 0.2039 0.1595 0.1124 0.0630 0.0117 ‐0.0405 ‐0.0934 ‐0.1474

ATM vol 0.1453 0.1669 0.1771 0.1820 0.1853 0.1881 0.1909 0.1934 0.1958 0.1982 0.2007 0.2031

Summary Historical Statistics (Monthly S&P 500 returns from 1960 ‐ 2010 (annualized)

mean 0.1034

sigma 0.1547

risk free 0.0545

E ‐ r 0.0489

Sharpe 0.3159
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Table 15 
 

The Densities and the Cumulative Distributions for the Recovered and 
the Bootstrapped Natural Probabilities (six month horizon) 

 
 
 

 
 

 
 
 
  

Densities: Distribution Functions:

Range Bootstrapped Recovered Bootstrapped Recovered

‐32% 0.0008 0.0120 0.0008 0.0120

‐26% 0.0012 0.0103 0.0020 0.0223

‐19% 0.0102 0.0250 0.0122 0.0473

‐12% 0.0448 0.0438 0.0570 0.0912

‐4% 0.1294 0.1242 0.1864 0.2153

0% 0.2834 0.2986 0.4698 0.5139

4% 0.3264 0.3765 0.7962 0.8904

14% 0.1616 0.1047 0.9578 0.9951

24% 0.0384 0.0047 0.9962 0.9998

35% 0.0036 0.0002 0.9998 1.0000

48% 0.0002 0.0000 1.0000 1.0000
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Figure 11 
 

The Recovered and the Bootstrapped Natural Densities 
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