
Boosting and Bagging of Neural Networks

with Applications to Financial Time Series

Zhuo Zheng

August 4, 2006

Abstract

Boosting and bagging are two techniques for improving the perfor-

mance of learning algorithms. Both techniques have been successfully

used in machine learning to improve the performance of classification

algorithms such as decision trees, neural networks.

In this paper, we focus on the use of feedforward back propagation

neural networks for time series classification problems. We apply

boosting and bagging with neural networks as base classifiers, as well

as support vector machines and logistic regression models, to binary

prediction problems with financial time series data. For boosting,

we use a modified boosting algorithm that does not require a weak

learner as the base classifier.

A comparison of our results suggest that our boosting and bagging

techniques greatly outperform support vector machines and logistic

regression models for this problem. The results also show that our

1

techniques can reduce the prediction variance. Furthermore, we eval-

uate our model on several stocks and indices using a trading strategy,

and we are able to obtain very significant return on investment than

the market growth rate.

1 Introduction

Data mining is the process of analyzing large quantities of data and sum-

marizing it into useful information. Supervised data mining considers train-

ing a model from training data set, which will enable us to make out-of-

sample predictions. New techniques and algorithms have been created in

practice as development of powerful computer processors allows for in-

creasingly complex computations.

Boosting is a technique to improve the performance of the machine learning

algorithms. Boosting combines ”weak learners” to find a highly accurate

classifier or better fit for the training set (Schapire, 1990). Successive ”learn-

ers” focus more on the errors that the previous ”learner” makes. Bootstrap

aggregating (bagging) is another technique designed to improve the perfor-

mance of machine learning algorithms(Breiman, 1994). Bagging combines

a large number of ”learners”, where each ”learner” uses a bootstrap sample

of the original training set.

Both boosting and bagging have been successfully used in machine learn-

ing to improve the performance of classification algorithms such as deci-

2

sion trees. There have been a number of studies on the advantages of deci-

sion trees relative to neural networks for specific data sets and it has been

shown that boosting works as well or better for neural networks than for

decision trees(Schwenk and Bengio, 2000).

In this paper, we will investigate the predictability of daily financial time

series directional movement using a data mining technique. We focus on

the use of feedforward back propagation neural networks for time series

binary classification problems. We apply boosting and bagging with neu-

ral networks as base classifiers, as well as support vector machines (SVM)

and logistic regression models, to binary prediction problems with finan-

cial time series data such as predicting the daily movements of stocks and

stock indices. For boosting, we use a modified boosting algorithm that does

not require a weak learner as the base classifier.

Three experiments are designed to evaluate the performance of our tech-

niques and model. First, comparing the percentage of the directional suc-

cess of our models to the SVM and logistic regression. Second, examining

the statistical performance of the models, such as increasing accuracy and

reducing variance. Third, applying a trading strategy to our model output

and determining the return on investment compared to the actual market

growth.

3

2 Learning Methods

2.1 Neural Network

A neural network illustrated in Figure 1 is a general statistical model with

a large number of parameters.

Figure 1: Neural network with weight parameters and transform function.

A feedforward back propagation neural network trains all the training data

(or example) repeatedly with difference weights. A black-box like neu-

ral network trains data as shown in figure 2. Neural networks have been

trained to perform complex functions for regression and classification. For

a binary classifier of classes A and B, a two-node output will return prob-

abilities of being classified as class A or class B. Since Pr(A) + Pr(B) = 1,

we will build the neural network to return P(A), and obtain Pr(B)= 1-Pr(A).

The architecture of the feedforward back propagation neural network is de-

4

noted ”a− b− 1” with 1 hidden layer, where a is number of elements in the

input vector, and b is the number of the nodes in the hidden layer.

Figure 2: Neural network process data as a black-box.

The MatLab toolbox Neural Network functions newff() is used to initialize

the architecture of the network, train() is used to train the network. Then

the MatLab Simulink function sim() is used for the neural network predic-

tion.

Activation functions are chosen to process information from input nodes

X ′
is (i=0,1,...,a) and hidden nodes Z ′js (j=0,1,...,b), where X0 and Z0 are the

bias (intercept). The typical activation functions are the log-sigmoid (1) and

logistic functions (2). These two functions return a monotone increasing

probability function in (0, 1).

σ(v) = 1/(1 + e−v). (1)

5

logit(v) = exp(v)/(1 + exp(v)) (2)

The log-sigmoid function is chosen for our analysis, where

Zj =
1

1 + exp{(−1)(α0 + αT
j X)} (3)

If there is more than one hidden layer, apply activation functions between

layers. For binary classification, the output layer can be viewed as two

parts, linear combination and transformation. There is another set of weights

applied to the linear combination,

Y = β0 + βT
j Z, j = 1, ..., b. (4)

A transfer function such as log-sigmoid or logistic function will be applied

to the linear combination result, and we will have the probability output

Prob = 1/(1 + e−Y). (5)

A threshold value is picked for the classification. A complete neural net

figure is shown in 1.

output =

0, if Prob < threshold value;

1, if Prob ≥ threshold value.
(6)

To build (or train) the neural network, we need to estimate all of the weight

parameters α′is and β′js. For the ”a− b− 1” neural network, there are b(a +

1)+(b+1) parameters in total including the intercepts (or noise) need to be

6

estimated. For classification neural network, mean-squared error is used as

a measure of fit,

mse =
1
N

N∑

i=1

err(i)2 (7)

The Levenberg-Marquardt algorithm (Neural Network Toolbox User’s Guide),

an approximate gradient descent procedure (trainlm() in matlab) which

gives an approximation to the Hessian in Newton’s method, is used to ad-

just the weight parameters to minimize MSE.

2.2 Bagging and Boosting

It is often possible to increase the accuracy of the classification by averaging

the decisions of an ensemble of classifiers. Boosting and bagging are two

techniques for such a purpose, and they work better for unstable learning

algorithms such as neural networks, logistics regression, and decision trees.

Bagging involves fitting the model, including all potential data points, on

the original training set. Bootstrap samples with replacement of the origi-

nal training set of size up to the size of the training set are generated. Some

of the data points can appear more than once while others don’t appear at

all. By averaging across resamples, bagging effectively removes the insta-

bility of the decision rule. Thus, the variance of bagged prediction model is

smaller than if we fit only one classifier to the original training set.(Inoue,

A. Kilian, L., 2005). Bagging also helps to avoid overfitting.

7

The idea of boosting is to increase the strength of a a weak learning algo-

rithm. According to a rule of thumb, a weak learning algorithm should

be better than random guessing. For a binary classifier, the weak learning

hypothesis is getting 50% right. Boosting trains a weak learner a number

of times, using a reweighted version of the original training set. Boosting

trains the first weak learner with equal weight on all the data points in the

training set, then trains all other weak learners based on the the updated

weight. The data points wrongly classified by the preview weak learner

get heavier weight, and the the correctly classified data points get lighter

weight. This way, the next classifier will attempt to fix the errors make by

the previous learner.

There are several boosting algorithm, including AdaBoost, AdaBoost.M1,

AdaBoost.M2, and AdaBoost.R (Freund, Y. and Schapire,R. 1995). AdaBoost

is for binary classification problems, AdaBoost.M1 and .M2 are for multi-

ple classification problems, and AdaBoost.R is for regression. We modify

the AdaBoost algorithm so that it does not require the weak learning hy-

pothesis, since sometimes the unstable neural network has error slightly

higher than 50%. Instead of applying weights to each data point in the

original training set, our modified boosting algorithm bootstraps resample

the training set with updated weights.

Consider a training set D with N data points (x1, y1), ..., (xN , yN), where

yis are the targets coded as y ∈ {0, 1}, and a testing set DT with NT data

points. A binary classifier neural network G: G(X) → [0, 1].

8

Boosting Algorithm:

1. Initialize the observation weights wi = 1/N, i = 1, 2, ..., N..

2. For m = 1 to M:

(a) Train a neural network Gm(x) to the training data.

(b) Compute the error rate:

errm =
1
N

N∑

i=1

I(yi 6= Gm(xi)).

where X is the original training data.

(c) Compute αm = (1− errm)/2.

(d) Update the weights:

wi = wi ∗ (1−αm), if yi = Gm(xi); otherwise wi = wi ∗ (1+

αm).

(e) Normalize the weight vector W .

(f) Re-sample training data with replacement and weights wi.

Bagging Algorithm:

1. Build the model: for m = 1 to M:

(a) Bootstrap sample Dm of size N with replacement from the

original training set D with equal weight.

(b) Train a neural network Gm(x) to the bootstrap sample Dm.

9

Predicting:

For m = 1toM :

Apply Gm to the testing set DT .

Classifier using I{∑M
i=1 Gi(xi)/M > thresholdvalue} ∈ class1.

2.3 Support Vector Machine

SVM (Boser, Guyon and Vapnik, 1992) is a popular technique for classi-

fication. We will only discuss the SVM used for our binary classification

problems. Given a training set of instance-label pairs (xi, yi), i = 1, ..., N

where xi ∈ Ra and y ∈ {0, 1}. The idea of SVM is to transfer the X into

some space by a kernel function, where the X can be separated by a hyper-

plane. However, in practice, it is never completely separate. Therefore, we

will need to minimize the error. Margin, the distance to the closest data

point from both classes, is used as the measure of fit. Vapnik-Chervonenkis

theory provides a probabilistic test error bound that is minimized when

the margin is maximized(Hastie, Tibshirani and Friedman, 2001). The soft-

ware package we use to train and test the SVM in the R library e1071. The

procedure includes the following

1. Transform data to the format of the software required.

2. Explore the performance of various kernels and parameters.

3. Test the model.

We settled on a 3rd degree polynomial kernel.

10

2.4 Logistic Regression

The logistic model as applied to the binary classification problem is

logit[p] = log[
p

1− p
]

= β0 + β1x1,i + β2x2,i + ... + βaxa,i (8)

where i = 1, ..., n and p = Pr(Yi = 1).

The target variable or in the logistic regression case, the response, for our bi-

nary classification problem is {0, 1}. However the logistic regression equa-

tion does not predict classes directly nor predicate the probability that an

observation belongs to one class or the other directly. The logistic regres-

sion predicts the log odds that an observation will be in class 1. The log

odds of an event is defined as

logodds(class1) = log(
Pr(class1)

1− Pr(class1)
)

= log(
Pr(class1)
Pr(class0)

)

= log(Pr(class1))− log(Pr(class0)) (9)

3 Financial Time Series Compilation

The financial time series analysis in this paper include three groups total-

ing eight stocks and indices. The daily stock adjusted closed prices 1 of Ap-

1Adjusted close price is the close price adjusted for dividends and splits.

11

ple Computer Inc. (AAPL), Microsoft Corp. (MSFT), International Busi-

ness Machines Corp. (IBM), General Motors Corporation (GM), General

Electric Co. (GE), S&P 500 INDEX,RTH (GSPC), NASDAQ-100 (DRM)

(NDX), and DOW JONES COMPOSITE INDEX (DJA) are obtained from

a reference database(Yahoo Finance, 2006).

The working dataset of AAPL, MSFT , IBM , GSPC, NDX , and DJA

contains 3272 (13 years) stock trading days beginning on August 3, 1993

and ending on July 14, 2006. The working dataset for GM and GE also

contains 3272 (13 years) stock trading days from August 12, 1992, to August

12, 2002. The daily log-return (r) of the stock or index is calculated as

ri = log(1 +
Pi − Pi−1

Pi−1
) (10)

where Pi is the daily adjusted closed stock price.

After converting to daily log-return, the actual working dataset comprises

3271 data points. The first 2520 (10 years) data points will be the training

dataset (in sample), and the last 751 (3years) data points will be the testing

dataset (outsample).

A quick statistical summary of the empirical data, the percentage of non-

negative daily return for both in-sample and out-sample of all eight stocks

and indices are shown in table 1.

12

Stock/Index In-Sample (n=2520) Out-Sample (n=751)
GM 51.3 48.2
GE 53.4 49.3
AAPL 51.5 54.6
MSFT 52.2 50.7
IBM 52.8 49.8
NDX 54.0 52.7
GSPC 52.4 55.7
DJA 52.1 56.2
Average 52.3 52.2

Table 1: The actual percentage of daily positive log-return (price moving
up) of the eight studied stocks and indices.

4 EXPERIMENTS AND RESULTS:

The financial market is a complex and dynamic system involving a very

high degree of uncertainty. Therefore, predicting financial time series is dif-

ficult. In general, the prediction of financial time series can usually be cat-

egorized into fundamental analysis and technical analysis(Lin, Khan, and

Huang, 2002). Fundamental analysis is based on macroeconomic data, and

technical analysis is based on the historical data.

In the first experiment, we use the boosting, bagging, and other meth-

ods described earlier to predict the direction movement of all eight chosen

stocks and indices. For our second experiment, we discuss the statistical

performance of the bagging algorithm. We consider testing the change of

accuracies and variances as the number of classifiers increases in the bag-

ging process. The third experiment is to determine the effectiveness of the

model in relation to its use in driving stock trading decisions.

13

4.1 Experiment 1:

Suppose we consider the two directional movement of the financial time

series, moving up if the log-return is no less than 0 coded as class 1, and

moving down if the log-return is less than 0 coded as class 0. Therefore, pre-

dicting the directional movement is a binary classification problem. Feed-

ing the same inputs for boosting and bagging procedure, as well as for SVM

and logistic regression, we will be able to compare their performance.

The accuracy percentage is used to measure the performance. If the model

predicts up and the stock or index moves up including steady then it is

correct, otherwise, if the stock or index moves down, it is taken as wrong.

If the model predicts down and the stock or index moves down then it is

correct, otherwise, if the stock or index moves up or steady, it is taken as

wrong.

The architecture of the classifier neural network in the boosting and bag-

ging is ”10− 20− 1”. Each of the input vectors is of length 10 and includes

the 5 most recent log-return prices, and the indication function of the log-

return prices, for a total of 10 values. The hidden layer has 20 nodes. The

prediction is classifier as 1 (or up) if the output is greater or equal to a

threshold (for instant 0.50), and classed as 0 (or down) otherwise. For com-

parison purposes, logistic and SVM using the same data to train the model

as neural networks.

14

The accuracy in percentage (or hit rate) of all 8 stock and index over the

751 days of out-of-sample testing data is presented in table 2. The second

and third column indicate the percentage of correct predictions by logis-

tic regression and SVM. The fourth to seventh columns show the percent-

age of correct predictions by the boosting algorithm with M=1, 10, 20, and

50 neural networks classifiers, where M=1 is just the sole Neural Network

prediction. The eighth to eleventh columns show the percentage of correct

predictions using the bagging algorithm with M=1, 10, 20, and 50 neural

network classifiers.

Other Algorithms Boosting Bagging
Stock Logistic SVM M=1 10 20 50 M=1 10 20 50
GM 50.5 50.2 48.9 48.6 47.4 49.8 54.2 49.0 51.0 50.9
GE 50.2 45.5 53.6 52.6 50.9 46.2 51.0 54.3 52.7 52.4
AAPL 50.7 49.7 57.1 55.3 59.0 57.4 60.3 62.1 59.8 58.9
MSFT 51.8 51.9 53.8 57.4 58.2 59.8 55.1 55.1 55.0 54.9
IBM 50.9 52.2 56.6 49.0 50.0 53.4 56.5 51.5 53.9 54.2
NDX 51.0 51.7 54.3 53.0 55.4 52.5 66.3 61.1 63.1 67.2
GSPC 49.9 51.0 63.2 57.0 59.6 60.5 61.4 57.8 59.8 61.5
DJA 51.3 52.2 65.8 55.7 55.5 49.7 52.9 55.9 56.3 55.4
Average 50.8 50.6 56.7 53.6 54.5 53.7 57.2 55.9 56.5 56.9

Table 2: Out-of-Sample classification accuracy of movement in percentage
with threshold of 0.50.

In the second part of experiment 1, we modify the output layer of the clas-

sifier neural network while keeping the same input structures. Instead of

working with the final output classes, we consider one step backward and

focus on the probability output. We classify the output into three classes:

15

if the output probability is greater than 0.55, then it will be the class of up;

if the output probability is less than 0.45, then it will be the class of down;

otherwise, it will be the class of unclear. The accuracy prediction of the

movement in percentage and the total predictions made (out of 751 possi-

ble) on the out-of-sample data set on the indices of NDX , GSPC and DJA

are shown in table 3.

Boosting
Index M=1 #Pred. 10 #Pred. 20 #Pred 50 #Pred
NDX 59.1 655 67.2 635 68.1 621 74.7 628
GSPC 63.7 498 61.5 576 60.5 582 60.6 597
DJA 55.6 475 54.4 588 52.4 588 48.6 609
Average 59.4 543 61.2 600 60.5 597 61.5 611

Bagging
Index M=1 #Pred. 10 #Pred. 20 #Pred. 50 #Pred.
NDX 57.9 669 69.1 625 67.3 640 67.9 632
GSPC 64.5 510 62.3 553 66.1 543 64.7 533
DJA 54.2 502 58.6 524 56.1 494 55.2 504
Average 57.7 560 63.4 567 63.6 559 63.1 556

Table 3: Out-of-Sample classification accuracy of movement in percentage
with threshold of 0.55 and 0.45.

In Table 2, it is clear that the accuracy on the directional success of boost-

ing and bagging are significantly higher than the SVM and logistic regres-

sion, except for the GM, GE and DJA using the boosting process with 50

classifiers. SVM and logistic regression are not significantly different from

the chance (50%). Both boosting and bagging processes with 50 classifiers

have more than 60% directional success on the prediction of GSPC. Bagging

achieves 67% right classification on the prediction of NDX.

16

In Table 3, there is a significant increase of the accuracy prediction on the

direction movement on the indices of NDX and GSPC by both boosting and

bagging. There is a 55% hitrate on DJA by bagging, but that might not be

very significant since the index DJA actual moved up 56.2% of the time as

shown in Table 1.

Some other researchers have done similar work on the direction movement

on some stocks and indices. The predictions by boosting and bagging are

significantly higher than the results reported by others. Lendasse et al. de-

scribe an approach to forecasting movements in the Belgian Bel-20 stock

market index, with inputs including external factors such as security prices,

exchange rates and interest rates. Using a Radial Basis Function neural net-

work, they achieve a directional success of 57.2% on the test data (Lendasse,

2000). O’Connor, N. and Madden, G.M. describes a neural network to pre-

dicting stock direction movements using external factors. They report a

directional success of 53.7% on the test data of Dow Jones Industrial Aver-

age (DJIA, Dec.18,2002-Dec.13,2004) (Connor and Madden, 2006).

4.2 Experiment 2

One of the advantages of boosting and bagging algorithms is that they can

increase the accuracy of the prediction while reducing the prediction vari-

ance. Experiment 2 is designed to examine such statistical properties for

the bagging algorithm. This experiment involves two parts. In part one,

17

we test the bagging process with a difference number of the base classifier

neural networks, and examine the accuracy performance on the testing set

of stock indices NDX and GSPC. We also calculate the variance of the hit

rate for the process with difference number of base classifiers.

For m = 1:M,

for i = 1:100,

Run bagging process with m base classifiers, and obtain the hit rate

H(i,m).

Calculate the average of H(m) = mean(H(i,m)), and Stdev(m) = stdev(H(i,m)),

where i=1,...,100.

Obtain total M hit rates and M standard deviations.

The plot of the mean and standard deviation on the testing data set for the

indices of NDX and GSPC is shown in figure 4. We can see that the aver-

age hit rates for both indices are increasing while the prediction standard

deviations are decreasing as the number of base classifiers increase. The hit

rate tends to be stable when there are more than 10 classifiers, however, the

standard deviations are still decreasing.

In the second part of experiment 2, we run similar testing as in the first

part, but instead of testing the mean and standard deviation for the entire

testing data set, we apply the test on the individual data points in the data

set.

18

Number of Classifiers vs. Hitrate

Number of Classifiers in bagging process

C
la

s
s
if
ic

a
ti
o
n
 A

c
c
u
r
a
c
y
 (

H
it
r
a
te

)

0 5 10 15 20 25 30

0
.5

8
0
.6

1
0
.6

4
0
.6

7

NDX
GSPC

Number of Classifiers vs. Standard Deviation

Number of Classifiers in bagging process

S
ta

n
d
a
r
d
 D

e
v
ia

ti
o
n

0 5 10 15 20 25 30

0
.0

1
0
.0

2
0
.0

3
0
.0

4
0
.0

5

NDX
GSPC

Figure 3: Statistical analysis of the bagging algorithm. Mean and stan-
dard deviation of hitrates for the whole out-of-sample data set of NDX
and GSPC for M=1,2,...,30.

For m = 1:M,

for i = 1:100,

Run bagging process with m base classifiers, and obtain the hitrate

Hj(i,m), where j=1,...,751.

Calculate the average of Hj(m) = mean(Hj(i, m)), and Stdevj(m) = stdev(Hj(i,m)).

Obtain total M hit rates and M standard deviations for each of the 751 data points

in the out-of-sample.

19

The plot of the mean and standard deviation of individual data points on

the testing data set for the index of GSPC is shown in figure 4. The plot

only shows the data points 1, 100, 200, 300, 400, 500, 600 and 700. The av-

erage hit rates on most of the data points are increasing and stabilizing as

using more base classifiers are used in the bagging process. At the same

time, the standard deviations are decreasing. Therefore, the conclusion can

be drawn from both parts of experiment 2 that the bagging algorithm de-

creases the prediction variance without changing the bias.

4.3 Experiment 3

The ultimate need is a measure of the effectiveness of the model in relation

to its use in driving decisions to trade stocks. We will use return on invest-

ment (ROI) as a measurement to the performance of the models.

We assume that when the market opens we can buy or short sell at yester-

day’s adjusted closing price. We further assume that the stocks and indices

can be traded with fractional amounts. We start with an initial investment

of $10, 000, and make trading decisions based on the output of the model.

We are testing our strategy on the out-of-sample data including 751 trad-

ing days, approximate 3 years. This will be measured as annual ROI (250

trading days, or a calender year). We can add transaction cost to the strate-

gies. While such charges vary between brokerage institutions, we assume

20

Number of Classifiers vs. Hitrate

of classifiers

P
r
e
d
ic

ti
o
n
 A

c
c
u
r
a
c
y

0 5 10 15 20 25 30 35

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

Number of Classifiers vs. Standard Deviation

of classifiers

S
td

e
v
.
o
f
P

r
e
d
ic

ti
o
n

0 5 10 15 20 25 30

0
.0

0
.2

0
.4

0
.6

Figure 4: Statistical analysis of the bagging algorithm. Mean and standard
of hitrates for the data points 1, 100, 200, 300, 400, 500, 600, and 700 for
M=1,2,...,30.

a flat-rate charge of $7 per trade (Scottrade, 2006). All the trading costs are

deducted at the end when computing ROI. We are using an initial invest-

ment of $10, 000 such that the transaction costs would be proportionately

less significant.

21

Strategy 1: Buy and short sell for the model with two classes output of

up and down.

1. If the model predicts the price will go up the subsequent day, we will

buy the subsequent morning at the price of today’s closing price (or

opening price), then hold until the model predicts the price will go

down some subsequent day, then sell at the closing before that day.

2. If the model predicts the price will go down the subsequent day, we

short-sell the subsequent morning at opening price, then hold until

the model predicts the price will go down some later day, then buy

back at the closing before that day. We will only short sell the amount

that is no more than our cumulative investment.

The profits using this strategy 1 and using the output from the part I or the

experiment 1 are shown in Table 4. The market growth is defined as, the

amount one’s investment would have grown if he or she bought on the first

day of the period and held until the last day. For instant NDX grew 6.0%

annually. The number of trades is the actual trades out of total 751 in the

testing period. The annual ROI with and without transaction costs are in

percentage.

The ROI without transaction costs is in the third column and the ROI with

transaction costs is in the last column of Table 4. They are higher than their

corresponding market growth rates except the model output on MSFT 2.

22

Stock/Index Market ROI (%) Avg# of Trade ROI inc. Tran. Cost (%)
NDX1 6.0 33.1 124 28.1
NDX2 6.0 103.6 124 101.4
GSPC2 8.3 26.0 121 20.4
GSPC2 8.3 36.6 121 32.0
MSFT 1 -1.1 33.1 133 27.7
MSFT 2 -1.1 -0.7 133 -11.2

Table 4: Performance of the model approaches in terms of annual return on
investment in percentage. 1 is the boosting with 50 neural networks; and 2
is the bagging with 50 neural networks.

Strategy 2: Modified Buy and short sell for the model with three classes

output of up, down and unclear.

1. If the model predicts the price will go up the subsequent day, we will

buy the subsequent morning at the price of today’s closing price (or

subsequent day opening price), then hold until the model predicts

the price will go down or no prediction (change of prediction) some

subsequent day, then sell at the closing before that day.

2. If the model predicts the price will go down the subsequent day, we

short-sell the subsequent morning at opening price, then hold until

the model predicts the price will go down or no prediction some later

day, then buy back at the closing before that day. We will only short

sell an amount that is no more than our cumulative investment.

The profits using this strategy 2 and using the output from the part II or the

experiment 1 are shown in Table 5. The boosting and bagging prediction

23

output on NDX have the ROI with or without traction cost of more than

300% while for the same period of time the market growth rate is 6.0%

annually.

Boosting
Index Market ROI (%) Avg# of Trading ROI inc. Tran. Cost (%)
NDX 6.0 134.0 102 132.7
GSPC 8.3 17.0 115 10.8
DJA 13.0 -5.9 116 -16.2

Bagging
Index Market ROI (%) Avg# of Trade ROI inc. Tran. Cost (%)
NDX 6.0 118.8 110 117.2
GSPC 8.3 5.2 117 -2.8
DJA 13.0 4.4 108 -3.0

Table 5: Performance of the model approaches in terms of return on invest-
ment annually in percentage.

5 CONCLUSION AND DISCUSSION:

In this paper, we study the use of boosting and bagging with neural net-

work base classifier to predict financial direction movement. As demon-

strated in experiment 1, our bagging and boosting result are superior to

other classification methods including SVM and logistic regression in fore-

casting daily direction movement of all the eight stocks and indices we

tested. In the second part of the experiment 2, we were able to obtain 75%

prediction accuracy on out-of-sample NDX directional movement. In ex-

periment 2, we can conclude that the bagging process can reduce the pre-

diction variance. Using the output of our models and our buy and short

24

sell trading strategy described in experiment 3, the return on investment is

much greater than the market growth.

The model was trained once with the training data set. It was not retained

during the testing period. The first possible extension to this work will be

to retrain the model periodically (monthly, weekly, or even daily). By in-

cluding the most recent data, it is likely to increase the performance of the

models. As an evidence of this, during the three-year testing period, the

percentage of directional success of the first year is higher than the last two.

For practical consideration of the feasibility of implementing our buy and

short sell trading strategy in experiment 3, instead of going all in/out, we

may consider lowering the threshold of predicting up, and increase the

threshold of predicting down; in another words, be more conservative on

short sells, and more aggressive on buys. Another consideration for the

implementing of the trading strategy is to invest an amount that is propor-

tional to the degree of certainty of our prediction. For further study, we

should consider to include the factor of short-term capital gain tax, as the

tax rate can be up to 20%.

25

REFERENCES

1. A.Inoue and L.Kilian. How useful is bagging in forecasting economic

time series? A case study of U.S. CPI Inflation. CEPR Discussion

Paper (2005).

2. A.Lendasse, E.de Bodt, V.Wertz, M. Verleysen. Non-linear financial

time series forecasting application to the Bel 20 Stock Market Index,

European Journal of Economic and Social Systems 14(1)(2000).

3. B.Boser, I.Guyon, and V.Vapnik. A training algorithm for optimal

margin classifiers. In Proceedings of the Fifth Annual Workshop on

Computational Learning Theory. (1992)

4. C.S.Lin, H.A.Khan, and C.C.Huang. Can the Neuro Fuzzy Model

Predict Stock Indexes Better than its Rivals? Discussion papers (2002).

5. H.Schwenk and Y.Bengio. Boosting Neural Networks, Neural Com-

putation 12, 1869-1887 (2000).

6. L.Breiman. Bagging predictors. Machine Learning, 24(2):123140 (1994).

7. Neural Network Toolbox User’s Guide.

http://www-ccs.ucsd.edu/matlab/pdf doc/nnet/nnet.pdf.

8. N.O’Connor and G.M.Madden. A neural network approach to pre-

dicting stock exchange. Knowledge Based Systems Journal, 19 (2006).

9. R.E.Schapire. The strength of weak learnability. Machine Learning.

5(2), 197-227 (1990).

26

10. Scottrade, http://www.scottrade.com/online broker comparison/index.asp

(2006).

11. T.Hastie, R.Tibshirani and J.Friedman. The elements of statistical learn-

ing; data mining, inference, and prediction,Springer-Verlag, New York,

NY (2001).

12. Yahoo Finance, Historic Stock Data. http : //finance.yahoo.com (2006).

13. Y.Freund and R.E.Schapire. A decision-theoretic generalization of

on-line learning and an application to boosting. In Proceedings of

the Second Annual European Conference on Computational Learn-

ing Theory (1995).

Acknowledgment

I would like to express deep gratitude to my supervisor and friend Ken-

neth Wilder whose guidance and support were crucial for the successful

completion of this thesis paper.

27

