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Abstract

Standard predictive regressions produce biased coefficient estimates in small samples when

the regressors are Gaussian first-order autoregressive with errors that are correlated with

the error series of the dependent variable; see Stambaugh (1999) for the single-regressor

model. This paper proposes a direct and convenient method to obtain reduced-bias esti-

mators for single and multiple regressor models by employing an augmented regression,

adding a proxy for the errors in the autoregressive model. We derive bias expressions for

both the ordinary least squares and our reduced-bias estimated coefficients. For the stan-

dard errors of the estimated predictive coefficients we develop a heuristic estimator which

performs well in simulations, for both the single-predictor model and an important speci-

fication of the multiple-predictor model. The effectiveness of our method is demonstrated

by simulations and by empirical estimates of common predictive models in finance. Our

empirical results show that some of the predictive variables that were significant under

ordinary least squares become insignificant under our estimation procedure.

Keywords : Stock Returns; Dividend Yields; Autoregressive Models.



I Introduction

This paper addresses the problem of estimation of predictive regressions, by which the time

series of one variable is regressed on the lagged time series of another variable. Standard

estimation procedures of these regressions may lead researchers to erroneously conclude

that the next-period value of the dependent variable can be forecasted by the current,

known value of the right-hand-side variable. Specifically, Stambaugh (1999) shows that in

a model where the predictive variable is an AR(1) process and its residuals are correlated

with the predictive regressions’ residuals, the ordinary least squares (OLS) estimator of

the predictive variable’s coefficient, β̂, will be biased in finite sample.

Examples of such predictive regressions abound. Keim and Stambaugh (1986) propose

to predict the excess returns on seven asset classes by three lagged variables: the difference

between the yield on long-term under BAA-rated corporate bonds and short-term (one

month) Treasury bill rate, the level of the S&P 500 index relative to its 45-year moving

average, and the level of the small-firm stock index. Most of the slope coefficients are

statistically significant, suggesting that the expected risk premium on many assets changes

over time in a predictable manner. Fama and French (1989) apply a similar methodology,

using two predictors based on bond yields, the default premium and the term premium.

They find that both have predictive power for stock excess return. Fama (1990) shows

that stock excess return is predictable by lagged industrial production, using monthly,

quarterly and annual time series.

Other studies use lagged financial ratios as predictors of stock returns. Fama and
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French (1984) find that the lagged dividend-price ratio has a significant effect on stock re-

turns, and Campbell and Shiller (1988) find that the lagged dividend-price ratio, together

with the lagged dividend growth rate, have a significant predictive power on stock re-

turns. The dividend-price ratio is used as predictor in subsequent studies such as Hodrick

(1992). Kothari and Shanken (1997) add to the lagged dividend-price ratio the lagged

book-to-market ratio as a predictor, and Lewellen (2003) studies, in addition to these two

ratios, the predictive power of the earnings-price ratio. According to the testing method-

ology developed in the latter study, these three ratios have stronger forecasting power

than previously thought. Also, Pontiff and Schall (1998) find that the book-to-market

ratio predicts stock returns.

Another group of studies of predictive regressions uses volatility and liquidity variables.

French, Schwert and Stambaugh (1987) use return variance, obtained from an ARIMA

model, and Amihud (2002) and Jones (2002) use various measures of stock market liq-

uidity. The results in these studies generally show that the lagged time series of these

variables significantly predict stock excess returns. Baker and Stein (2002) use lagged

equity share in new issues in addition to lagged liquidity and lagged dividend-price ratio

to predict stock returns.

The predictive regressions of the type surveyed above raise a problem of estimation.

Many of the predictor variables display strong autoregressive structure and tend to have

disturbances correlated with the disturbances from the regression. In such situations, the

coefficient of the predictive series will be biased in finite samples, which may also lead to

incorrect inference on the coefficient. This problem, pointed out by Mankiw and Shapiro
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(1986), Stambaugh (1986) and Nelson and Kim (1993), is analyzed by Stambaugh (1999)

who develops a bias expression for the estimated prediction coefficient. Researchers (in-

cluding some of those surveyed above) usually address this problem by correcting the

bias in the least squares estimator using an estimated version of Stambaugh’s (1999) bias

expression and by doing bootstrap regressions to calculate the distribution of the esti-

mated coefficient (e.g., Kothari and Shanken (1997)). Lewellen (2003) estimates the slope

coefficient and its t-statistic under a conservative assumption that the true autoregressive

coefficient is very close to one, which gives an upper bound for the bias in β̂.1

We propose in this paper a new and convenient method to tackle this problem. We

develop a procedure to obtain a reduced-bias estimator of the predictor’s coefficient and

derive its properties. We also develop a convenient, easy-to-use method to obtain reduced-

bias standard errors. The performance of our method is demonstrated by simulations and

by application to actual data.

Stambaugh (1999) derives the bias expression for β̂ in terms of the model’s parame-

ters. Subsequent research employs a plug-in version of this bias expression, using sample

estimates in lieu of the model parameters, to obtain a bias-corrected estimator of β which

we denote by β̂s. However, there is as yet no theoretical justification for this method

of estimation. There is no obvious reason why the sample estimators, which are ran-

dom variables, should be independent of each other, so it is not clear how to obtain the

1In predictive regressions, where stock returns are predicted by a lagged variable which is autoregres-
sive, Ferson et al. (2003) show that data mining for predictor variables interacts with spurious regression
bias. However, they assume independence between the errors of the predictive regression and the predic-
tor’s autoregression (p. 1399). In terms of the model below, they assume that φ = 0. Therefore, their
model is different from the model analyzed here.

3



expected value of the bias correction.

Furthermore, Stambaugh (1999) analyzes a single-predictor model, while the problem

of bias in estimating β also arises in the case of multiple predictive variables. For the

multiple-predictor case, there is no available expression for the bias in the OLS estimator

of the predictive regression coefficients, nor is there a direct method of estimation to

reduce the bias in this case.

Our method of solving the problem of bias in β̂ is based on augmented regressions

which are applicable both in Stambaugh’s (1999) single-predictor model and in a multiple-

predictor generalization. The added variables in the regression are proxies for the error

series in a Gaussian AR(1) model for the predictors. The proxies are residual series based

on a reduced-bias estimator of the AR parameter. Our proposed estimation method is

straightforward and easily implemented.

We also propose a formula to directly estimate the standard error of the bias-corrected

estimator of β in the single predictor case, which enables us to easily construct confidence

intervals and do hypothesis testing. This formula is also found to work well under one

specification of the multi-predictor case. No such direct method to estimate the standard

error of the bias-corrected estimator of β is available in the literature; instead, it is done

by the bootstrapping method.2

In the single-predictor case, one specification of our approach is equivalent to β̂s,

although this equivalence is far from obvious. Thus, our theoretical results yield, among

2See Kothari and Shanken (1997), Baker and Stein (2002).
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other things, a formula for the bias in β̂s. These same theoretical results justify the use

of a different version of our approach, which has a smaller bias than β̂s.

For the case of multiple predictive variables, we consider a general model in which

the predictive variables form a Gaussian multivariate AR(1) series, that is, a Gaussian

VAR(1). Our analysis is based on a natural generalization of our univariate reduced-bias

estimation method, employing a regression which is augmented by the estimated error

series in the multivariate AR(1) model. We derive a general expression for the bias of

our proposed reduced-bias estimators of β (in this case, a vector) and show that as in the

univariate case, this bias is proportional to the bias in the corresponding estimator of the

AR(1) parameter matrix. The importance of this result is in showing that any existing

or future methodology that can reduce the bias in estimation of the AR(1) parameter

matrix can be used to produce corresponding improvements in the bias of the coefficients

of the predictive variables. We also provide a theoretical expression for the bias in the

OLS estimator of β, generalizing Stambaugh’s bias formula to the multiple-predictor case.

We demonstrate the usefulness of our estimation method by presenting simulations

for both the single-predictor and the multiple-predictor cases. In implementing our es-

timators in the case of multiple predictive variables, we first focus on a special case of

our general model in which the AR(1) parameter matrix is known to be diagonal, so that

each predictive variable itself follows a univariate AR(1) model. The predictive variables

can still be correlated under this restriction through the covariance matrix of the errors.

In this case, our method can be implemented in a direct and simple way, and it performs

quite well. Finally, we consider the general case where the AR(1) parameter matrix is not
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constrained to be diagonal. In this case, we construct an estimate of a bias expression for

multivariate AR(1) models due to Nicholls and Pope (1988). This indeed reduces the bias,

but since the expressions are more complex and more parameters need to be estimated,

there is some degradation in performance compared to the diagonal case.

Finally, we present examples of the application of our estimation method to some

common predictive models in finance, by which stock returns are predicted by lagged

dividend yield and by two lagged financial ratios: Book/Market and Earnings/Price. For

the monthly predictive model over the period 5/1963-12/1994, dividend yield turns from

a highly significant predictor—β = 3.05 and t = 3.02—to a marginally significant one,

β = 2.08 and t = 1.96. The other two ratios have positive and highly significant predictive

coefficients in OLS, but they turn statistically insignificant after applying our estimation

method. In an illustration of a multiple-predictor regression with both dividend yield and

Earnings/Price ratios as predictors, the former is significant while the latter is not. When

extending the estimation period, none of the predictors is significant.

Our paper proceeds as follows. In section II we show the basic single-predictor model,

following Stambaugh (1999), outline our proposal to estimate the predictive regression

coefficient, and present the theoretical properties of the reduced-bias estimator. Section

III describes a heuristic method for estimating the standard error of the estimated predic-

tive regression coefficient. Section IV presents the multiple-predictor model, proposes an

augmented regression estimator of the coefficients of the predictive variables and considers

the properties of this estimator. We present simulation results on our method in section

V, and in section VI we demonstrate the use of our method in empirical estimations of
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common predictive models in finance. Our conclusions are in section VII. Proofs of the

theoretical results are presented in the Appendix, section VIII.

II Reduced-Bias Estimation of the Regression Coef-

ficient

We follow the formal model in Stambaugh (1999), where a scalar time series {yt}n
t=1 is

to be predicted from a scalar first-order autoregressive (AR(1)) time series {xt}n−1
t=0 . The

overall model for t = 1, . . . , n is

yt = α + βxt−1 + ut , (1)

xt = θ + ρxt−1 + vt , (2)

where the errors (ut, vt) are serially independent and identically distributed as bivariate

normal, with contemporaneous correlation, that is, ut

vt

 ∼iid N(0, Σ) , Σ =

 σ2
u σuv

σuv σ2
v

 ,

and the lag-1 autocorrelation ρ of {xt} satisfies the constraint |ρ| < 1, thereby ensuring

that {xt} is stationary. (The initial value x0 can be taken to be random or non-random.)

Then, Stambaugh (1999) shows that if σuv 6= 0, the ordinary least squares (OLS)

estimator of β based on a finite sample will be biased.

For the single-predictor model given by (1) and (2), Stambaugh (1999) provides an

expression for the bias of the OLS estimator of β,

E[β̂ − β] = φE[ρ̂− ρ] , (3)
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where φ = σuv/σ
2
v , and β̂ and ρ̂ are the OLS estimators of β and ρ. This expression

is exact, for any given sample size n. Subsequent research employs a plug-in version of

this expression by using sample estimators of the two parameters, φ and ρ. Specifically,

Stambaugh notes, following Kendall (1954), that

E[ρ̂− ρ] = −(1 + 3ρ)/n + O(n−2). This result is often applied by researchers to obtain

β̂s = β̂ + φ̂s(1 + 3ρ̂)/n , (4)

where φ̂s =
∑

ûtv̂t/
∑

v̂2
t , and ût, v̂t are the residuals from OLS regressions in (1) and

(2), respectively.3

To motivate our proposed reduced-bias estimator of β, we consider first an infeasible

estimator4 β̃, which is the coefficient of xt−1 in an OLS regression (with intercept) of yt

on xt−1 and vt, for t = 1, . . . , n, where vt = xt − ρxt−1. It is shown in the appendix that

we can write

yt = α + βxt−1 + φvt + et , (5)

where {et}n
t=1 are independent and identically distributed normal random variables with

mean zero, and {et} is independent of both {vt} and {xt}. The estimator β̃ is exactly

unbiased, as stated in the following theorem.

Theorem 1 The infeasible estimator β̃,is exactly unbiased,

E[β̃] = β .

3Kothari and Shanken (1997) define β̂KS = β̂ + φ̂s(1 + 3pA)/n, where pA = (nρ̂ + 1)/(n− 3).
4An infeasible estimator is not directly computable based on data alone.
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Proof: See appendix.

In practice, the errors {vt} are unobservable. But the result above suggests that it

may be worthwhile to construct a proxy {vc
t} for the errors, on the basis of the available

data {xt}n
t=0. Define a feasible5 bias-corrected estimator β̂c to be the coefficient of xt−1

in an OLS regression of yt on xt−1 and vc
t , with intercept.

The proxy vc
t takes the form

vc
t = xt − (θ̂c + ρ̂cxt−1) , (6)

where θ̂c and ρ̂c are any estimators of θ and ρ constructed on the basis of x0, x1, . . . , xn.

As will be seen, the particular choice of the estimator θ̂c has no effect on the bias of β̂c. On

the other hand, the estimator ρ̂c should be selected to be as nearly unbiased as possible

for ρ, as the bias of β̂c is proportional to the bias of ρ̂c. We have the following theorem,

which, like Theorem 1, holds exactly for all values of n.

Theorem 2 The bias of the feasible estimator β̂c is given by

E[β̂c − β] = φE[ρ̂c − ρ] ,

where φ = σuv/σ
2
v.

Proof: See appendix.6

As a corollary of Theorem 2, setting ρ̂c = ρ̂ (which yields β̂c = β̂; see the proof of

Theorem 3 below), we obtain Stambaugh’s (1999) bias expression (3).

5A feasible estimator is directly computable from the data alone.
6We thank the anonymous referee for suggesting a method that greatly facilitated the proof.
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Next, we exhibit the relationship between our proposed estimator β̂c and the estimator

β̂s motivated by Stambaugh (1999). Suppose the bias-corrected version of ρ̂ takes the

form ρ̂c = ρ̂ + ω, where ω may depend on the available data x0, x1 . . . , xn. Then both our

approach and the Stambaugh approach to correcting the bias in β̂ yield the same result.

Theorem 3 If ρ̂c = ρ̂ + ω, then β̂c = β̂ + φ̂sω.

Proof: See appendix.

In particular, if we take ω = (1 + 3ρ̂)/n, then Theorem 3 implies that β̂c = β̂s, where

β̂s is given by (4). Furthermore, it follows from the proof of Theorem 3 that φ̂s = φ̂c, for

all values of ω.

There is a large literature on reduced-bias estimation of the lag-1 autocorrelation

parameter ρ of AR(1) models, and in view of Theorem 2, this literature is of direct

relevance to the construction of reduced-bias estimators of β. Some easily-computable

and low-bias choices of ρ̂c include the Burg estimator (see Fuller 1996, p. 418), the

weighted symmetric estimator (see Fuller 1996, p. 414), and the tapered Yule-Walker

estimator (see Dahlhaus 1988). Both the Burg estimator and the tapered Yule-Walker

estimator have the additional advantage that they are guaranteed to be strictly between

−1 and 1.

In this paper, we focus on two estimators based on Kendall’s (1954) expression for the

bias of the OLS estimator, ρ̂, that is, E[ρ̂−ρ] = −(1+3ρ)/n+O(n−2). This leads to a first-

order bias-corrected estimator ρ̂c,1 = ρ̂ + (1 + 3ρ̂)/n and a ”second-order” bias-corrected

estimator
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ρ̂c,2 = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2. (7)

The estimator ρ̂c,1 was studied by Sawa (1978), and has bias which is O(n−2). The

estimator ρ̂c,2 is obtained by an iterative correction, ρ̂c,2 = ρ̂ + (1 + 3ρ̂c,1)/n. The bias of

ρ̂c,2 is O(n−2) as well, but our simulations indicate that the bias of ρ̂c,2 is smaller than

that of ρ̂c,1. We will therefore restrict attention henceforth to ρ̂c,2, which we denote by ρ̂c,

with the corresponding bias-corrected estimator of β denoted by β̂c.

In summary, the procedure we propose for estimating β has two steps:

(I) Estimate model (2) by OLS and obtain ρ̂. Construct the corrected estimator

ρ̂c = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2 and obtain the corrected residuals vc
t as in (6) above.

(II) Obtain β̂c as the coefficient of xt−1 in an OLS regression of yt on xt−1 and vc
t , with

intercept. This regression also produces φ̂c as the estimator of the coefficient of vc
t .

The coefficient φ̂c is an unbiased estimator of φ, as stated in the following lemma.

Lemma 1 E[φ̂c] = φ.

Proof: See appendix.

The unbiasedness of φ̂c may be useful in the following context. When a variable xt is

generated by an AR(1) process as in (2), the anticipated component of xt based on past

values of the series is E(xt|xt−1) = θ+ρxt−1. Then, the error vt is the unanticipated com-

ponent of xt. A researcher may want to estimate separately the effects of the anticipated
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and unanticipated components of xt on yt in model (5). For example, French, Schwert

and Stambaugh (1987) study the effects of expected and unexpected market volatility on

stock market returns, where expected volatility is the fitted values of volatility obtained

from an ARIMA model and unexpected volatility is the residual series from this model.

Amihud (2002) studies the effect of expected and unexpected stock market illiquidity on

stock returns, using lagged illiquidity as expected illiquidity, where illiquidity is assumed

to be an AR(1) process. In such a case, the coefficient β measures7 the effect of the

anticipated component of xt while the coefficient φ measures the effect of the unexpected

component of xt on yt.

III Estimation of Standard Errors

A Standard Errors for β̂c

For hypothesis tests for β, we need a low-bias finite-sample approximation to the standard

error of β̂c (Simonoff (1993)). The commonly-used estimated standard error ŜE(β̂c),

obtained from the OLS output in a regression of yt on xt−1 and vc
t , cannot be used for

testing hypotheses about β since it is a downward-biased estimator of the standard error

of β̂c. The reason for this bias is that the OLS standard error fails to take into account the

additional variability due to the estimation of ρ. If ρ were a known constant, we would

have that the standard error of β̂c equals ŜE(β̂c). This is a consequence of the following

lemma.

7Suppose that the model to be estimated is yt = δ0+δ1x
a
t +φxu

t +et, where xa
t and xu

t are, respectively,
the anticipated and unanticipated components of xt. Then, α = δ0 + δ1θ and β = δ1ρ.
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Lemma 2

E[β̂c − β]2 = φ2E[ρ̂c − ρ]2 + E[ŜE(β̂c)]2 , (8)

where ŜE(β̂c) is the estimated standard error for β̂c, based on an OLS regression of yt on

xt−1 and vc
t , with intercept (provided by standard regression packages).

Proof: See appendix.

Since from Theorem 2

E[β̂c − β] = φE[ρ̂c − ρ] = O(1/n2) ,

we conclude from (8) that

var[β̂c] = E[β̂c − β]2 + O(1/n4) , (9)

so a low-bias estimate of the righthand side of (8) should provide a low-bias estimate of

var[β̂c]. Clearly, [ŜE(β̂c)]2 provides an unbiased estimator of E[ŜE(β̂c)]2. We now need

to accurately estimate φ2E[ρ̂c−ρ]2. First, we note that the coefficient φ̂c of vc
t in the OLS

regression of yt on xt−1 and vc
t is unbiased (see Lemma 1 above).

Next, we need to construct an estimator of E[ρ̂c−ρ]2 with low bias. Here we use some

heuristic approximations, which turn out to work quite well in simulations. Noting that

ρ̂c is a low-bias estimator of ρ, we treat ρ̂c as if it were unbiased. Then we simply need

an expression for V ar(ρ̂c), where

ρ̂c = ρ̂ +
1 + 3ρ̂

n
+ 3

1 + 3ρ̂

n2
=

1

n
+

3

n2
+ (1 + 3/n + 9/n2)ρ̂ .

Thus,

V ar(ρ̂c) = (1 + 3/n + 9/n2)2V ar(ρ̂) .
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For the OLS estimator ρ̂, our simulations indicate that an accurate estimator of V ar(ρ̂)

is given by V̂ ar(ρ̂), the squared standard error of ρ̂ (as given by standard regression

packages) in an OLS regression of {xt}n
t=1 on {xt−1}n

t=1, with intercept.8 Thus, a feasible

estimator for V ar(ρ̂c) is given by

V̂ ar(ρ̂c) = (1 + 3/n + 9/n2)2V̂ ar(ρ̂) .

Finally, our estimator for the standard error of β̂c is given by

ŜE
c
(β̂c) =

√
{φ̂c}2V̂ ar(ρ̂c) + {ŜE(β̂c)}2 . (10)

B Standard Errors for φ̂c

Let φ̂c be the coefficient of vc
t in an OLS regression of yt on xt−1 and vc

t . It was shown

in Lemma 1 that E[φ̂c] = φ. The following Lemma shows that the estimated squared

standard error of φ̂c is also unbiased.

Lemma 3

V ar[φ̂c] = E[ŜE(φ̂c)]2 ,

where ŜE(φ̂c) is the estimated standard error for φ̂c as provided by standard regression

packages, based on an OLS regression of yt on xt−1 and vc
t , with intercept.

Proof: See appendix.

8We find in simulations that this readily-available estimator strongly outperforms the asymptotic
approximation suggested in Fuller (1996) equation (6.2.9).
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IV Predictive Regressions with Multiple Predictors

We consider here a more general model for predictive regressions with several predictor

variables, and develop a reduced-bias estimator of the predictive regression coefficients in

this model. No direct methodology is currently available in this case for either evaluating

or reducing the bias in the OLS estimators of the predictive regression coefficients.

We assume that the predictor variables are collected in a p-dimensional vector time

series {xt} which evolves according to a stationary Gaussian vector autoregressive V AR(1)

model. The overall model is given for t = 1, . . . , n by

yt = α + β′xt−1 + ut , (11)

xt = Θ + Φxt−1 + vt , (12)

where {yt} is a scalar response variable, α is a scalar intercept, β is a p × 1 vector of

regression coefficients, {ut} is a scalar noise term, {xt} is a p × 1 series of predictor

variables, Θ is a p × 1 intercept, {vt} is a p × 1 series of shocks such that the vectors

(ut, v
′
t)
′ are i.i.d. multivariate normal with mean zero, and Φ is a p× p matrix such that

the absolute values of all its eigenvalues are less than one, to ensure stationarity (see, e.g.,

Fuller, 1996). It follows from our assumptions that there exists a p× 1 vector φ such that

ut = φ′vt + et , (13)

where {et} are i.i.d. normal random variables with mean zero, and {et} is independent of

both {vt} and {xt}. Using (11) and (13) we can write

yt = α + β′xt−1 + φ′vt + et . (14)
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As before, we start by pointing out the unbiasedness of an infeasible estimator β̃,

which is the p× 1 vector of coefficients of xt−1 in an OLS regression (with intercept) of yt

on xt−1 and vt for t = 1, . . . , n.

Theorem 4

E[β̃] = β . (15)

Proof: See appendix.

Next, we develop a class of reduced-bias estimators of β that is based on augmented

regressions, where the additional regressors are proxies for the entries of vt corresponding

to an estimate of Φ. Thus, our single-predictor methodology generalizes in a very natural

way to the setting of multiple predictors. Then, we develop a bias expression for our

estimator of β and show that its bias is proportional to the bias of a corresponding

estimator of Φ. Thus, bias reduction in estimating β can be achieved through the use of

any reduced-bias estimator of Φ, e.g., the one due to Nicholls and Pope (1988), suggested

by Stambaugh (1999).

A The estimators β̂c and φ̂c and their properties

Our proposed estimator β̂c of β consists of the estimated coefficients of the vector xt−1

in an augmented OLS regression of yt on all entries of the vectors xt−1 and vc
t , together

with a constant. Here, {vc
t} is a proxy for the error series {vt},

vc
t = xt − (Θ̂c + Φ̂cxt−1) , t = 1, . . . , n , (16)
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where Θ̂c and Φ̂c are any estimators of Θ and Φ constructed from {xt}n
t=0. The following

theorem, which is a direct generalization of Theorem 2, shows that the bias in β̂c is

proportional to the bias in Φ̂c, with proportionality constant φ.

Theorem 5

E[β̂c − β] = E[Φ̂c − Φ]′φ . (17)

Proof: See appendix.

As a corollary of Theorem 5, setting Φ̂c = Φ̂ (which yields β̂c = β̂), we obtain

E[β̂ − β] = E[Φ̂− Φ]′φ , (18)

where Φ̂ is the OLS estimator of Φ, thereby generalizing Stambaugh’s (1999) single-

predictor bias expression (3) to the multiple-predictor case.

The OLS estimators α̂ and β̂ are given by α̂

β̂

 = (X ′X)−1X ′y ,

and the OLS estimators Θ̂ and Φ̂ are given by a (p + 1)× p matrix Θ̂′

Φ̂′

 = (X ′X)−1X ′x ,

where X = [1n, (x0, x1, . . . , xn−1)
′] is an n× (p + 1) matrix of explanatory variables, 1n is

an n× 1 vector of ones, y = (y1, . . . , yn)′ is n× 1 and x = (x1, . . . , xn)′ is n× p.
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The proposed bias-corrected estimator is given by the entries of β̂c in the formula
α̂c

β̂c

φ̂c

 = (X̃ ′
cX̃c)

−1X̃ ′
c y , (19)

where X̃c = [1n, (x0, x1, . . . , xn−1)
′, (vc

1, . . . , v
c
n)′] is 1× (2p+1) and the error series {vc

t}n
t=1

are given by (16). The t’th row of X̃c consists of a 1, the values of all predictive variables

at time t− 1 and the values of all proxies for the autoregressive errors at time t.

Next, we extend the approach motivated by Stambaugh (1999) for bias correction of

β̂ in a single-predictor model to the multiple-predictor case, and examine its relationship

to our proposed estimator, β̂c. Denote by φ̂s the final p entries in the vector
α̂

β̂

φ̂s

 = (X̃ ′X̃)−1X̃ ′ y , (20)

where X̃ = [1n, (x0, x1, . . . , xn−1)
′, (v̂1, . . . , v̂n)′] is 1×(2p+1), and v̂t = xt−(Θ̂+Φ̂xt−1) for

t = 1, . . . , n. Suppose now that the bias-corrected version of Φ takes the form Φ̂c = Φ̂+ω,

where the p× p matrix ω may depend on the available data x0, . . . , xn. Consideration of

(18) motivates a natural bias-corrected version of β̂ given by β̂ + ω′φ̂s. This yields the

same result as our β̂c:

Theorem 6 If Φ̂c = Φ̂ + ω, then β̂c = β̂ + ω′φ̂s.

Proof: See appendix.
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Theorem 6 generalizes Theorem 3 to the multiple-predictor case. Again, we also obtain

here that φ̂s = φ̂c, for all values of ω.

We have the following generalization of Lemma 1, which shows that the p× 1 vector

φ̂c is unbiased for φ.

Lemma 4 If {yt} is given by the multiple-predictor model (11) and (12) and φ̂c is as

defined above, then

E[φ̂c] = φ . (21)

Proof: See appendix.

B The reduced bias estimator Φ̂c

To give a specific form for our proposed estimator β̂c in the case of multiple predictive

variables, we need to construct a reduced-bias estimator Φ̂c. The theory of this section

on the estimator β̂c holds for any estimator Φ̂c that is a function of the series of predictor

variables {xt}n
t=0. Since the bias of β̂c is proportional to the bias of Φ̂c, as Theorem 5 shows,

we now focus on the choice of Φ̂c. We propose two forms for Φ̂c. The first applies only

in the case where it is known that the true AR(1) parameter matrix Φ is diagonal, while

the second is applicable in general. The first performs much better than the second when

Φ is in fact diagonal. Although the assumption that Φ is diagonal entails a considerable

loss of generality, it should be noted that if the individual entries of {xt} are given by

univariate AR(1) models, as would often be assumed in practice, then Φ must be diagonal.

Notably, the series {x1,t}, {x2,t}, . . . , {xp,t} can still be contemporaneously correlated even
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under the assumption that Φ is diagonal if the error vectors {v1,t}, {v2,t}, . . . , {vp,t} are

contemporaneously correlated, i.e., the covariance matrix Σv = Cov(vt) is non-diagonal.

If Φ is known to be diagonal, then each entry of {xt} is a univariate AR(1) process,

and the estimation procedure is as follows. We can treat each series {xi,t} (i = 1, 2, . . . , p)

separately: estimate its autoregressive coefficient ρi by univariate OLS and then correct

this estimator as we have proposed for the single-predictor case to produce ρ̂c
i . We then

construct Φ̂c as a diagonal matrix, with diagonal entries being the corrected univariate

AR(1) parameter estimates. The error proxies {vc
i,t} (i = 1, . . . , p) are then constructed

for each predictor series {xi,t} as in the univariate case, vc
i,t = xi,t − θ̂c

i − ρ̂c
ixi,t−1, where

θ̂c
i is the adjusted intercept. Finally, our corrected estimated coefficient vector β̂c is

obtained by an OLS regression of yt on all predictors {x1,t−1}, {x2,t−1}, . . . , {xp,t−1} and

on the corrected error proxies {vc
1,t}, {vc

2,t}, . . . , {vc
p,t}, with intercept. The coefficient of

each predictor series {xi,t−1} is β̂c
i and the coefficient of each error proxy vector {vc

i,t} is

φ̂c
i . The simulations in the following section indicate that the corresponding reduced-bias

estimator β̂c performs quite well compared to the OLS estimator β̂.

For the general case where Φ may be non-diagonal, reduced-bias estimation of Φ is

a more difficult problem. We follow the suggestion of Stambaugh (1999) to estimate Φ

using the expression of Nicholls and Pope (1988), Theorem 2, for the bias in the OLS

estimator Φ̂,

E[Φ̂− Φ] = −b/n + O(n−3/2) ,
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where

b = Σv

(I − Φ′)−1 + Φ′(I − Φ′2)−1 +
∑

λ∈Spec(Φ′)

λ(I − λΦ′)−1

 Σ−1
x , (22)

I is a p× p identity matrix, Σx = Cov(xt), the symbol λ denotes an eigenvalue of Φ′ and

the notation λ ∈ Spec(Φ′) indicates that the sum is to be taken over all p eigenvalues of

Φ′ with each term repeated as many times as the multiplicity of λ.9 The p× p matrix Σx

may be evaluated using the convenient formula given by Stambaugh (1999, Eq. (49)),

vec(Σx) = [Ip2 − (Φ⊗ Φ)]−1vec(Σv) ,

where Ip2 is a p2 × p2 identity matrix, the vec operator stacks the columns of a matrix

into a single column, and ⊗ is the Kronecker product.

The expression (22) for the bias in Φ̂ depends on the unknown Φ and Σv. We therefore

estimate this bias expression iteratively by repeatedly plugging in preliminary estimates

of Φ and Σv. The bias-corrected estimator Φ̂c,i at each iteration may then be obtained by

subtracting the estimated bias expression from the OLS estimator Φ̂.

The preliminary estimator of Σv is obtained first as the sample covariance matrix

of the residuals xt − Θ̂ − Φ̂xt−1, where Θ̂ and Φ̂ are the OLS estimator of Θ and Φ,

respectively. It is important that the preliminary estimator of Φ have all eigenvalues less

than one in absolute value, i.e., that it correspond to a stationary multivariate AR(1)

model, since otherwise the bias formula (22) will yield meaningless results. Therefore, we

consider the Yule-Walker estimator (see Reinsel 1997, page 99), which is guaranteed to

9An expression corresponding to (22) can also be found in Stambaugh (1999), Equation (54). There are
two typographical errors there: the expression should be multiplied by −1/n, and Φ should be replaced
by Φ′.
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satisfy the above mentioned condition. The Yule-Walker estimator is given by

Φ̂Y W =

[
n∑

t=1

(xt − x∗)(xt−1 − x∗)′

] [
n∑

t=0

(xt − x∗)(xt − x∗)′

]−1

(23)

where x∗ = 1
n+1

∑n
t=0 xt.

We start our iterative procedure of computing the corrected estimator Φ̂c by checking

whether the OLS estimator Φ̂ corresponds to a stationary model. If so, it is used as the

preliminary estimator and plugged into the bias expression (22) together with the prelim-

inary estimator of Σv described above. If the model corresponding to Φ̂ is nonstationary,

then Φ̂Y W is used as the preliminary estimator and plugged into (22) together with the

preliminary estimator of Σv described above. In either case, this yields a first-stage bias-

corrected estimator Φ̂c,1 of Φ, given by the difference between Φ̂ and the estimated bias.

If Φ̂c,1 corresponds to a nonstationary model, then we set Φ̂c = Φ̂c,1, and the iterative

procedure terminates. Otherwise, we proceed to the next stage of the iteration. At the

i’th stage, for i > 1, we re-estimate Σv as the sample covariance of the residual series

xt − Θ̂− Φ̂c,i−1xt−1, where Θ̂ is the OLS estimator of Θ. We then plug this estimator of

Σv, together with Φ̂c,i−1 into the bias expression (22), yielding an estimated bias −b̂i−1/n,

and then construct Φ̂c,i = Φ̂ − (−b̂i−1/n). If Φ̂c,i corresponds to a nonstationary model,

then we set Φ̂c = Φ̂c,i, and the iterative procedure terminates. Otherwise, we proceed to

the next stage of the iteration. In the simulations below, we used a total of ten iterations.

For the case where Φ may be non-diagonal, our augmented regression procedure works,

in summary, as follows. Given the matrix of predictor variables, we construct the bias-

corrected AR(1) parameter matrix estimate Φ̂c using our iterative procedure based on

Nicholls and Pope’s (1988) bias expression, as outlined above. Next, we construct the
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corrected residual series vc
t using (16). Then, we estimate β̂c

i as the coefficients of xi,t−1

(i = 1, 2, . . . , p) in an OLS regression of yt on all xi,t−1 and vc
i,t with intercept. This

regression also produces φ̂c
i as the estimators of the coefficients of vc

i,t. We present the

results of this estimation procedure in the following section.

The matrix Φ̂ can be used to test whether Φ is diagonal. A standard way to estimate

and test the statistical significance of the coefficients is by applying the SUR method.10

Although we recognize the bias in the entries of Φ̂, this seems to be a reasonable diagnostic

check on whether we can proceed with the restricted version of our estimation method in

which the Φ matrix is assumed to be diagonal. If the off-diagonal terms are significantly

different from zero, we proceed by constructing Φ̂c using the non-diagonal method. The

cost of this method is that its estimated corrected autoregressive parameters are more

biased than those obtained in the diagonal method. So if the true Φ matrix is diagonal,

applying the non-diagonal method would produce inferior results. In the empirical case

below, we indeed find that two variables that are commonly used as predictors of stock

returns have essentially a diagonal Φ̂ matrix.

10SUR is the seemingly unrelated regressions method. See, e.g., Judge et al. (1985, Section 11.2). The
OLS estimation yields identical results in this case, when the explanatory variables of all equations are
identical (Judge et al., p. 448). The SUR method provides, however, a better estimation of the standard
errors when the residual vectors of the equations are correlated, as they are in this case.
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V Simulations

A Single-predictor model

We report on the performance of our proposed estimators in a simulation study. First,

we study the case of a single-predictor model, using 1500 simulated replications from

the model (1) and (2). We perform two simulations, using parameter values that are

estimated from a model where stock market returns are predicted by lagged dividend

yields. That is, we use the values of the estimated parameters ρ̂c and β̂c as if they

were the true parameters values. The first simulation uses parameter estimates from the

annual predictive regression for the post-war period 1946-1990 (see Table 3, Panel A), and

correspondingly we use a sample size of n = 45. The parameter values are: ρ = 0.906,

β = 19.236 and φ = −95.189. The second simulation uses estimates from the monthly

predictive regression in Table 3, Panel B, where n = 379 with the following parameters

values: ρ = 0.990, β = 2.080 and φ = −92.196. We construct ut = φvt+et where {vt} and

{et} are mutually independent i.i.d. normal random variables whose standard deviations

are, respectively, 0.137 and 8.621 for the first simulation and 0.041 and 1.8 for the second

simulation.

The simulation procedure follows the steps described at the end of Section II. The

results are reported in Table 1. Standard errors obtained directly from linear regression

output are denoted by ŜE. Thus, for example, ŜE(ρ̂) is the standard error, as given

by the OLS regression output, for the estimate of ρ in model (2). Similarly, we obtain

ŜE(β̂), ŜE(β̂c), and ŜE(φ̂c). The corrected standard error for β̂c is denoted by ŜE
c
(β̂c),
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as given by (10). We now summarize our findings from Table 1.

INSERT TABLE 1 HERE

It can be seen that in both simulations, ρ̂ is strongly negatively biased, but that the

corrected estimator ρ̂c is very nearly unbiased. Correspondingly, whereas β̂ is strongly

positively biased in both simulations, our proposed β̂c is very nearly unbiased.

Consider first Case 1. The bias in ρ̂c is only −0.0066, at the cost of a slight inflation

in its standard deviation. The estimated standard error ŜE(ρ̂) has an average which is

close to the true standard deviation of ρ̂. Following the discussion in Section III A, this

supports the use of ŜE(ρ̂) in the calculation of ŜE
c
(β̂c).

Next, we observe that β̂ is strongly positively biased: the average β̂ is 27.687 while

β = 19.236, the bias being 8.451, quite large. However, our corrected estimator β̂c has a

very small bias, only 0.612 (= 19.848− 19.236). The actual and theoretical biases match

nearly exactly: the bias predicted by our Theorem 2, using the simulation bias for ρ̂c in

place of the actual bias, is −95.189(0.89943− 0.906) = 0.625.

The standard error ŜE(β̂c) obtained from the regression output greatly underestimates

the true standard deviation, consistent with our theoretical discussion in Section III A.

The corrected estimator ŜE
c
(β̂c) obtained from (10) is fairly accurate, having a mean

which is within 15% of the true standard deviation.

The estimator φ̂c is very nearly unbiased, consistent with Lemma 1, which says that

in theory it is exactly unbiased. The standard error of ŜE(φ̂c), obtained directly from the

regression output, is very nearly unbiased for the true standard deviation of φ̂c, consistent
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with Lemma 3, which says that the square of ŜE(φ̂c) is exactly unbiased for the true

variance of φ̂c.

The simulation results for Case 2 are similar in nature. Here, ρ is closer to 1.0 and the

sample size is larger. Still, the mean value of β̂, 3.145, which is close to the estimated value

β̂ = 3.046 obtained from the empirical data on which these simulations are based (Table

3, Panel B), exceeds the true β = 2.080 by 1.065. On the other hand, the mean value of β̂c

deviates from the true β by only 0.103. Again, this bias is very close to the bias predicted

by Theorem 2 (again using simulation bias for ρ̂c), −92.196(0.98886−0.990) = 0.105. As

before, the mean of φ̂c is extremely close to the true value (recall that φ̂c is theoretically

unbiased).

B Multiple-predictor model

Simulations of multiple-predictor models given by (11), (12), and (13) are presented in

Table 2. We first study the case where the autoregressive matrix Φ is assumed to be

diagonal but the errors of the two variables are correlated. We again generate 1500

replications, this time with sample size n = 200. The parameter values here are loosely

similar to the actual empirical ones, though they are somewhat varied to illustrate some

points.

In all of our multiple-predictor simulations, the values of the parameters and the

construction of the variables are as follows. α = 0, β = (0, 0)′, Θ = (0, 0)′, ut = φ′vt +

et, the et are independent standard normal, φ = (φ1, φ2)
′ = (−80,−80)′, the vt are
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independent bivariate normal random variables with mean zero and covariance matrix

Σv, and the sequences {et} and {vt} are independent of each other.

B.1 Diagonal Φ matrix

Panel A in Table 2 presents estimation results for a model with a diagonal AR(1) param-

eter matrix

Φ =

 0.80 0

0 0.95

 .

We employ two covariance matrices for the errors of the predictive variables. The first is

Σ1v =

 2 1

1 2

 ,

and the second is

Σ2v =

 10 9

9 10

 .

The estimation procedure for the models in Panel A follows the estimation procedure

of the univariate regression described in section II. We calculate for each xi,t (i = 1, 2)

the respective corrected estimators ρ̂c
i and corrected errors vector vc

i,t. (Effectively we

set Φ̂c
ii = ρ̂c

i with the off-diagonal terms being zero.) Then, we obtain β̂c
i and φ̂c

i as the

coefficients of xi,t−1 and vc
i,t, respectively, in an OLS regression of yt on x1,t−1, x2,t−1, vc

1,t

and vc
2,t, with intercept. We also estimate the corrected standard error for β̂c

i , denoted

by ŜE
c
(β̂c

i ), using an analog to (10) and employing the respective parameter estimates:

ŜE
c
(β̂c

i ) =

√
{φ̂c

i}2V̂ ar(ρ̂c
i) + {ŜE(β̂c

i )}2, where V̂ ar(ρ̂c
i) = (1 + 3/n + 9/n2)V ar(ρ̂i) and
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ŜE(β̂c
i ) is the standard error of β̂c

i obtained directly from the augmented OLS regression.11

INSERT TABLE 2 HERE

The estimation results for the diagonal-Φ two-predictor model are presented in Ta-

ble 2, Panel A. Although we assume a diagonal matrix Φ, our specification generates

considerable correlation between the two predictors: Corr(x1,t, x2,t) = 0.388 for Σ1v and

Corr(x1,t, x2,t) = 0.712 for Σ2v.

We focus on the estimates of the coefficients β1 and β2. Consider first the case of

Σ1v. We find that both β̂1 and β̂2 are biased upward. Whereas in fact β1 = β2 = 0,

the simulation means of β̂1 and β̂2 are 1.02 and 2.62, respectively. These biases are not

surprising, in light of our theoretical results. Applying (18) and using the simulation

means of φ̂ and of the entries of the matrix Φ̂ (at the bottom of the table), we calculate

that the bias for β̂1 and β̂2 should be 1.05 and 2.63, respectively, quite close to the

respective simulation means of the biases, 1.02 and 2.62. Intuitively, we would expect a

greater upward bias in β̂2 since Φ22 > Φ11 and consequently the bias in Φ̂22 is greater.

Applying our reduced-bias estimator of β, we obtain a very small bias: the average values

for β̂c
1 and β̂c

2 are −0.07330 and 0.18096, respectively. Consistent with Lemma 4 on the

unbiasedness of φ̂c, we find that the averages of the estimates of φ1 and φ2 are both

extremely close to −80.

Not only do the estimates β̂c
i for i= 1 and 2 have very small bias, they are also quite

efficient, having far smaller standard errors than the OLS estimates β̂i. Specifically, the

standard errors of β̂c
i are about 60% of the standard error of the OLS estimates. Our

11This is a straightforward extension of the univariate procedure to the diagonal case.
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approximation method for the estimation of the standard errors works quite well and

our estimates are within 8% (or less than half the standard deviation of ŜE
c
(β̂c

i ) of the

actual standard errors. (Here, the bias in ŜE
c
(β̂c

1) is positive, while the bias in ŜE
c
(β̂c

2)

is negative.)

At the bottom of Table 2, Panel A, we present the estimates of the entries of the

matrix Φ̂ obtained by the SUR procedure. These estimates, while biased, give a fairly

good approximation of the true entries in Φ. Serving as diagnostics they indicate that

the off-diagonal terms are practically zero, suggesting that we are justified in employing

here the diagonal estimation method which provides more accurate estimates.

Under the covariance matrix Σ2v there is a much greater correlation between the two

predictors: Corr(x1,t, x2,t) = 0.71. As in the previous case, the upward bias in β̂2 is

greater. Here, the bias in the OLS predictive coefficients β̂1 is negative, −1.08, while for

β̂2 it is positive and quite high, 3.86. Again, the bias values here are quite close to those

obtained from the application of (18), using the estimated Φ̂. The increase in the variance

and covariance terms in Σ2v greatly increases the standard errors of the OLS estimators

of β, but the standard errors of the reduced-biased estimators β̂c are somewhat smaller

under Σ2v than under Σ1v. The notable effect of the change in the covariance matrix is

on the efficiency of the OLS estimation versus ours. The standard errors of β̂c are about

40% (!) of the standard errors of β̂. This shows again the efficiency of our reduced-bias

estimators. As before, our corrected estimated standard errors ŜE
c
(β̂c

i ) for i = 1, 2 are

quite close on average to the actual standard errors (here, within 5%).
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B.2 Non-diagonal Φ matrix

We summarize our estimation procedure for the bivariate case as follows.

(I) Construct the bias-corrected AR(1) parameter matrix estimate Φ̂c using our iterative

procedure based on Nicholls and Pope’s (1988) bias expression, as described earlier.

Next, construct the bivariate corrected residual series vc
t = yt − Θ̂c − Φ̂cxt−1 where Θ̂c is

the adjusted intercept. Write vc
t = (vc

1,t, v
c
2,t)

′ and write xt = (x1,t, x2,t)
′.

(II) Obtain β̂c
1 and β̂c

2 as the coefficients of x1,t−1 and x2,t−1 in an OLS regression of yt on

x1,t−1, x2,t−1, vc
1,t and vc

2,t, with intercept. This regression also produces φ̂c
1 and φ̂c

2 as the

estimators of the coefficients of vc
1,t and vc

2,t.

Panel B presents results for a potentially non-diagonal AR(1) parameter matrix Φ. In

fact, we considered here both a diagonal AR(1) parameter matrix

ΦD =

 .80 0

0 .95

 ,

and non-diagonal AR(1) parameter matrices

ΦND,1 =

 .80 .1

.1 .85

 ,

and

ΦND,2 =

 .70 .2

.2 .75

 ,
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all with

Σv =

 2 1

1 2

 .

For all processes, we generated 1500 simulated replications, with sample size n = 200.

In setting the parameter values of Φ we note that in general, the closer the largest

eigenvalue of Φ is to 1, the more nearly nonstationary the multivariate AR(1) model is. In

the case here, the largest absolute eigenvalues of ΦD, ΦND,1 and ΦND,2 are similar, at 0.95,

0.93 and 0.93, respectively. The structure of ΦND would accommodate contemporaneous

correlation between the predictive variables even if Σv were diagonal.

We focus first on the case where the AR(1) parameter matrix is ΦD, for which the

numerical results are given in the lefthand side of Panel B. We find that the OLS estimates

β̂1 and β̂2 are strongly biased, in agreement with (18). The average values for β̂1 and

β̂2 are 0.96 and 2.53, respectively. The corrected estimators β̂c
1 and β̂c

2 are less biased,

averaging to -0.22 and 0.35, respectively. This is in agreement with Theorem 5. It is

instructive to compare the results here with those given in the lefthand side of Panel A,

Table 2, which correspond to the same model as used here but use an estimation method

that requires the knowledge that Φ is diagonal. The bias reduction in β̂c
1 and β̂c

2 here is

somewhat weaker than for the diagonal method, and the variance reduction in β̂c
1 and β̂c

2

compared to the OLS estimators is no longer found here. Correspondingly, the entries of

the corrected estimator Φ̂c are less biased than the corresponding entries of Φ̂, though the

bias reduction here is not quite as impressive as in the diagonal method. The standard

errors of the entries of Φ̂c and Φ̂ are comparable.
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The estimators φ̂c
1 and φ̂c

2 average to values very close to the true value of −10, in

agreement with Lemma 4.

For the cases where the AR(1) parameter matrices are actually non-diagonal, given

by ΦND,1 and ΦND,2, the results, reported in the four righthand side columns of Panel B,

are similar to those reported in the lefthand side. The remaining biases in the coefficients

β̂c
1 and β̂c

2 seem to slightly increase as the magnitude of the off-diagonal terms increases.

Altogether, our estimated coefficients show a substantial reduction in the bias compared

to the OLS coefficients. The results thus support the applicability of our methodology

without the need for either the assumption or the fact that Φ is diagonal.

VI Empirical Illustration

In this section, we illustrate our estimation method using a common model of predictive

regression that is studied by Stambaugh (1999). We employ two sets of data employed

in earlier predictive regressions models. The first one is the annual data of Kothari and

Shanken (1997) and the second is the monthly data of Lewellen (2003).12 We estimate

models where stock returns are predicted by lagged financial ratios, most notably the

dividend yield, also analyzed by Stambaugh (1999). Our objective here is not to establish

whether stock returns are predictable by any financial ratio, but rather to illustrate the

usefulness of our estimation method.

12We thank these authors for kindly providing us their data.
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A Univariate predictive models

We follow the estimation procedure described in Section II. The predictive model is

(E1) RMt = α + βXt−1 + ut,

where RMt is the market return in period t and Xt−1 is the lagged value of a financial

ratio from data in period t− 1 that is known at the beginning of period t. The

predictive variable is assumed to be an AR(1) process,

(E2) Xt = θ + ρXt−1 + vt.

Consider first the annual model of Kothari and Shanken (1997). RMt is the real

(inflation-adjusted) value-weighted annual market return for year t (from April of year

t−1 to March of year t), and the predictor Xt−1 is DIV Yt−1, the value-weighted dividend

yield for the preceding year (the dividend paid over year t−1 divided by the price level at

the end of that year). Throughout, we use a logarithmic transformation of the dividend

yield series to reduce its positive skewness.13 We estimate the models over the entire 65-

year sample period 1926-1990 and over the 45-year post-war period 1946-1990, since the

autoregressive process of DIV Yt seems to have changed after 1946 (see discussion below).

The estimation results are presented in Table 3, Panel A.

INSERT TABLE 3 HERE

We do the following estimation procedure.

13See Lewellen (2003).
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(a) We estimate model (E2) by OLS and obtain ρ̂, its standard error ŜE(ρ̂) and

t-statistic. These are presented in Table 3, line 1.

(b) The bias correction of ρ̂, reported in line 2, is

(E3.1) ρ̂c = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2,

(c) Using these parameters, the corrected residual vc
t is calculated as

(E3.2) vc
t = DIV Yt − (θ̂c + ρ̂cDIV Yt−1) ,

where the corrected intercept is θ̂c = (1− ρ̂c)
∑n

t=1 DIV Yt/n.

(d) Model (E1) is estimated to obtain the coefficient β̂ and its standard error ŜE(β̂),

reported in line 3.

(e) Using vc
t from (E3.2), we estimate the augmented model by OLS:

(E4) RMt = α + βDIV Yt−1 + φvc
t + et.

We obtain the parameters β̂c (line 4) and φ̂c (line 6), their respective standard errors

ŜE(β̂c) and ŜE(φ̂c) and their t-statistics.

(f) The corrected standard error of β̂c, ŜE
c
(β̂c), is calculated according to (10) as

follows:

(E5) ŜE
c
(β̂c) =

√
(φ̂c)2{ŜE(ρ̂)}2(1 + 3/n + 9/n2)2 + {ŜE(β̂c)}2 .

This is reported in line 5. The corresponding t-statistic is calculated as β̂c/ŜE
c
(β̂c).
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The estimation results in Table 3 indicate that β̂ may be biased upward because

φ̂c < 0 (line 6) and ρ̂ < ρ̂c (lines 1 and 2). Indeed, we obtain that β̂c < β̂ (lines 3

and 4). Therefore, in line 5, β̂c/ŜE
c
(β̂c) = 2.13 and the null hypothesis β = 0 is not

rejected as strongly as it is based on the t-statistic in line 3. The autoregressive process

of the dividend yield series may well have changed over time. In the 20 years 1926-1945,

ρ̂ = 0.218 (t = 0.96), much smaller than the estimate of ρ̂ for the following period 1946-

1990. If ρ = 0 in the earlier period, we would not expect β̂ to be biased. Hence we focus

on the 45-year period 1946-1990, where ρ̂ is large and statistically significant. For this

period, the OLS regression produces β̂ = 27.066 and t = 3.05, whereas by our procedure

the slope coefficient is smaller and has lower statistical significance: β̂c = 19.236 with

t = 2.10. The bias in β̂ may be greater for the 45 year period than for the entire 65-year

period because in the shorter period, the bias in ρ̂ is apparently greater and also φ̂c is

more negative.

Next, we apply our method to the predictive models analyzed by Lewellen (2003),

where monthly stock returns RM (value-weighted index) are predicted by lagged monthly

values (in logarithm) of three financial ratios. Each model employs one predictor only and

consequently we employ here our univariate method. The predictive variables are: (i) the

dividend yield for the value-weighted index, DIV Y , calculated as the annual dividend

divided by the current index level; (ii) the book-to-market ratio B/M , the book value

of equity in the previous year divided by the market equity in the previous month; and

(iii) the earnings-to-price ratio E/P , the operating earnings divided by market equity.

All variables and returns are for the NYSE. We start with 1963, when Compustat data

became available, and end in 1994 since Lewellen (2003) points out that the predictive
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power of these three ratios declined considerably starting in 1995. The sample period

is thus 379 months. The estimation process is similar to that outlined in steps (a)–(f)

above, and the results are presented in Table 3, Panel B.

In the monthly models, the estimates of the autoregressive coefficients ρ for all three

predictive variables are quite high. Our estimated ρ̂c is 0.990 for DIV Y , 0.995 for B/M

and 0.996 for E/P . Given the large sample size, the bias in ρ̂ should be relatively small.

However, the relatively large negative value of φ̂c should produce a strong bias in β̂ for

all three predictors.

By the OLS estimator β̂ we reject the null hypothesis that β = 0 at well below the

standard 5% level for all three predictors (two-tail tests). However, using β̂c and ŜE
c
(β̂c),

we cannot reject the null for the predictors B/M and E/P , and for DIV Y the rejection is

marginal at the 5% level. The conclusion according to these results is that the series B/M

and E/P do not have predictive power and the series DIV Y has marginally significant

predictive power.

Our results cast doubt on the conclusions drawn in earlier studies on the significance

of the three predictors. The results of Fama and French (1984) and Campbell and Shiller

(1988) on the predictive power of the dividend-price ratio on future stock returns are called

into question, given the marginal significance of its coefficient. When we extend the study

period to be 1927-2001 (900 months compared with 379 months in the sample studied in

Table 3, Panel B), we obtain that the coefficient β̂c of DIV Yt−1 is 0.366 with t = 0.70,

insignificant. This suggests that lagged dividend-price ratio is not a significant predictor

of stock returns. Our results also question the conclusions of Pontiff and Schall (1998)
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that aggregate book-to-market ratio forecasts future market returns. We find that while

the OLS slope coefficient of book-to-market ratio is statistically significant, the adjusted

coefficient and its adjusted standard error show that the effect of book-to-market ratio on

future stock returns is statistically insignificant.

B A bivariate predictive model

We apply our multivariate estimation procedure, where the matrix Φ is diagonal, to

a bivariate model where the predictive variables are the dividend yield DIV Y and the

earnings-to-price ratio E/P . We first examine whether the nature of the covariance matrix

Φ by estimating the system of equations

DIV Yt = Φ10 + Φ11DIVt−1 + Φ12E/Pt−1 + v1,t

E/Pt = Φ20 + Φ21DIVt−1 + Φ22E/Pt−1 + v2,t,

where v1,t and v2,t are the error terms, which are serially independent but may be

mutually correlated. The estimation results, presented in Table 4, Panel A, indicate that

the off-diagonal terms of Φ are essentially zero. However, the correlation of their error

terms is quite high: Corr(v̂DIV Y,t, v̂E/P,t) = 0.858. This means that while Φ is apparently

diagonal, Σv is not. Thus, the scenario here resembles the one in our multivariate

diagonal model and in the corresponding simulations.

INSERT TABLE 4 HERE

We can therefore proceed with our bivariate estimation method where Φ is assumed
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to be diagonal. That is, we estimate the augmented regression

RMt = β0 + β1DIV Yt−1 + β2E/Pt−1 + φ1v
c
DIV Y,t + φ2v

c
E/P,t.

where vc
DIV Y,t and vc

E/P,t are the error terms obtained from the univariate estimation

procedure, steps (b) and (c), described in section VI A above. By this augmented

regression we obtain the reduced-bias coefficients β̂c and the coefficients φ̂c which are

unbiased. In addition, we calculate the corrected standard errors of β̂c, denoted by

ŜE
c
(β̂c), as we do in the univariate case, step (f). The estimation results are presented

in Table 4, Panel B.

The OLS estimation yields β̂1 = 5.269 and β̂2 = −1.599. The first coefficient is

marginally significant while the second is not, using the OLS t-statistics. The two variables

in the regression are highly correlated, Corr(DIV Yt, E/Pt) = 0.924, which presents a

collinearity problem. Taken together, the two variables have a significant effect on RMt,

as measured by the F-value of the regression: F = 4.97 (p = 0.007). However, as we know

from our theory and from the simulation results for the bivariate case, the OLS coefficients

β̂ (and correspondingly the test statistics) can be biased in this case since we find that

the coefficients φ are negative. Indeed, we obtain that β̂c
1 = 2.509, much smaller than

β̂1. Bias in β̂1 may be caused by the large negative value –82.582 of φ̂c
1. After correcting

the standard error, β̂c
1 is still significant. The coefficient β̂c

2 is smaller (in absolute value)

than β̂2 and insignificant, while φ̂2 is highly significant. By these results, only DIV Y has

significant predictive power. However, when extending the sample by 84 months to 2001,

none of the predictive variables is significant, which again casts doubt on the conclusions
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in earlier studies which suggest that these variables are significant predictors of stock

returns.

VII Concluding Remarks

This paper provides a convenient way to estimate a predictive regression model where a

time series of one variable is regressed on lagged variables which are assumed to predict it.

The predictive variables have a first order autoregressive structure and their disturbance

terms are contemporaneously correlated with that of the predicted variable. For the single-

predictor case, Stambaugh (1999) shows that the OLS-estimated coefficient of the lagged

variable is biased when computed from a small sample. There is no available estimation

method for this model, except for a plug-in version where, in the single-predictor case

the sample estimated parameters are plugged into Stambaugh’s bias expression. In the

multi-predictor case, there heretofore existed neither an expression for the bias of the OLS

estimators of the coefficients of the predictive variables, nor any reduced-bias estimation

method.

We develop an estimation method for both the single-predictor and multi-predictor

models that produces a reduced-bias estimator of the coefficients of the lagged variables,

which turns out to be identical in the single-predictor case to the estimator motivated

by Stambaugh’s (1999) bias expression. We also develop a straightforward estimation

method for a reduced-bias standard error, which we find to work well in some versions

of the multi-predictor models. With these standard errors, it is easy to perform tests of
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statistical significance. Our method is particularly useful in the multi-predictor case for

which there is no direct reduced-bias estimation method available. The performance and

usefulness of our method is demonstrated in simulations, and we illustrate its use in some

applications with actual data employed in other studies.
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VIII Appendix

Proof of Theorem 1: As in Stambaugh (1999), we define the error process {et} by

ut = φvt + et = E[ut|vt] + et. Since (et, vt)
′ is bivariate normal and E[et|vt] = 0, et and

vt must be independent for all t. Since the vectors (ut, vt)
′ are independent, et must be

independent of v1, . . . , vn, and x0. Thus, for all t, et is independent of x0, . . . , xn.

Let 1n be an n× 1 vector of ones, and define the matrix X̃ = [1n, {xt−1}n
t=1, {vt}n

t=1].

Let y = (y1, . . . , yn)′. Since yt = α + βxt−1 + φvt + et, we have

y = X̃


α

β

φ

 + e ,

where e = (e1, . . . , en)′, and the vector (α̃, β̃, φ̃) of least squares estimators is given by
α̃

β̃

φ̃

 = (X̃ ′X̃)−1X̃ ′y =


α

β

φ

 + (X̃ ′X̃)−1X̃ ′e .

Since e has zero mean and is independent of X̃, we obtain

E[β̃] = β ,

thereby completing the proof �

Proof of Theorem 2: As in the proof of Theorem 1, we use the representation

yt = α + βxt−1 + φvt + et ,
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where the error terms et are i.i.d. normal with mean zero, and for all t, et is independent

of x0, . . . , xn. Since vt − vc
t = (θ̂c − θ) + (ρ̂c − ρ)xt−1, we can write

yt = [α + φ(θ̂c − θ)] + [β + φ(ρ̂c − ρ)]xt−1 + φvc
t + et . (24)

Since θ̂c, ρ̂c and {vc
t} are all functions of x0, . . . , xn, it follows that, conditionally on

x0, . . . , xn, equation (24) satisfies all the regularity conditions needed for a linear regression

model, and therefore

E[β̂c|x0, . . . , xn] = β + φ(ρ̂c − ρ) .

Taking the expectation of the formula above and applying the double expectation theorem

yields

E[β̂c − β] = φE[ρ̂c − ρ] ,

thereby completing the proof �

Proof of Theorem 3: First consider the case ω = 0. Let v̂t = xt − (θ̂ + ρ̂xt−1) where θ̂

and ρ̂ are the usual OLS estimates of θ and ρ. Then (24) becomes

yt = [α + φ(θ̂ − θ)] + [β + φ(ρ̂− ρ)]xt−1 + φv̂t + et . (25)

Now, v̂t is orthogonal to xt−1 in the sense that
∑n

t=1 v̂txt−1 = 0, so that if ω = 0, β̂c

is equal to the OLS slope estimate in a simple regression of yt on xt−1. Hence, β̂c = β̂

if ω = 0. Due to the orthogonality just mentioned, the OLS coefficient of xt−1 in the

multiple regression of yt on xt−1 and v̂t remains unchanged from the value it took in the

simple regression of yt on xt−1. This same orthogonality also implies that the coefficient

of v̂t in the regression of yt on xt−1 and v̂t in (25) is φ̂s.
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Next, suppose that ρ̂c = ρ̂ + ω, where ω is any nonzero real number. Since vc
t =

xt − (θ̂c + ρ̂cxt−1), we obtain

vc
t = v̂t + (θ̂ − θ̂c)− ωxt−1 , (26)

so that the vector vc
t is the sum of the vector v̂t with a constant vector and a vector which

is collinear with xt−1. Thus the linear space spanned by a constant vector together with

xt−1 and v̂t is the same as the linear space spanned by a constant vector together with

xt−1 and vc
t . It follows that the fitted values from the regressions of yt on these two spaces

are the same, that is,

α̂ + β̂xt−1 + φ̂sv̂t = α̂c + β̂cxt−1 + φ̂cvc
t , (27)

for t = 1, . . . , n. The subtraction of ωxt−1 in (26) has no effect on the OLS coefficient

of vc
t , and hence φ̂c = φ̂s for all values of ω. Now, using (26) to substitute for vc

t in the

righthand side of (27), we obtain

α̂ + β̂xt−1 + φ̂sv̂t = [α̂c + φ̂s(θ̂ − θ̂c)] + (β̂c − φ̂sω)xt−1 + φ̂sv̂t .

Since the least-squares coefficients are uniquely determined by the least-squares algorithm,

the coefficients of xt−1 on the lefthand and righthand sides of the above equation must be

the same, so that

β̂c = β̂ + φ̂sω .

�

Proof of Lemma 1: Using equation (24) and arguing as in the proof of Theorem 2,

we obtain E[φ̂c|x0, . . . , xn] = φ. Now, taking the expectation and applying the double

43



expectation theorem yields E[φ̂c] = φ. �

Proof of Lemma 2: Let {rt}n
t=1 be the sequence of residuals obtained in an OLS regres-

sion of xt−1 on vc
t (with intercept). Then we have

β̂c =

∑n
t=1 rtyt∑n
t=1 r2

t

, (28)

and

[ŜE(β̂c)]2 =
σ̂2∑n
t=1 r2

t

,

where σ̂2 is the estimator of the error variance from a regression (with intercept) of yt

on xt−1 and vc
t . Note that σ̂2 is simply the residual sum of squares from this regression

divided by n− 3.

We use the error et = ut − φvt as in the previous proofs. Note that the variance of et

is σ2
e = V ar(et) = σ2

u − σ2
uv/σ

2
v .

We first obtain a convenient expression for β̂c−β. Since the residual vector is orthog-

onal to the vectors of explanatory variables, we have

n∑
t=1

rt = 0 ,
n∑

t=1

rtv
c
t = 0 . (29)

Writing xt−1 = a0 + a1v
c
t + rt, we obtain from (29) that

n∑
t=1

rtxt−1 =
n∑

t=1

r2
t . (30)

Therefore, from (28), we have

β̂c =
1∑n

t=1 r2
t

n∑
t=1

rt(α + βxt−1 + φvt + et)
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=
1∑n

t=1 r2
t

n∑
t=1

rt[βxt−1 + φvc
t + φ(vt − vc

t ) + et] .

From (29) and (30), we have

1∑n
t=1 r2

t

n∑
t=1

rt(βxt−1 + φvc
t ) = β .

Since vt − vc
t = (θ̂c − θ) + (ρ̂c − ρ)xt−1, we conclude that

β̂c − β = φ(ρ̂c − ρ) +

∑n
t=1 rtet∑n
t=1 r2

t

. (31)

Since the {rt} are functions of {xt}, and since for all t, et is independent of {xt}n
t=0,

it follows that for all t, et is independent of r1, . . . , rn. Therefore, the two terms on the

righthand side of (31) are uncorrelated, and the second term has mean zero. It follows

that

E[β̂c − β]2 = φ2E[ρ̂c − ρ]2 + σ2
eE

[
1∑n

t=1 r2
t

]
.

It remains to be shown that

σ2
eE

[
1∑n

t=1 r2
t

]
= E

[
σ̂2∑n
t=1 r2

t

]
. (32)

Let H denote the hat matrix corresponding to X = [1n, xt−1, v
c
t ] for the regression of yt

on xt−1, vc
t . That is, H = X(X ′X)−1X ′. Let r0 denote the residual vector from this

regression, so that r0 = (I −H)y = (I −H)e, where I denotes an n× n identity matrix.

Conditionally on X, we have

n∑
t=1

r2
0t = e′(I −H)e ∼ σ2

eχ
2
n−3 ,

and since the random variable on the righthand side does not depend on X, the result is

true unconditionally as well. Thus,

σ̂2 =
1

n− 3

n∑
t=1

r2
0t
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is an unbiased estimator of σ2
e , that is, E[σ̂2] = σ2

e . Now, we have

E

[
σ̂2∑n
t=1 r2

t

| X
]

= E

[
1

n− 3

e′(I −H)e∑n
t=1 r2

t

| X
]

=
1∑n

t=1 r2
t

1

n− 3
E[σ2

eχ
2
n−3] = σ2

e

1∑n
t=1 r2

t

.

Taking expectations of both sides and using the double expectation theorem yields (32) �

Proof of Lemma 3: Let q be the residual vector in an OLS regression of vc
t on xt−1.

Note that q is independent of the error vector, e = u− φv. Then

[ŜE(φ̂c)]2 =
σ̂2∑n
t=1 q2

t

.

Using the representation

yt = α + φ(θ̂c − θ) + βxt−1 + φvc
t + φ(ρ̂c − ρ)xt−1 + et ,

together with the properties
∑

qtv
c
t =

∑
q2
t and

∑
qtxt−1 =

∑
qt = 0, we obtain

φ̂c =

∑n
t=1 qtyt∑n
t=1 q2

t

= φ +

∑n
t=1 qtet∑n
t=1 q2

t

. (33)

Since {et} is independent of {qt} and E[et] = 0, the expectation of the second term on

the righthand side of the above equation is zero, and we obtain

V ar[φ̂c] = σ2
eE

[
1∑n

t=1 q2
t

]
. (34)

Proceeding as in the proof of Lemma 2, we have

E

[
σ̂2∑n
t=1 q2

t

| X
]

= E

[
1

n− 3

e′(I −H)e∑n
t=1 q2

t

| X
]

=
1∑n

t=1 q2
t

1

n− 3
E[σ2

eχ
2
n−3] = σ2

e

1∑n
t=1 q2

t

.
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Taking expectations of both sides and using the double expectation theorem yields

E

[
σ̂2∑n
t=1 q2

t

]
= σ2

eE

[
1∑n

t=1 q2
t

]
.

The Lemma now follows from (34) �

Proof of Theorem 4: As pointed out in (14), we have

yt = α + β′xt−1 + φ′vt + et ,

where {et} has zero mean and is independent of both {vt} and {xt}.

Let 1n be an n× 1 vector of ones, and define the n× (2p + 1) matrix

X̃ = [1n, (x0, x1, . . . xn−1)
′, (v1, . . . , vn)′] .

Let y = (y1, . . . , yn)′. We have

y = X̃


α

β

φ

 + e ,

where e = (e1, . . . , en)′, and the vector (α̃, β̃, φ̃) of least squares estimators is given by
α̃

β̃

φ̃

 = (X̃ ′X̃)−1X̃ ′y =


α

β

φ

 + (X̃ ′X̃)−1X̃ ′e .

Since e has zero mean and is independent of X̃, we obtain

E[β̃] = β ,
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thereby completing the proof �

Proof of Theorem 5: Using (11), (12), (13) and (16), we can write

yt = [α + φ′(Θ̂c −Θ)] + {β′ + φ′(Φ̂c − Φ)}xt−1 + φ′vc
t + et . (35)

Since Θ̂c, Φ̂c and {vc
t} are all functions of x0, . . . , xn, it follows that, conditionally on

x0, . . . , xn, Equation (35) satisfies all the regularity conditions needed for a liner regression

model, and therefore

E[β̂c|x0, . . . , xn] = β + [Φ̂c − Φ]′φ .

Taking the expectation of the formula above and applying the double expectation theorem

yields

E[β̂c − β] = E[Φ̂c − Φ]′φ .

�

Proof of Lemma 4: Using Equation (35) and arguing as in the proof of Theorem

5, we obtain E[φ̂c|x0, . . . , xn] = φ. Now, taking the expectation and applying the double

expectation theorem yields E[φ̂c] = φ. �

Proof of Theorem 6: Our proof is a direct generalization of the proof of Theorem

3. We first consider the case ω = 0. Then (35) becomes

yt = [α + φ′(Θ̂−Θ)] + {β′ + φ′(Φ̂− Φ)}xt−1 + φ′v̂t + et . (36)

Since Θ̂ and Φ̂ are the OLS estimates, each of the first p+1 columns of X̃ is orthogonal to

each of the final p columns of X̃. Hence β̂c = β̂ if ω = 0. Next, suppose that Φ̂c = Φ̂ + ω,
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where the p× p matrix ω is not identically zero. Note that

vc
t = v̂t + (Θ̂− Θ̂c)− ωxt−1 , (37)

so that the linear space of n-dimensional vectors spanned by a constant vector together

with the rows of [x0, . . . , xn−1] and the rows of [v̂1, . . . , v̂n] is the same as the linear space

spanned by a constant vector together with the rows of [x0, . . . , xn−1] and the rows of

[vc
1, . . . , v

c
n]. In other words, the columns of X̃ span the same space as the columns of X̃c.

Thus, the fitted values from the regressions of yt on these two spaces are the same, that

is,

α̂ + β̂′xt−1 + (φ̂s)′v̂t = α̂c + (β̂c)′xt−1 + (φ̂c)′vc
t , (38)

for t = 1, . . . , n, and φ̂c = φ̂s for all ω. Now, using (37) to substitute for vc
t in the righthand

side of (38), we obtain

α̂ + β̂′xt−1 + (φ̂s)′v̂t = [α̂c + (φ̂s)′(Θ̂− Θ̂c)] + [(β̂c)′ − (φ̂s)′ω]xt−1 + (φ̂s)′v̂t . (39)

Since the least-squares coefficients are uniquely determined by the least-squares algorithm,

the vectors of coefficients of xt−1 on the lefthand and righthand sides of (39) must be the

same, so that β̂′ = (β̂c)′ − (φ̂s)′ω, and therefore,

β̂c = β̂ + ω′φ̂s .

�
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Table 1: Simulation results for regression model (1) and (2) with one

predictive variable

1500 replications from the single-predictor models.

yt = α + βxt−1 + ut , (1)

xt = θ + ρxt−1 + vt . (2)

The table presents estimation results of the single-predictor model by OLS as well as by

our estimation procedure.

Our estimation procedure is as follows:

(I) Estimate model (2) by OLS and obtain ρ̂. Construct the corrected estimator

ρ̂c = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2 and obtain the corrected residuals

vc
t = xt − θ̂c − ρ̂cxt−1, where θ̂c is the adjusted intercept.

(II) For model (1), obtain β̂c as the coefficient of xt−1 in an OLS regression of yt on xt−1

and vc
t , with intercept. This regression also produces φ̂c as the estimator of the

coefficient of vc
t .

The parameters β̂ and ρ̂ are obtained from OLS estimation of models (1) and (2),

respectively. Standard errors that are estimated directly from linear regression output

are denoted by ŜE. The corrected standard error for β̂c is denoted by ŜE
c
(β̂c), as given

by (10).

Two cases are considered: Case 1 uses parameters from the 45-year predictive regression

model in Table 3, Panel A: ρ = 0.906, β = 19.236 and φ = −95.189, with n = 45. Case

2 uses parameters from the 379-month predictive regression of dividend yield in Table 3,

Panel B: ρ = 0.990, β = 2.080 and φ = −92.196, with n = 379. ut = φvt + et where {vt}
and {et} are mutually independent i.i.d. normal random variables whose standard

deviation are, respectively, 0.137 and 8.621 for Case 1 and 0.041 and 1.8 for Case 2.
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Table 1: Results for the single-predictor model (1) and (2)

Case 1 (n=45) Case 2 (n=379)

Mean Std Dev Mean Std Dev

ρ̂ 0.81759 0.10154 0.97839 0.012867

ŜE(ρ̂) 0.084674 0.01989 0.01024 0.00282

ρ̂c 0.89943 0.10876 0.98886 0.01297

β̂ 27.68732 11.50525 3.14523 1.27993

ŜE(β̂) 9.76190 2.46097 1.04733 0.29061

β̂c 19.84764 12.12282 2.18033 1.28830

ŜE(β̂c) 5.50537 1.58832 0.45299 0.12754

ŜE
c
(β̂c) 10.31587 2.57658 1.05468 0.29249

φ̂c -95.79690 9.45337 -92.20046 2.27148

ŜE(φ̂c) 9.78199 1.52708 2.27326 0.11767
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Table 2: Simulation results for a model with multiple predictive variables

1500 replications from the models

yt = α + β′xt−1 + ut , (12)

xt = Θ + Φxt−1 + vt . (13)

The values of the parameters and the construction of the variables are as follows. α = 0,
β = (0, 0)′, Θ = (0, 0)′, ut = φ′vt + et, the et are independent standard normal,
φ = (φ1, φ2)

′ = (−80,−80)′, the vt are independent bivariate normal random variables
with mean zero and covariance matrix Σv. The sequences {et} and {vt} are independent
of each other. n = 200.

Panel A presents estimation results of a model with a diagonal AR(1) parameter matrix

Φ =

(
0.80 0
0 0.95

)
.

Results are presented for two covariance matrices:

Σ1v =

(
2 1
1 2

)
.

and

Σ2v =

(
10 9
9 10

)
.

Panel B presents results for Diagonal AR(1) parameter matrix

ΦD =

(
.80 0
0 .95

)
,

and Non-Diagonal AR(1) parameter matrices

ΦND,1 =

(
.80 .1
.1 .85

)
and

ΦND,2 =

(
.70 .2
.2 .75

)
,

all with

Σv =

(
2 1
1 2

)
.
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Panel A: Results with diagonal autoregressive matrix Φ

The estimation procedure follows the description in Section V B.1.

Results for Σ1v Results for Σ2v

Mean Std Dev Mean Std Dev

Corr(x1, x2) 0.38798 0.14643 0.71154 0.06274

ρ̂1 0.78349 0.04559 0.78309 0.04465

ŜE(ρ̂1) 0.04385 0.00402 0.04392 0.00397

ρ̂c
1 0.80049 0.04628 0.80008 0.04533

ρ̂2 0.92837 0.03052 0.92953 0.02877

ŜE(ρ̂2) 0.02581 0.00510 0.02569 0.00495

ρ̂c
2 0.94757 0.03099 0.94876 0.02921

β̂1 1.01819 7.82735 -1.07583 10.34441

ŜE(β̂1) 7.25404 0.79978 10.00601 1.12535

β̂c
1 -0.07330 4.55905 0.02269 4.00259

ŜE(β̂c
1) 2.76564 0.33749 1.62431 0.20266

ŜE
c
(β̂c

1) 4.78765 0.47730 4.22776 0.42323

β̂2 2.61877 4.89475 3.85684 6.56538

ŜE(β̂2) 4.27394 0.91415 5.86688 1.26136

β̂c
2 0.18096 3.04326 0.10123 2.52673

ŜE(β̂c
2) 1.63067 0.35650 0.95460 0.21242

ŜE
c
(β̂c

2) 2.81425 0.57500 2.47409 0.48771

φ̂c
1 -80.12528 4.71524 -79.95893 4.13121

φ̂c
2 -79.82175 4.59114 -79.97277 4.17494

Φ̂11 0.78195 0.052150 0.80147 0.06595

Φ̂12 -0.00788 0.03180 -0.02058 0.04130

Φ̂21 0.00492 0.05326 0.01227 0.06491

Φ̂22 0.92495 0.03428 0.92238 0.04199
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Panel B: Results for a possibly non-diagonal autoregressive matrix Φ

The estimation procedure follows the description in Section V B.2. The bias-corrected

AR(1) parameter matrix estimate Φ̂c uses the method of Nicholls and Pope (1988).

Results for ΦD Results for ΦND,1 Results for ΦND,2

Mean Std Dev Mean Std Dev Mean Std Dev

Φ̂11 0.781944 0.052019 0.779928 0.058582 0.682749 0.066851

Φ̂c
11 0.800771 0.051078 0.800618 0.057919 0.701660 0.066862

Φ̂12 -0.007058 0.030244 0.098094 0.050531 0.196758 0.060437

Φ̂c
12 -0.000932 0.028745 0.098491 0.048575 0.197785 0.059362

Φ̂21 0.006034 0.051610 0.104529 0.059265 0.203699 0.067841

Φ̂c
21 0.002058 0.049432 0.102273 0.057136 0.203001 0.066661

Φ̂22 0.925427 0.032955 0.825254 0.052158 0.726641 0.062244

Φ̂c
22 0.946499 0.032703 0.846313 0.051849 0.746045 0.062403

β̂1 0.960970 7.24609 1.24331 8.19269 1.08456 9.30569

β̂c
1 -0.227031 6.94037 -0.23136 7.91485 -0.37250 9.15355

β̂2 2.52964 4.39790 2.13111 7.13647 2.12654 8.49007

β̂c
2 0.353793 4.29205 0.414517 6.91680 0.49123 8.36466

φ̂c
1 -79.9978 0.058198 -79.99776 0.058296 -79.9978 0.058287

φ̂c
2 -80.0026 0.058209 -80.0025 0.058143 -80.0026 0.058070
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Table 3: Regression estimates of annual stock return on lagged financial ratios

The table presents results of the following models:

(E1) RMt = α + βXt−1 + ut.

(E2) Xt = θ + ρXt−1 + vt.

(E3.1) ρ̂c = ρ̂ + (1 + 3ρ̂)/n + 3(1 + 3ρ̂)/n2

(E3.2) vc
t = Xt − (θ̂c + ρ̂cXt−1). (θ̂c = (1− ρ̂c)

∑n
t=1 Xt/n.)

(E4) RMt = α + βXt−1 + φvc
t + et.

(E5) ŜE
c
(β̂c) =

√
(φ̂c)2{ŜE(ρ̂)}2(1 + 3/n + 9/n2)2 + {ŜE(β̂c)}2 . Also,

t = β̂c/ŜE
c
(β̂c).

Estimators θ̂, ρ̂, α̂ and β̂ are obtained from OLS regressions. Estimators θ̂c, ρ̂c, α̂c and β̂c

are obtained under our estimation procedure described in the text. In parentheses there

are the standard errors of the estimated coefficients and [t] is the corresponding

t-statistic. All standard errors and t-statistics are obtained directly from OLS, except

for those in (E5).
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Panel A: Annual predictive model. RMt is the value weighted market real return for

year t and Xt = log(DIV Yt) is the logarithm of the value weighted annual dividend

yield.

Coefficient From model 1926-1990 (n=65) 1946-1990 (n=45)

1 ρ̂ (E2) 0.627 0.823

(ŜEρ̂) [t] (OLS) (0.098) [6.41] (0.087) [9.52]

2 ρ̂c (E3.1) 0.673 0.906

3 β̂ (E1) 25.250 27.066

(ŜEβ̂) [t] (OLS) (9.847) [2.56] (8.872) [3.05]

4 β̂c (E4) 21.343 19.236

(ŜEβ̂c) [t] (5.440) [3.92] (3.370) [5.71]

5 (ŜE
c
β̂c) [t] (E5) (10.042) [2.13] (9.167) [2.10]

6 φ̂c -84.283 -95.189

(ŜEφ̂c) [t] (E4) (6.994) [12.05] (5.878) [16.20]
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Panel B: Monthly predictive model of excess market return, using for Xt the logarithm

of three financial ratios: (i) DIV Yt, value-weighted dividend yield, the annual dividend

divided by the current index level, (ii) B/Mt, book-to-market ratio, and (iii) E/Pt,

earnings-to-price ratio. RMt is the value weighted market return for month t. Data are

for the NYSE, 5/1963-12/1994 (379 months).

Coefficient From model Dividend yield Book/Market Earnings/Price

1 ρ̂ (E2) 0.979 0.985 0.985

(ŜEρ̂) [t] (OLS) (0.011) [92.51] (0.009) [106.90] (0.008) [123.01]

2 ρ̂c (E3.1) 0.990 0.995 0.996

3 β̂ (E1) 3.046 1.935 1.638

(ŜEβ̂) [t] (OLS) (1.009) [3.02] (.805) [2.40] (0.673) [2.43]

4 β̂c (E4) 2.080 1.101 0.879

(ŜEβ̂c) [t] (0.258) [8.07] (0.340) [3.24] (0.347) [2.53]

5 (ŜE
c
β̂c) [t] (E5) (1.060) [1.96] (0.841) [1.31] (0.701) [1.25]

6 φ̂c -92.196 -79.221 -72.138

(ŜEφ̂c) [t] (E4) (1.250) [73.61] (1.898) [41.73] (2.227) [32.39]
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Table 4: Regression estimates of a bivariate model with a diagonal covariance matrix

The table presents results of the following models:

(F1) RMt = α + β1DIV Yt−1 + β2E/Pt−1 + ut.

(F2) Xt = θ + ρXt−1 + vt, for X = DIV Y and E/P .

(F3) The calculation of v̂c
DIV Y,t and vc

E/P,t follows the procedure outlined in Table 3,

procedure (E3), for the univariate regressions for each of the predictors DIV Y and E/P .

(F4) RMt = α + β1DIV Y1,t−1) + β2E/Pt−1 + φ1v̂
c
DIV Y,t + φ2v̂

c
E/P,t + ut.

(F5) ŜE
c
(β̂c) is calculated, as in (E5) in Table 3, separately for DIV Y and E/P using

the respective estimates.

Estimators θ̂, ρ̂, α̂ and β̂ are obtained from OLS regressions of model (F1). Estimators of

β̂c are obtained from an OLS regression of model (F4). In parentheses there are the

standard errors of the estimated coefficients and [t] is the corresponding t-statistic.
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Panel A: The covariance matrix Φ̂ for the bivariate model.

The table presents a system estimate (SUR) of the following system of equations:

DIVt = Φ10 + Φ11DIVt−1 + Φ12E/Pt−1 + v1,t

E/Pt = Φ20 + Φ21DIVt−1 + Φ22E/Pt−1 + v2,t

where v1,t and v2,t are the error terms, which are serially independent but may be

mutually correlated. The table presents the parameter estimates and the respective

t-statistics.

DIV Yt−1 E/Pt−1

DIV Yt 0.957 0.016

[t] [34.65] [0.87]

E/Pt -0.006 0.989

[t] [0.20] [47.29]
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Panel B: Bivariate predictive model.

RMt = β0 + β1DIV Yt−1 + β2E/Pt−1 + φ1v
c
DIV Y,t + φ2v

c
E/P,t.

The subscripts of the error terms v indicate that they pertain to DIV Y and E/P from

the univariate regression (F2) and the estimation procedure (F3).

Corr(v̂c
DIV Y,t, v̂

c
E/P,t) = 0.858.

Coefficient From model DIV Yt−1 E/Pt−1

1 β̂ (F1) 5.269 -1.599

(ŜEβ̂) [t] (OLS) (2.643) [1.99] (1.757) [0.91]

2 β̂c (F4) 2.509 -0.345

(ŜEβ̂c) [t] (0.660) [3.80] (0.439) [0.79]

3 (ŜE
c
β̂c) [t] (F5) (0.960) [2.61] (0.447) [0.77]

4 φ̂c (F4) -82.582 -9.800

(ŜEφ̂c) [t] (2.389) [34.57] (2.096) [4.68]
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