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ABSTRACT 
 
The Levinson and Lattice algorithms are taught in many 
signal processing curricula. If only one, the fact that every 
cell phone solves Yule-Walker equations every 10 ms 
justifies it all. These algorithms, however, tend to be hard 
to conceptualize in a few mental images. This paper 
proposes two such short-cut views, geometric in the wide 
sense, which proved to help students “see” the essence of 
these tools.  
 
 

1. INTRODUCTION 
 
The Levinson and Lattice algorithms are taught in many 
signal processing curricula. If only one, the fact that every 
cell phone solves Yule-Walker equations every 10 ms 
justifies it all.  

These algorithms are usually described in algebraic 
terms, using equations which, although they are easy to 
follow from one to the other, do not lead to simple mental 
images : students agree with the equations, but do not 
really “see”  the essential principles of the algorithms.  

These equations, however, have given birth to dozens 
of profitable interpretations (see [1] for a review), from 
maximum likelihood to polynomial approaches, through 
the extensively used spectral interpretation. All of them 
share the same mathematical reality observed in various 
lights. We present here two somewhat original 
interpretations of the  Levinson and Lattice algorithms, 
using matrix-based and geometric-oriented approaches 
respectively. As far as we know, they are usually not 
presented as such in textbooks, although the geometric-
oriented approach to linear prediction is sometimes used 
(see [2], [3], [4] for instance). 

Before examining them, we recall here the algebraic 
and geometric principles behind the Yule-Walker 
equations. 

Let us recall that Yule-Walker equations of order p 
appear in linear prediction analysis, when trying to obtain 
a set of prediction coefficients {a1,a2,...ap} verifying, in 
the least squares sense: 
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where s(0), s(1),...s(N-1) are N samples of the analyzed 
signal (with N greater than p) and f(n) is the prediction 
residual (or error). This can be written, in vector notation: 
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as the search for the linear combination of the prediction 
vectors s0, ..., sp-1 that is closest to sp, with si = [s(i), 
s(i+1),..., s(N-p+i-1)]T (Fig. 1). As sp is not, in general, 
included in the subspace {s0,..., sp-1}, this decomposition 
is performed under the constraint of minimizing the norm 
αp of fp= [f(p), f(p+1),..., f(N-1)]T, the (forward) 
prediction error vector. 
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Fig. 1.  Prediction vectors. 

 
Equation (1) leads to a well-known matrix form: 
s a fp p= +Φ   

in which Φ is the matrix of column vectors s0,..., sp-1 and 
a is the vector [-a1, -a2, ..., -ap]T. 
The linear combination that minimizes αp is naturally 
obtained by projecting sp orthogonally to the prediction 
subspace {s0,..., sp-1} (Fig 2), which simply express that : 

f sp j⊥ for j = 0,1,...,p -1 
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Fig. 2.  The (forward) prediction error vector. 
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or, in matrix form, 
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in which (ΦTΦ)-1 is the pseudo-inverse of Φ, i.e. the 
inverse of the covariance-like matrix ΦTΦ, well known in 
least squares theory [5]. 
 
2. SHORT-CUT TO THE LEVINSON ALGORITHM 
 
Up to now, the very peculiar relationship among si 
vectors, which originates in the way they have been 
extracted from the analysis frame, has not been taken into 
account. It is known, however, to lead to important 
simplifications, provided the covariance-like matrix ΦTΦ 
is further assumed to be Toeplitz symmetric.  

Let us first define a circular sequence of vectors {s0, 
s1, ..., sp} as any sequence of vectors constructed as 
shown in Fig. 1, and the covariance-like matrix of which 
is Toeplitz symmetric. Clearly, such vectors have identical 
norms, and the scalar product si sj depends only on i-j. 
Any circular sequence is thus entirely defined by its last 
vector sp and its order p, from which any other vector si  is 
deduced by a circular right shift of order p-i of its 
coordinates. Obviously, the circular sequence introduced 
in Section 1 is generated by sp = (s(0),...,s(N-2p-1),0,..., 
0). Linear prediction analysis based on this assumption is 
termed is usually termed as operated in the 
autocorrelation framework. 

It is then very easy to see why this assumption leads to 
inversion algorithms such as Levinson’s whose 
complexity is of the order of O(p²) rather than the usual 
O(p3) complexity. 

As a matter of fact, the Levinson algorithm is based on 
a recursive derivation of  {a1,a2,...ap} for order m+1 based 
on the result for order m Let.us write both problems as:  
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It is striking to notice that, thanks to its Toeplitz 
structure, the matrix of the first set of equations contains 
twice the (smallest) matrix of the second : once in the 
upper left corner, and once in the lower right one. Since 
there is a additional equation in the first set, however, the 
solutions for order m and m+1 apparently do not share a 
simple relationship. 

Let us augment the second set of equations with a new 
last equation, obtained by boldly assuming 1

1
+
+

m
ma =0:  
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      (1) 
Using the solutions for order m as the first-guess 

solutions for order m+1  then automatically verifies the m 
first equations, but not the last one (except by chance). 
We thus denote by m the difference between the desired 
value of the last element of the independent term and it 
desired value ( 1)x mφ + . 

Similarly, one can add a new first equation to the set of 
mth  order equations, and boldly assume 1

1
+ma =1: 
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Here, using the ith coefficient of the solution for order 
m as the i+1th coefficient of the first-guess solution for 
order m+1 verifies the m last equations (in which the 
independent term has been set to 0 for complying with the 
mth order equations). However, the first equation leads to 
a non-zero independent term, which we denote a. 

In order to obtain the exact solution  for order m+1, 
we simply notice that , thanks to the symmetry of its 
matrix, inverting the order of all equations in our problem 
does not change the matrix itself: 
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      (2) 
Hence, it is now easy to compute a new set of 

equations, as the linear combination (1)+km+1(2) of sets  
(1) and (2) which eliminates m in (1) while leaving the 
other independent term components untouched:  

m

m
mxmmmx kmkm α

µφαµφ −=+=+++ ++ 11 )1()1(  

As a result, the solution of the m+1 th order problem 
naturally comes out as a function of the solution of the 
mth order problem:  
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which immediately shows that the total computational 
complexity of the algorithm will be O(p²). 
 

3. SHORT-CUT TO THE LATTICE ALGORITHM 
 
In this Section, we show how the Lattice algorithm (and 
filter) can be btained by geometric examination of the 
linear prediction problem, after first recalling the vector-
based interpretation of PARCOR coefficients. 
 
3.1. Vector-based derivation of PARCOR coefficients 
 
Just like forward predictions of order m, which result from 
the projection of  sp on the vector subspace of the m 
previous vectors {sp-1, .., sp-m }, it is possible to define 
backward predictions of order m, as the linear 
decomposition of sp-m-1 on the vector subspace of the m 
following vectors {sp-m, .., sp-1}. The associated backward 
prediction error vectors gm, the norms of which are the 
square roots of the backward prediction error energies β
m, are thus the orthogonal components of sp-m-1 on {sp-m, 
.., sp-1} (Fig. 3). 
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Fig. 3.  The backward prediction error vector. 

 

This time, {g0, g1, ..., gm} are orthogonal to one 
another, by construction. What is more, they span the 
same subspace as {sp-m, .., sp-1}, so that {g0, g1, ..., gm} is 
an orthogonal basis of {sp-m, .., sp-1}. The corresponding 
matrix, G, is orthogonal. 

This feature results in a considerable simplification in 
their computation: gm is also the orthogonal component of 
sp-m-1 on {g0, g1, ..., gm-1}, so that successive backward 
prediction error vectors can be computed recursively, 
according to the well-known  Grahm-Schmidt 
orthogonalization process:   

g s0 p 1= −
 

g s gm p m 1 i= −− −
=

−

∑ g m pi
i

m

0

1

1 1for  =  ... -  

with   gi =
− −s g

g
p m 1 i

i
2

  

This can be turned into a simultaneous recursive 
computation of the forward prediction errors themselves. 
Assuming fm-1 and gm-1 are known—that is, the 
respective orthogonal components of sp and sp-m on {sp-
m-1, .., sp-1}—it is easy to see (Fig. 4.) that fm can be 
expressed as: 

f f gm m 1 m 1= +− −km     (3) 
in which km is the opposite of the projection of fm-1 on  
gm-1:  
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{k0, k1,.., kp} are the well-known PARCOR 
coefficients. They actually have a wider geometrical 
interpretation than suggested by (4). Since 
f f gm 1 m 2 m 2− − − −= + km 1 , and g gm 2 m 1− −⊥ , equation (4) 
can be rewritten as:  
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and so on, down to 
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In other words, PARCOR coefficients are the negative 
of the projections of sp on the backward prediction error 
vectors. As a result, {k1, k2, ..., kp} carry the same 
information as {a1, a2, ..., ap}; they can be interchanged 
by a simple change of co-ordinates in the {sp-m, .., sp-1} 
subspace. 
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Φa Gk= ,    where k is the vector [-k1, -k2, ..., -kp] 
This is illustrated in Fig. 4. 
Such a ki to ai transformation is hardly useful in 

practice, since a lattice version of the synthesis filter 



1/Ap(z) can be derived in the particular case of the 
autocorrelation method; its coefficients are precisely the 
ki. 
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Fig. 4. Prediction and PARCOR coefficients are different 
expressions of the same decomposition process. 
 
3.2. Vector-based derivation of the lattice algorithm 

 
Because PARCOR coefficients are computed on the basis 
of the angles between vectors in a circular sequence of 
vector and of their norm, they are insensitive to 
orthogonal transformations applied on the initial circular 
sequence. They are therefore related to circular figures (in 
an N-dimension space) rather than to circular sequences 
themselves. As such, subsequences of vectors in a circular 
sequence (which are themselves circular sequences) have 
identical PARCOR coefficients, provided their order is 
the same. Furthermore, reversing a circular sequence has 
no effect on the related PARCORs. 

These properties are turned into account in the 
Levinson algorithm to speed up the computation of the 
backward prediction error vectors. As a matter of fact, it 
suffices to notice that 

1. Computing gm—the orthogonal component of  
sp-m-1 on {sp-m-2, .., sp-1}—is equivalent to computing the 
orthogonal component of sp-m on {sp-m-1, .., sp}, which 
we shall denote as g'm, and circularly shifting the 
coordinates of the result one element to the right. This one 
element coordinate shift is an orthogonal transformation 
described by a circulant  matrix S. 

2. Computing g'm can itself be achieved with a 
similar strategy as in equation (3), that is by using the 
orthogonal component of sp-m on {sp-m-1, .., sp-1}, i.e.  
gm-1, and adding it a correction vector parallel to the 

orthogonal component of sp on {sp-m-1, .., sp-1}, i.e. to  
fm-1. In other words, g'm can be considered as the mth 
forward prediction error vector of the circular sequence 
{sp, sp-1, .., sp-m}. This sequence has the same PARCORs 
as its reversed sequence, {sp-m, sp-m+1, .., sp}—the ki 
computed with (4). 

Remarks 1 and 2 lead to the very important relation:  
g S g S g fm m m m= = +− −' ( )1 1km  

which, when used in combination with (3) and (4), makes 
it possible to solve the linear prediction problem with a 
single recursion over the prediction order. This method is 
known as the lattice algorithm, since it is completely 
defined by the lattice inverse filter of Fig. 4, which should 
be understood as a sequence of blockwise operations that 
progressively produce forward and backward prediction 
error vectors from a given analysis frame. Delay blocks in 
this filter are the expression of the one element coordinate 
shift suggested in the previous paragraphs. 
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Fig. 4. The well-known lattice filter (and implicitly, the corresponding algorithm). 


