
The Yule Walker Equations for the AR Coefficients

Gidon Eshel

If you assume a given zero-mean discrete timeseries {xi}N
1 is an AR process,

you will naturally want to estimate the appropriate order p of the AR(p),

xi+1 = φ1xi + φ2xi−1 + · · ·+ φpxi−p+1 + ξi+1 (1)

and the corresponding coefficients {φj}. There are (at least) 2 methods, and those
are described in this section.

1 Direct Inversion

The first possibility is to form a set of direct inversions,

1.1 p = 1

With
xi+1 = φ1xi + ξi+1,

one can form the over-determined system
x2

x3
...

xN

︸ ︷︷ ︸

b

=

x1

x2
...

xN−1

︸ ︷︷ ︸

A

φ1

which can be readily solve using the usual least-squares estimator

φ̂1 =
(
ATA

)−1
ATb =

∑N−1
i=1 xixi+1∑N−1

i=1 x2
i

=
c1

co
= r1

where ci and ri are the ith autocovariance and autocorrelation coefficients, respec-
tively.

1

1.2 p = 2

With
xi+1 = φ1xi + φ2xi−1 + ξi+1,

start by forming the over-determined system
x3

x4
...

xN

︸ ︷︷ ︸

b

=

x2 x1

x3 x2
...

...
xN−1 xN−2

︸ ︷︷ ︸

A

 φ1

φ2

︸ ︷︷ ︸

Φ

.

Unlike the previous p = 1 case, trying to express the solution

Φ̂ =
(
ATA

)−1
ATb

analytically is not trivial. We start with

(
ATA

)−1
=

 x2 x3 · · · xN−1

x1 x2 · · · xN−2

x2 x1

x3 x2

xN−1 xN−2

−1

=

∑N−1

i=2 x2
i

∑N−1
i=2 xixi−1

∑N−1
i=2 xixi−1

∑N−2
i=1 x2

i

−1

=
1∑N−1

i=2 x2
i

∑N−2
i=1 x2

i −
∑N−1

i=2 xixi−1
∑N−1

i=2 xixi−1

∑N−2

i=1 x2
i −∑N−1

i=2 xixi−1

−∑N−1
i=2 xixi−1

∑N−1
i=2 x2

i

 .

Next, let’s use the fact that the timeseries is stationary, so that autocovariance
elements are a function of the lag only, not the exact time limits. In this case,

(
ATA

)−1
=

1

c2
o − c2

1

 co −c1

−c1 co

 ,

(
ATA

)−1
=

1

c2
o(1− r2

1)

 co −c1

−c1 co

 ,

(
ATA

)−1
=

1

co(1− r2
1)

 ro −r1

−r1 ro

 .

2

Similarly,

ATb =

 x2 x3 · · · xN−1

x1 x2 · · · xN−2

x3

x4
...
xN

 =

∑N

i=3 xixi−1

∑N
i=3 xixi−2,

which, exploiting again the stationarity of the timeseries, becomes

ATb =

 c1

c2

 .

Combining the 2 expressions, we have

(
ATA

)−1
ATb =

1

co(1− r2
1)

 ro −r1

−r1 ro

 c1

c2

=
1

1− r2
1

 1 −r1

−r1 1

 r1

r2

 .

Breaking this into individual components, we get

φ̂1 =
r1 (1− r2)

1− r2
1

and

φ̂2 =
r2 − r2

1

1− r2
1

Of course it is possible to continue to explore p ≥ 3 cases in this fashion.
However, the algebra, while not fundamentally different from the p = 2 case,
quickly becomes quite nightmarish. For example, for p = 3,

ATA =

co c1 c2

c1 co c1

c2 c1 co

 ,

whose determinant, required for the inversion, is the cumbersome-looking

det
(
ATA

)
= co

c2
o − 2c2

1 + 2
c2
1c2

co
− c2

2

 = co

[
c2
o + 2c2

1 (r2 − 1)− c2
2

]
,

which, on pre-multiplying by the remainder matrix, yields very long expressions.
Fortunately, there is a better, easier way to obtain the AR coefficient for the

arbitrary p, the Yule-Walker Equations.

3

2 The Yule-Walker Equations

Consider the general AR(p)

xi+1 = φ1xi + φ2xi−1 + · · ·+ φpxi−p+1 + ξi+1.

2.1 Lag 1

• multiply both sides of the model by xi,

xixi+1 =
p∑

j=1
(φjxixi−j+1) + xiξi+1,

where i and j are the time and term indices, respectively,

• take expectance,

〈xixi+1〉 =
p∑

j=1
(φj〈xixi−j+1〉) + 〈xiξi+1〉

where the {φj}s are kept outside the expectance operator because they are
deterministic, rather than statistical, quantities.

• note that 〈xiξi+1〉 = 0 because the shock (or random perturbation) ξ of the
current time is unrelated to–and thus uncorrelated with–previous values of
the process,

〈xixi+1〉 =
p∑

j=1
(φj〈xixi−j+1〉)

• divide through by (N−1), and use the evenness of the autocovariance, c−l = cl,

c1 =
p∑

j=1
φjcj−1

• divide through by co,

r1 =
p∑

j=1
φjrj−1.

4

2.2 Lag 2

• multiply by xi−1,

xi−1xi+1 =
p∑

j=1
(φjxi−1xi−j+1) + xi−1ξi+1,

• take expectance,

〈xi−1xi+1〉 =
p∑

j=1
(φj〈xi−1xi−j+1〉) + 〈xi−1ξi+1〉

• eliminate the zero correlation forcing term

〈xi−1xi+1〉 =
p∑

j=1
(φj〈xi−1xi−j+1〉)

• divide through by (N − 1), and use c−l = cl,

c2 =
p∑

j=1
φjcj−2

• divide through by co,

r2 =
p∑

j=1
φjrj−2.

2.3 Lag k

• multiply by xi−k−1,

xi−k+1xi+1 =
p∑

j=1
(φjxi−k+1xi−j+1) + xi−k+1ξi+1,

• take expectance,

〈xi−k+1xi+1〉 =
p∑

j=1
(φj〈xi−k+1xi−j+1〉) + 〈xi−k+1ξi+1〉

• eliminate the zero correlation forcing term

〈xi−k+1xi+1〉 =
p∑

j=1
(φj〈xi−k+1xi−j+1〉)

5

• divide through by (N − 1), and use c−l = cl,

ck =
p∑

j=1
φjcj−k

• divide through by co,

rk =
p∑

j=1
φjrj−k.

2.4 Lag p

• multiply by xi−p−1,

xi−p+1xi+1 =
p∑

j=1
(φjxi−p+1xi−j+1) + xi−p+1ξi+1,

• take expectance,

〈xi−p+1xi+1〉 =
p∑

j=1
(φj〈xi−p+1xi−j+1〉) + 〈xi−p+1ξi+1〉

• eliminate the zero correlation forcing term

〈xi−p+1xi+1〉 =
p∑

j=1
(φj〈xi−p+1xi−j+1〉)

• divide through by (N − 1), and use c−l = cl,

cp =
p∑

j=1
φjcj−p

• divide through by co,

rp =
p∑

j=1
φjrj−p.

6

2.5 Putting it All Together

Rewriting all the equations together yields

r1 = φ1ro + φ2r1 + φ3r2 + · · · + φp−1rp−2 + φprp−1

r2 = φ1r1 + φ2ro + φ3r1 + · · · + φp−1rp−3 + φprp−2
...

rp−1 = φ1rp−2 + φ2rp−3 + φ3rp−4 + · · · + φp−1ro + φpr1

rp = φ1rp−1 + φ2rp−2 + φ3rp−3 + · · · + φp−1r1 + φpro

which can also be written as

r1

r2
...

rp−1

rp

=

ro r1 r2 · · · rp−2 rp−1

r1 ro r1 · · · rp−3 rp−2
...

...
rp−2 rp−3 rp−4 · · · ro r1

rp−1 rp−2 rp−3 · · · r1 ro

φ1

φ2
...

φp−1

φp

.

Recalling that ro = 1, the above equation is also

r1

r2
...

rp−1

rp

︸ ︷︷ ︸

r

=

1 r1 r2 · · · rp−2 rp−1

r1 1 r1 · · · rp−3 rp−2
...

...
rp−2 rp−3 rp−4 · · · 1 r1

rp−1 rp−2 rp−3 · · · r1 1

︸ ︷︷ ︸

R

φ1

φ2
...

φp−1

φp

︸ ︷︷ ︸

Φ

or succinctly
RΦ = r. (2)

Note that this is a well-posed system (with a square coefficients matrix R), i.e., with
the same number of constraints (equations, R’s rows) as unknowns (the elements
φj of the unknown vector Φ). Further, R is full-rank and symmetric, so that
invertability is guaranteed,

Φ̂ = R−1r.

3 The Yule-Walker Equations and the Partial Autocorre-

lation Function

Equation 2 provides a convenient recursion for computing the pacf. The first step
is to compute the acf up to a reasonable cutoff, say p ' N/4. Next, let r(i) denote

7

Equation 2’s rhs for the p = i case. Similarly, let R(i) denote the coefficient matrix
for the same case. Then

• loop on i, 1 ≤ i ≤ p

– compute R(i) and r(i)

– invert for Φ̂(i),

Φ̂(i) =
(
R(i)

)−1
r(i) =

φ̂1

φ̂2
...

φ̂i

– discard all φ̂j for 1 ≤ j ≤ i− 1

– retain φ̂i,
pacf(i) = φ̂i

• end loop on i

• plot pacf(i) as a function of i.

8

