The Yule Walker Equations for the AR Coefficients

Gidon Eshel

If you assume a given zero-mean discrete timeseries $\left\{x_{i}\right\}_{1}^{N}$ is an AR process, you will naturally want to estimate the appropriate order p of the $\operatorname{AR}(p)$,

$$
\begin{equation*}
x_{i+1}=\phi_{1} x_{i}+\phi_{2} x_{i-1}+\cdots+\phi_{p} x_{i-p+1}+\xi_{i+1} \tag{1}
\end{equation*}
$$

and the corresponding coefficients $\left\{\phi_{j}\right\}$. There are (at least) 2 methods, and those are described in this section.

1 Direct Inversion

The first possibility is to form a set of direct inversions,

$1.1 \quad p=1$

With

$$
x_{i+1}=\phi_{1} x_{i}+\xi_{i+1},
$$

one can form the over-determined system

$$
\underbrace{\left(\begin{array}{c}
x_{2} \\
x_{3} \\
\vdots \\
x_{N}
\end{array}\right)}_{\mathbf{b}}=\underbrace{\left(\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{N-1}
\end{array}\right)}_{\mathbf{A}} \phi_{1}
$$

which can be readily solve using the usual least-squares estimator

$$
\hat{\phi}_{1}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}=\frac{\sum_{i=1}^{N-1} x_{i} x_{i+1}}{\sum_{i=1}^{N-1} x_{i}^{2}}=\frac{c_{1}}{c_{o}}=r_{1}
$$

where c_{i} and r_{i} are the ith autocovariance and autocorrelation coefficients, respectively.

$1.2 p=2$

With

$$
x_{i+1}=\phi_{1} x_{i}+\phi_{2} x_{i-1}+\xi_{i+1},
$$

start by forming the over-determined system

$$
\underbrace{\left(\begin{array}{c}
x_{3} \\
x_{4} \\
\vdots \\
x_{N}
\end{array}\right)}_{\mathbf{b}}=\underbrace{\left(\begin{array}{cc}
x_{2} & x_{1} \\
x_{3} & x_{2} \\
\vdots & \vdots \\
x_{N-1} & x_{N-2}
\end{array}\right)}_{\mathbf{A}} \underbrace{\binom{\phi_{1}}{\phi_{2}}}_{\boldsymbol{\Phi}} .
$$

Unlike the previous $p=1$ case, trying to express the solution

$$
\hat{\boldsymbol{\Phi}}=\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}
$$

analytically is not trivial. We start with

$$
\begin{aligned}
&\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1}= {\left[\left(\begin{array}{llll}
x_{2} & x_{3} & \cdots & x_{N-1} \\
x_{1} & x_{2} & \cdots & x_{N-2}
\end{array}\right)\left(\begin{array}{cc}
x_{2} & x_{1} \\
x_{3} & x_{2} \\
x_{N-1} & x_{N-2}
\end{array}\right)\right]^{-1} } \\
&=\left(\begin{array}{cc}
\sum_{i=2}^{N-1} x_{i}^{2} & \sum_{i=2}^{N-1} x_{i} x_{i-1} \\
\sum_{i=2}^{N-1} x_{i} x_{i-1} & \sum_{i=1}^{N-2} x_{i}^{2}
\end{array}\right) \\
&=\frac{1}{\sum_{i=2}^{N-1} x_{i}^{2} \sum_{i=1}^{N-2} x_{i}^{2}-\sum_{i=2}^{N-1} x_{i} x_{i-1} \sum_{i=2}^{N-1} x_{i} x_{i-1}}\left(\begin{array}{cc}
\sum_{i=1}^{N-2} x_{i}^{2} & -\sum_{i=2}^{N-1} x_{i} x_{i-1} \\
-\sum_{i=2}^{N-1} x_{i} x_{i-1} & \sum_{i=2}^{N-1} x_{i}^{2}
\end{array}\right)
\end{aligned}
$$

Next, let's use the fact that the timeseries is stationary, so that autocovariance elements are a function of the lag only, not the exact time limits. In this case,

$$
\begin{aligned}
\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} & =\frac{1}{c_{o}^{2}-c_{1}^{2}}\left(\begin{array}{rr}
c_{o} & -c_{1} \\
-c_{1} & c_{o}
\end{array}\right), \\
\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} & =\frac{1}{c_{o}^{2}\left(1-r_{1}^{2}\right)}\left(\begin{array}{rr}
c_{o} & -c_{1} \\
-c_{1} & c_{o}
\end{array}\right), \\
\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} & =\frac{1}{c_{o}\left(1-r_{1}^{2}\right)}\left(\begin{array}{rr}
r_{o} & -r_{1} \\
-r_{1} & r_{o}
\end{array}\right) .
\end{aligned}
$$

Similarly,

$$
\mathbf{A}^{T} \mathbf{b}=\left(\begin{array}{cccc}
x_{2} & x_{3} & \cdots & x_{N-1} \\
x_{1} & x_{2} & \cdots & x_{N-2}
\end{array}\right)\left(\begin{array}{l}
x_{3} \\
x_{4} \\
\vdots \\
x_{N}
\end{array}\right)=\left(\begin{array}{c}
\sum_{i=3}^{N} x_{i} x_{i-1} \\
\\
\sum_{i=3}^{N} x_{i} x_{i-2},
\end{array}\right)
$$

which, exploiting again the stationarity of the timeseries, becomes

$$
\mathbf{A}^{T} \mathbf{b}=\binom{c_{1}}{c_{2}}
$$

Combining the 2 expressions, we have

$$
\begin{gathered}
\left(\mathbf{A}^{T} \mathbf{A}\right)^{-1} \mathbf{A}^{T} \mathbf{b}=\frac{1}{c_{o}\left(1-r_{1}^{2}\right)}\left(\begin{array}{rr}
r_{o} & -r_{1} \\
-r_{1} & r_{o}
\end{array}\right)\binom{c_{1}}{c_{2}} \\
=\frac{1}{1-r_{1}^{2}}\left(\begin{array}{rr}
1 & -r_{1} \\
-r_{1} & 1
\end{array}\right)\binom{r_{1}}{r_{2}} .
\end{gathered}
$$

Breaking this into individual components, we get

$$
\hat{\phi}_{1}=\frac{r_{1}\left(1-r_{2}\right)}{1-r_{1}^{2}}
$$

and

$$
\hat{\phi}_{2}=\frac{r_{2}-r_{1}^{2}}{1-r_{1}^{2}}
$$

Of course it is possible to continue to explore $p \geq 3$ cases in this fashion. However, the algebra, while not fundamentally different from the $p=2$ case, quickly becomes quite nightmarish. For example, for $p=3$,

$$
\mathbf{A}^{T} \mathbf{A}=\left(\begin{array}{ccc}
c_{o} & c_{1} & c_{2} \\
c_{1} & c_{o} & c_{1} \\
c_{2} & c_{1} & c_{o}
\end{array}\right)
$$

whose determinant, required for the inversion, is the cumbersome-looking

$$
\operatorname{det}\left(\mathbf{A}^{T} \mathbf{A}\right)=c_{o}\left(c_{o}^{2}-2 c_{1}^{2}+2 \frac{c_{1}^{2} c_{2}}{c_{o}}-c_{2}^{2}\right)=c_{o}\left[c_{o}^{2}+2 c_{1}^{2}\left(r_{2}-1\right)-c_{2}^{2}\right]
$$

which, on pre-multiplying by the remainder matrix, yields very long expressions.
Fortunately, there is a better, easier way to obtain the AR coefficient for the arbitrary p, the Yule-Walker Equations.

2 The Yule-Walker Equations

Consider the general $\operatorname{AR}(p)$

$$
x_{i+1}=\phi_{1} x_{i}+\phi_{2} x_{i-1}+\cdots+\phi_{p} x_{i-p+1}+\xi_{i+1} .
$$

2.1 Lag 1

- multiply both sides of the model by x_{i},

$$
x_{i} x_{i+1}=\sum_{j=1}^{p}\left(\phi_{j} x_{i} x_{i-j+1}\right)+x_{i} \xi_{i+1},
$$

where i and j are the time and term indices, respectively,

- take expectance,

$$
\left\langle x_{i} x_{i+1}\right\rangle=\sum_{j=1}^{p}\left(\phi_{j}\left\langle x_{i} x_{i-j+1}\right\rangle\right)+\left\langle x_{i} \xi_{i+1}\right\rangle
$$

where the $\left\{\phi_{j}\right\}$ s are kept outside the expectance operator because they are deterministic, rather than statistical, quantities.

- note that $\left\langle x_{i} \xi_{i+1}\right\rangle=0$ because the shock (or random perturbation) ξ of the current time is unrelated to-and thus uncorrelated with-previous values of the process,

$$
\left\langle x_{i} x_{i+1}\right\rangle=\sum_{j=1}^{p}\left(\phi_{j}\left\langle x_{i} x_{i-j+1}\right\rangle\right)
$$

- divide through by $(N-1)$, and use the evenness of the autocovariance, $c_{-l}=c_{l}$,

$$
c_{1}=\sum_{j=1}^{p} \phi_{j} c_{j-1}
$$

- divide through by c_{o},

$$
r_{1}=\sum_{j=1}^{p} \phi_{j} r_{j-1} .
$$

2.2 Lag 2

- multiply by x_{i-1},

$$
x_{i-1} x_{i+1}=\sum_{j=1}^{p}\left(\phi_{j} x_{i-1} x_{i-j+1}\right)+x_{i-1} \xi_{i+1},
$$

- take expectance,

$$
\left\langle x_{i-1} x_{i+1}\right\rangle=\sum_{j=1}^{p}\left(\phi_{j}\left\langle x_{i-1} x_{i-j+1}\right\rangle\right)+\left\langle x_{i-1} \xi_{i+1}\right\rangle
$$

- eliminate the zero correlation forcing term

$$
\left\langle x_{i-1} x_{i+1}\right\rangle=\sum_{j=1}^{p}\left(\phi_{j}\left\langle x_{i-1} x_{i-j+1}\right\rangle\right)
$$

- divide through by $(N-1)$, and use $c_{-l}=c_{l}$,

$$
c_{2}=\sum_{j=1}^{p} \phi_{j} c_{j-2}
$$

- divide through by c_{o},

$$
r_{2}=\sum_{j=1}^{p} \phi_{j} r_{j-2}
$$

2.3 Lag k

- multiply by x_{i-k-1},

$$
x_{i-k+1} x_{i+1}=\sum_{j=1}^{p}\left(\phi_{j} x_{i-k+1} x_{i-j+1}\right)+x_{i-k+1} \xi_{i+1},
$$

- take expectance,

$$
\left\langle x_{i-k+1} x_{i+1}\right\rangle=\sum_{j=1}^{p}\left(\phi_{j}\left\langle x_{i-k+1} x_{i-j+1}\right\rangle\right)+\left\langle x_{i-k+1} \xi_{i+1}\right\rangle
$$

- eliminate the zero correlation forcing term

$$
\left\langle x_{i-k+1} x_{i+1}\right\rangle=\sum_{j=1}^{p}\left(\phi_{j}\left\langle x_{i-k+1} x_{i-j+1}\right\rangle\right)
$$

- divide through by $(N-1)$, and use $c_{-l}=c_{l}$,

$$
c_{k}=\sum_{j=1}^{p} \phi_{j} c_{j-k}
$$

- divide through by c_{o},

$$
r_{k}=\sum_{j=1}^{p} \phi_{j} r_{j-k}
$$

2.4 Lag p

- multiply by x_{i-p-1},

$$
x_{i-p+1} x_{i+1}=\sum_{j=1}^{p}\left(\phi_{j} x_{i-p+1} x_{i-j+1}\right)+x_{i-p+1} \xi_{i+1},
$$

- take expectance,

$$
\left\langle x_{i-p+1} x_{i+1}\right\rangle=\sum_{j=1}^{p}\left(\phi_{j}\left\langle x_{i-p+1} x_{i-j+1}\right\rangle\right)+\left\langle x_{i-p+1} \xi_{i+1}\right\rangle
$$

- eliminate the zero correlation forcing term

$$
\left\langle x_{i-p+1} x_{i+1}\right\rangle=\sum_{j=1}^{p}\left(\phi_{j}\left\langle x_{i-p+1} x_{i-j+1}\right\rangle\right)
$$

- divide through by $(N-1)$, and use $c_{-l}=c_{l}$,

$$
c_{p}=\sum_{j=1}^{p} \phi_{j} c_{j-p}
$$

- divide through by c_{o},

$$
r_{p}=\sum_{j=1}^{p} \phi_{j} r_{j-p}
$$

2.5 Putting it All Together

Rewriting all the equations together yields

$$
\begin{gathered}
r_{1}=\phi_{1} r_{o}+\phi_{2} r_{1}+\phi_{3} r_{2}+\cdots+\phi_{p-1} r_{p-2}+\phi_{p} r_{p-1} \\
r_{2}=\phi_{1} r_{1}+\phi_{2} r_{o}+\phi_{3} r_{1}+\cdots+\phi_{p-1} r_{p-3}+\phi_{p} r_{p-2} \\
\vdots \\
r_{p-1}
\end{gathered}=\phi_{1} r_{p-2}+\phi_{2} r_{p-3}+\phi_{3} r_{p-4}+\cdots+\phi_{p-1} r_{o}+\phi_{p} r_{1}+\phi_{p-1}+\phi_{p} r_{o} .
$$

which can also be written as

$$
\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{p-1} \\
r_{p}
\end{array}\right)=\left(\begin{array}{cccccc}
r_{o} & r_{1} & r_{2} & \cdots & r_{p-2} & r_{p-1} \\
r_{1} & r_{o} & r_{1} & \cdots & r_{p-3} & r_{p-2} \\
& \vdots & & & \vdots & \\
r_{p-2} & r_{p-3} & r_{p-4} & \cdots & r_{o} & r_{1} \\
r_{p-1} & r_{p-2} & r_{p-3} & \cdots & r_{1} & r_{o}
\end{array}\right)\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p-1} \\
\phi_{p}
\end{array}\right) .
$$

Recalling that $r_{o}=1$, the above equation is also

$$
\underbrace{\left(\begin{array}{c}
r_{1} \\
r_{2} \\
\vdots \\
r_{p-1} \\
r_{p}
\end{array}\right)}_{\mathbf{r}}=\underbrace{\left(\begin{array}{cccccc}
1 & r_{1} & r_{2} & \cdots & r_{p-2} & r_{p-1} \\
r_{1} & 1 & r_{1} & \cdots & r_{p-3} & r_{p-2} \\
& \vdots & & & \vdots & \\
r_{p-2} & r_{p-3} & r_{p-4} & \cdots & 1 & r_{1} \\
r_{p-1} & r_{p-2} & r_{p-3} & \cdots & r_{1} & 1
\end{array}\right)}_{\mathbf{R}} \underbrace{\left(\begin{array}{c}
\phi_{1} \\
\phi_{2} \\
\vdots \\
\phi_{p-1} \\
\phi_{p}
\end{array}\right)}_{\boldsymbol{\Phi}}
$$

or succinctly

$$
\begin{equation*}
\mathbf{R} \Phi=\mathbf{r} \tag{2}
\end{equation*}
$$

Note that this is a well-posed system (with a square coefficients matrix \mathbf{R}), i.e., with the same number of constraints (equations, R's rows) as unknowns (the elements ϕ_{j} of the unknown vector $\left.\boldsymbol{\Phi}\right)$. Further, \mathbf{R} is full-rank and symmetric, so that invertability is guaranteed,

$$
\hat{\boldsymbol{\Phi}}=\mathbf{R}^{-1} \mathbf{r}
$$

3 The Yule-Walker Equations and the Partial Autocorrelation Function

Equation 2 provides a convenient recursion for computing the pacf. The first step is to compute the acf up to a reasonable cutoff, say $p \simeq N / 4$. Next, let $\mathbf{r}^{(i)}$ denote

Equation 2's rhs for the $p=i$ case. Similarly, let $\mathbf{R}^{(i)}$ denote the coefficient matrix for the same case. Then

- loop on $i, 1 \leq i \leq p$
- compute $\mathbf{R}^{(i)}$ and $\mathbf{r}^{(i)}$
- invert for $\hat{\boldsymbol{\Phi}}^{(i)}$,

$$
\hat{\boldsymbol{\Phi}}^{(i)}=\left(\mathbf{R}^{(i)}\right)^{-1} \mathbf{r}^{(i)}=\left(\begin{array}{c}
\hat{\phi}_{1} \\
\hat{\phi}_{2} \\
\vdots \\
\hat{\phi}_{i}
\end{array}\right)
$$

- discard all $\hat{\phi}_{j}$ for $1 \leq j \leq i-1$
- retain $\hat{\phi}_{i}$,

$$
\operatorname{pacf}(i)=\hat{\phi}_{i}
$$

- end loop on i
- plot $\operatorname{pacf}(i)$ as a function of i.

