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• Data:   n observations on y and x = (x1,...,xp)
• Suppose:      y = f(x) + ε,       ε symmetric around 0
• Unknowns:    f and the distribution of ε

For this model free setup, BART can help us to:
• estimate f(x) = E(y |x) 
• obtain prediction intervals for future y
• estimate the effect of a particular xj

• select an informative subset of x1,...,xp

(making no assumptions about f)

Remark:  In what follows we will assume ε ~ N(0, σ2) for simplicity, but extension 
to a general DP process normal mixture model for ε works just fine.

A General Nonparametric Regression Setup



How Does BART Work?

x2 < d x2 ≥ d

x5 < c x5 ≥ c

μ3 = 7

μ1 = -2 μ2 = 5

BART (= Bayesian Additive 
Regression Trees) is composed 
of many single tree models

Let g(x;T,M) be a function 
which assigns a μ value to x
where:

A Single Tree Model: y = g(x;T,M) + σ z,   z~N(0,1)

T denotes the tree structure
including the decision rules

M = {μ1, μ2, … μb} denotes 
the set of terminal node μ's.



Let (T1,M1), (T2,M2), …, (Tm,Mm) identify a set of m trees and their μ’s.

An Additive Multiple Tree Model:

y = g(x;T1,M1) + g(x;T2,M2) + ... + g(x;Tm,Mm) + σ z,   z ~ N(0,1)

An Additive Multiple Tree Model

E(y | x) is the sum of all the corresponding μ’s at each tree bottom node.

Such a model combines additive and interaction effects.

μ1

μ2 μ3

μ4



y = g(x;T1,M1) + g(x;T2,M2) + ... + g(x;Tm,Mm) + σ z,   z ~ N(0,1)

To unleash the potential of this formulation, BART is completed by 
adding a regularization prior 

π((T1,M1),...,(Tm,Mm),σ)

Strongly influential π is used to keep each (Ti, Mi) small

Completing the BART Model

(T1,M1),...,(Tm,Mm),σ

is determined by

Many, many parameters

g(x;T1,M1), g(x;T2,M2), ... , g(x;Tm,Mm) is a highly redundant
“over-complete basis”

For m large:



π( θ | y) ∝ p(y | θ) π( θ) 

BART Implementation
Because BART is a fully Bayesian specification, information 
about all the unknowns, namely θ = ((T1,M1),....(Tm,Mm),σ), 
is captured by the posterior

Thus, to implement BART we need to:

1. Construct the prior π(θ) 
Independent tree generating process on T1,..,Tm
Use observed y to properly scale π(θ | T) 

2.  Calculate the posterior π(θ | y) 
Bayesian backfitting MCMC
Interweaving marginalization and regeneration of θ

R package BayesTree available on CRAN



Bayesian Nonparametrics:
Lots of parameters (to make model flexible)
A strong prior to shrink towards simple structure (regularization)
BART shrinks towards additive models with some interaction

Dynamic Random Basis:
g(x;T1,M1), ..., g(x;Tm,Mm) are dimensionally adaptive

Gradient Boosting:
Overall fit becomes the cumulative effort of many “weak learners”

Connections to Other Modeling Ideas

y = g(x;T1,M1) + ... + g(x;Tm,Mm) + σ z,    z ~ N(0,1)  
plus  

π((T1,M1),....(Tm,Mm),σ)



BART is NOT obtained by Bayesian model averaging of a single 
tree model !

Unlike boosting, BART uses a FIXED number of trees m!!

The identification of subsets for variable selection via BART is
obtained by observing what happens as m is varied!! 

Some Distinguishing Features of BART

y = g(x;T1,M1) + ... + g(x;Tm,Mm) + σ z,    z ~ N(0,1)  
plus  

π((T1,M1),....(Tm,Mm),σ)



Experimental Comparison on 37 datasets

Neural networks (single layer)
Random Forests
Boosting (Friedman's gradient boosting machine)
Linear regression with lasso
BART (Bayesian Additive Regression Trees)
BART/default - *NO* tuning of parameters

Out-sample-performance compared for 6 methods

Data from Kim, Loh, Shih and Chaudhuri (2006)
Up to 65 predictors and 2953 observations

Train on 5/6 of data, test on 1/6
Tuning via 5-fold CV within training set
20 Train/Test replications per dataset



Results:  Root Mean Squared Errors

Left: RMSE averaged over datasets and replications

Box Plots: RMSE relative to best

BART is a very strong performer!



One of the 37 Datasets is the well-known Boston Housing Data 

Each observation corresponds to a geographic district

y = log(median house value)

13 x variables, stuff about the district

eg. crime rate, % poor, riverfront, size, air quality, etc.

n = 507 observations
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20 rmse's
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for a version
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eg.
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Smaller is better.
BART wins!



BART Offers Estimates of Predictor Effects

Partial Dependence Plot of Crime Effect in Boston Housing 

These are stimates of f3(x3) = ∑i f(x3,xic)  where xc = x \ x3



Friedman (1991) used n = 100 observations from this model 
with σ = 1 to illustrate the potential of MARS

y = f(x) + σ z,      z ~ N(0,1)
where

f(x) = 10 sin (πx1x2 ) + 20(x3 - .5)2 + 10x4 + 5x5 + 0x6 + … + 0x10

10 x's, but only the first 5 matter!

Friedman’s Simulated Example



Applying BART to the Friedman Example

Red
m = 1
model

Blue
m = 100
model

(x

We applied BART with m = 100 trees to n = 100 observations of the 
Friedman example.

)f̂

95% posterior intervals vs true f(x) σ draws

in-sample f(x)              out-of-sample f(x)             MCMC iteration



Comparison of BART with Other Methods

50 simulations of 100 observations of Friedman example

The cross validation domain used to tune each method
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Performance measured on 1000 out-of-sample x’s by

BART Wins Again!



BART is Robust to Prior Settings

On the Friedman (1991) example, BART’s robust RMSE performance
Is illustrated below where the (ν,q,k,m) choice is varied



With only
100 observations
on y and 1000 x's,
BART yielded 
"reasonable"
results !!!!

Added many
useless x's to
Friedman’s
example

In-sample
post int vs f(x)

f(x)
20 x's

100 x's

1000 x's

Detecting Low Dimensional Structure in High Dimensional Data
Out-of-sample
post int vs f(x) σ draws



Partial Dependence Plots for the Friedman Example
The Marginal Effects of x1 – x5



Partial Dependence Plots for the Friedman Example
The Marginal Effects of x6 – x10



Variable Selection via BART

Variable usage frequencies as the number of trees m is reduced

Notation: 2-20 means x2 with m = 20 trees, etc.



Each observation (n=245) corresponds to an NCAA football
game.

y = Team A points - Team B points

29 x’s.  Each is the difference between the two teams on some 
measure.  eg x10 is average points against defense per game 
for Team A for team B.

The Football Data



For each draw, for each variable calculate the percentage of
time that variable is used in a tree.  Then average over trees.

Variable Selection for the Football Data

Subtle point: Can’t have too many trees.  Variables come 
in without really doing anything.



Marginal Effects of the Variables

Just used variables 
2,7,10, and 14.

Here are the four 
univariate partial-
dependence plots.



A Bivariate Partial Dependence Plot
The joint effect of two of the x’s



For this data

Least Squares yields R2 = 26%         

BART yields R2 = 42%

Y = LDHL  (log of hdl level)

X’s = CD4, Age, Sex, Race, Study, 
PI1,PI2,NNRTI2, NRTI1, NRTI2, 
ABI_349, CRC_71, CRC_72, CRC_55, CRC_73, CRC_10, 
ABI_383, ABI_387, ABI_391, ABI_395, ABI_400, ABI_401, 
CRC_66, CRC_67, CRC_68, CRC_69 

n = 458 patients

Illustrative Application to HIV Data Analysis



BART suggests there is not a strong signal in x for this y.

The BART Fit for the HIV Data



First, introduce prior independence as follows

Thus we only need to choose π(T), π(σ), and π(μ | T) = π(μ)

A Sketch of the Prior

π((T1,M1),....,(Tm,Mm), σ) = [ Π π(Tj,Mj) ] π(σ) 

= [ Π π(μij | Tj) π(Tj) ] π(σ)



There appears to be no interaction effect

Predictive Inference about Interaction of 
NNRTI2 Treatment and ABI_383 Genotype 



For example, the average predictive effect of ABI_383

Partial Dependence Plots May Suggest 
Genotype Effects
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number of
bottom nodes.

Hyperparameters
chosen to put
prior weight on
small trees!!

We specify a process that grows trees:

Step 1) Grow a tree structure with succesive biased coin flips
Step 2) Randomly assign variables to decision nodes
Step 3) Randomly splitting rules to decision nodes

π(T)



π(μ | T)

To set σμ, we proceed as follows:

First standardize y so that E(y | x) is in [-.5,.5] with high probability.

Note that in our model, E(y | x) is the sum of m independent μ's (a priori),
so that the prior standard deviation of E(y | x) is m μσ

For each bottom node μ, let 

.5k m .5
k mμ μσ = ⇒ σ =Thus, we choose σμ so that                                        for a suitable value of k

Default choice is k = 2. 

k is the number of standard deviations of E(y | x) from 
the mean of 0 to the interval boundary of .5

Note how the prior adapts to m:  σμ gets smaller as m gets larger.

)2
μσN(0, ~ μ



π(σ)

2
2~
ν

νλ
σ

χ
Let

Determine λ by setting a quantile such as .75, .95 or .99 
at this rough estimate.

The three priors we 
have been using:

ˆ 2σ =

To set λ, we use a rough overestimate of σ based on the data 
(such as sd(y) or the LS estimate for the saturated linear regression).

and consider ν = 3, 5 or 10.



A Sketch of the MCMC algorithm

The “parameter“ is:

“Simple" Gibbs sampler:

j j

j j i i j i i j

| {T },{M },data

(T ,M ) | {T } ,{M } , ,data≠ ≠

σ

σ

y = g(x;T1,M1) + g(x;T2,M2) + ... + g(x;Tm,Mm) + σ z

(1)

(2)

(1) Subtract all the g's from y to update σ
(2) Subtract all but the jth g from y to update (Tj,Mj)

(Bayesian backfitting)

θ = ((T1,M1),....(Tm,Mm),σ)



j j i i j i i j(T ,M ) | {T } ,{M } , ,data≠ ≠ σ

Using the decomposition 

and the fact that p(T | data) is available under our prior, 
we sample

p(T,M | data) = p(T | data) p(M | T, data)

by first drawing T from p(T | data), and then drawing M from p(M | T, data).

Drawing M from p(M | T,data) is routine

Just simulate μ’s from the posterior under a conjugate prior



To draw T from p(T | data),  we use a Metropolis-Hastings  algorithm.

Given the current T, we propose a modification and
then either move to the proposal or repeat the old tree.

In particular we use proposals that change the size of the tree:

=>
?

=>
?

propose a more complex tree

propose a simpler tree

More complicated models will be accepted if the data's insistence
overcomes the reluctance of the prior.



y = g(x;T1,M1) + g(x;T2,M2) + ... + g(x;Tm,Mm) + σ z,   z ~ N(0,1)

Thus, at each iteration, Ti, Mi and σ are updated.

This is a Markov chain such that the stationary distribution 
is the posterior.

Each tree contributes a small part to the fit, and the fit is 
swapped around from tree to tree as the chain runs.

The Dynamic Random Basis in Action: 

As we run the chain, we often observe that an individual tree 
grows quite large and then collapses back to a single node.

This illustrates how each tree is dimensionally adaptive.



At iteration i we have a draw from the posterior of the function

To get in-sample fits we average the

Posterior uncertainty is captured by variation of the

Using the MCMC Output to Draw Inference

)M,T,g(  )M,T,g(  )M,T,g(  )(f mimi2i2i1i1ii ⋅++⋅+⋅=⋅ Lˆ

 )(f obtain to draws )(f ii ⋅⋅ˆ

 (x)fî

f(x). estimates (x)f Thus, i



BART (and probably other nonparametric methods) can give 
us a sense of 

• E(y |x)
• the distribution of y around E(y|x)
• the individual effects of the xj’s
• a subset of x1,...,xp related to y

This information would seem to be very valuable for model 
building.  The next step is how?

Where do we go from here?



To be continued…


