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Abstract

We give a unified account of boosting and logistic regression in which each learning problem is
cast in terms of optimization of Bregman distances. The striking similarity of the two problems in
this framework allows us to design and analyze algorithms for both simultaneously, and to easily adapt
algorithms designed for one problem to the other. For both problems, we give new algorithms and explain
their potential advantages over existing methods. These algorithms are iterative and can be divided into
two types based on whether the parameters are updated sequentially (one at a time) or in parallel (all
at once). We also describe a parameterized family of algorithms that includes both a sequential- and a
parallel-update algorithm as special cases, thus showing how the sequential and parallel approaches can
themselves be unified. For all of the algorithms, we give convergenceproofs using a general formalization
of the auxiliary-function proof technique. As one of our sequential-update algorithms is equivalent to
AdaBoost, this provides the first general proof of convergence for AdaBoost. We show that all of our
algorithms generalize easily to the multiclass case, and we contrast the new algorithms with the iterative
scaling algorithm. We conclude with a few experimental results with synthetic data that highlight the
behavior of the old and newly proposed algorithms in different settings.
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1 Introduction

We give a unified account of boosting and logistic regression in which we show that both learning problems
can be cast in terms of optimization of Bregman distances. In our framework, the two problems become very
similar, the only real difference being in the choice of Bregman distance: unnormalized relative entropy for
boosting, and binary relative entropy for logistic regression.

The similarity of the two problems in our framework allows us to design and analyze algorithms
for both simultaneously. We are now able to borrow methods from the maximum-entropy literature for
logistic regression and apply them to the exponential loss used by AdaBoost, especially convergence-proof
techniques. Conversely, we can now easily adapt boosting methods to the problem of minimizing the logistic
loss used in logistic regression. The result is a family of new algorithms for both problems together with
convergence proofs for the new algorithms as well as AdaBoost.

For both AdaBoost and logistic regression, we attempt to choose the parameters or weights associated
with a given family of functions called features or, in the boosting literature, weak hypotheses. AdaBoost
works by sequentially updating these parameters one by one. That is, on each of a series of iterations, a
single feature (weak hypothesis) is chosen and the parameter associated with that single feature is adjusted.
In contrast, methods for logistic regression, most notably iterative scaling (Darroch & Ratcliff, 1972;
Della Pietra, Della Pietra, & Lafferty, 1997), update all parameters in parallel on each iteration.

Our first new algorithm is a method for optimizing the exponential loss using parallel updates. It seems
plausible that a parallel-update method will often converge faster than a sequential-update method, provided
that the number of features is not so large as to make parallel updates infeasible. A few experiments
described at the end of this paper suggest that this is the case.

Our second algorithm is a parallel-update method for the logistic loss. Although parallel-update
algorithms are well known for this function, the updates that we derive are new. Because of the unified
treatment we give to the exponential and logistic loss functions, we are able to present and prove the
convergence of the algorithms for these two losses simultaneously. The same is true for the other algorithms
presented in this paper as well.

We next describe and analyze sequential-update algorithms for the two loss functions. For exponential
loss, this algorithm is equivalent to the AdaBoost algorithm of Freund and Schapire (1997). By viewing
the algorithm in our framework, we are able to prove that AdaBoost correctly converges to the minimum
of the exponential loss function. This is a new result: Although Kivinen and Warmuth (1999) and Ma-
son et al. (1999) have given convergence proofs for AdaBoost, their proofs depend on assumptions about
the given minimization problem which may not hold in all cases. Our proof holds in general without such
assumptions.

Our unified view leads directly to a sequential-update algorithm for logistic regression that is only a minor
modification of AdaBoost and which is very similar to the algorithm proposed by Duffy and Helmbold (1999).
Like AdaBoost, this algorithm can be used in conjunction with any classification algorithm, usually called
the weak learning algorithm, that can accept a distribution over examples and return a weak hypothesis with
low error rate with respect to the distribution. However, this new algorithm provably minimizes the logistic
loss rather than the arguably less natural exponential loss used by AdaBoost.

A potentially important advantage of the new algorithm for logistic regression is that the weights that
it places on examples are bounded in �0� 1�. This suggests that it may be possible to use the new algorithm
in a setting in which the boosting algorithm selects examples to present to the weak learning algorithm
by filtering a stream of examples (such as a very large dataset). As pointed out by Watanabe (1999) and
Domingo and Watanabe (2000), this is not possible with AdaBoost since its weights may become extremely
large. They provide a modification of AdaBoost for this purpose in which the weights are truncated at 1.
We speculate that our new algorithm may lead to a viable and mathematically cleaner alternative.
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We next describe a parameterized family of iterative algorithms that includes both parallel- and
sequential-update algorithms as well as a whole range of algorithms between these two extremes. The
convergence proof that we give holds for this entire family of algorithms.

Although most of this paper considers only the binary case in which there are just two possible labels
associated with each example, it turns out that the multiclass case requires no additional work. That is, all
of the algorithms and convergence proofs that we give for the binary case turn out to be directly applicable
to the multiclass case without modification.

For comparison, we also describe the generalized iterative scaling algorithm of Darroch and Rat-
cliff (1972). In rederiving this procedure in our setting, we are able to relax one of the main assumptions
usually required by this algorithm.

The paper is organized as follows: Section 2 describes the boosting and logistic regression models as
they are usually formulated. Section 3 gives background on optimization using Bregman distances, and
Section 4 then describes how boosting and logistic regression can be cast within this framework. Section 5
gives our parallel-update algorithms and proofs of their convergence, while Section 6 gives the sequential-
update algorithms and convergence proofs. The parameterized family of iterative algorithms is described in
Section 7. The extension to multiclass problems is given in Section 8. In Section 9, we contrast our methods
with the iterative scaling algorithm. In Section 10, we discuss various notions of convergence of AdaBoost
and relate our results to previous work on boosting. In Section 11, we give some initial experiments that
demonstrate the qualitative behavior of the various algorithms in different settings.

Previous work

Variants of our sequential-update algorithms fit into the general family of “arcing” algorithms presented by
Breiman (1997b, 1997a), as well as Mason et al.’s “AnyBoost” family of algorithms (Mason et al., 1999).
The information-geometric view that we take also shows that some of the algorithms we study, including
AdaBoost, fit into a family of algorithms described in 1967 by Bregman (1967), and elaborated upon by
Censor and Lent (1981), for satisfying a set of constraints.1

Our work is based directly on the general setting of Lafferty, Della Pietra and Della Pietra (1997) in
which one attempts to solve optimization problems based on general Bregman distances. They gave a
method for deriving and analyzing parallel-update algorithms in this setting through the use of auxiliary
functions. All of our algorithms and convergence proofs are based on this method.

Our work builds on several previous papers which have compared boosting approaches to logistic
regression. Friedman, Hastie and Tibshirani (2000) first noted the similarity between the boosting and
logistic regression loss functions, and derived the sequential-update algorithm LogitBoost for the logistic
loss. However, unlike our algorithm, theirs requires that the weak learner solve least-squares problems
rather than classification problems.

Duffy and Helmbold (1999) gave conditions under which a loss function gives a boosting algorithm.
They showed that minimizing logistic loss does lead to a boosting algorithm in the PAC sense. This suggests
that the logistic loss algorithm of section 6 of this paper, which is close to theirs, may turn out also to have
the PAC boosting property. We leave this as an open problem.

Lafferty (1999) went further in studying the relationship between logistic regression and the exponential
loss through the use of a family of Bregman distances. However, the setting described in his paper apparently
cannot be extended to precisely include the exponential loss. The use of Bregman distances that we describe

1More specifically, Bregman (1967) and later Censor and Lent (1981) describe optimization methods based on Bregman distances
where one constraint is satisfied at each iteration, for example, a method where the constraint which makes the most impact on the
objective function is greedily chosen at each iteration. The simplest version of AdaBoost, which assumes weak hypotheses with
values in f�1��1g, is an algorithm of this type if we assume that the weak learner is always able to choose the weak hypothesis
with minimum weighted error.
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has important differences leading to a natural treatment of the exponential loss and a new view of logistic
regression.

Our work builds heavily on that of Kivinen and Warmuth (1999) who, along with Lafferty, were the first
to make a connection between AdaBoost and information geometry. They showed that the update used by
AdaBoost is a form of “entropy projection.” However, the Bregman distance that they used differed slightly
from the one that we have chosen (normalized relative entropy rather than unnormalized relative entropy)
so that AdaBoost’s fit in this model was not quite complete; in particular, their convergence proof depended
on an assumption that does not hold in general.2 Kivinen and Warmuth also described updates for general
Bregman distances including, as one of their examples, the Bregman distance that we use to capture logistic
regression.

Cesa-Bianchi, Krogh and Warmuth (1994) describe an algorithm for a closely related problem to ours:
minimization of a relative entropy subject to linear constraints. In related work, Littlestone, Long and
Warmuth (1995) describe algorithms where convergence properties are analyzed through a method that is
similar to the auxiliary function techniques. A variety of work in the online learning literature, such as the
work by Littlestone, Long, and Warmuth (1995) and the work by Kivinen and Warmuth (1997, to appear)
on exponentiated gradient methods, also use Bregman divergences, and techniques that are related to the
auxiliary function method.

2 Boosting, logistic models and loss functions

Let S � h�x1� y1�� � � � � �xm� ym�i be a set of training examples where each instance xi belongs to a domain
or instance space X , and each label yi � f�1��1g.

We assume that we are also given a set of real-valued functions onX , h1� � � � � hn. Following convention
in the Maximum-Entropy literature, we call these functions features; in the boosting literature, these would
be called weak or base hypotheses.

We study the problem of approximating the yi’s using a linear combination of features. That is, we are
interested in the problem of finding a vector of parameters � � R

n such that f��xi� �
Pn

j�1 �jhj�xi� is a
“good approximation” of yi. How we measure the goodness of such an approximation varies with the task
that we have in mind.

For classification problems, a natural goal is to try to match the sign of f��xi� to yi, that is, to attempt
to minimize

mX
i�1

��yif��xi� � 0�� �1�

where ����� is 1 if � is true and 0 otherwise. Although minimization of the number of classification errors
may be a worthwhile goal, in its most general form, the problem is intractable (see, for instance, (Höffgen &
Simon, 1992)). It is therefore often advantageous to instead minimize some other nonnegative loss function.
For instance, the boosting algorithm AdaBoost (Freund & Schapire, 1997; Schapire & Singer, 1999) is
based on the exponential loss

mX
i�1

exp
�
�yif��xi�

�
� �2�

It can be verified that Eq. (1) is upper bounded by Eq. (2). However, the latter loss is much easier to work
with as demonstrated by AdaBoost.

AdaBoost is usually described as a procedure that works together with an oracle or subroutine called the
weak learner. Briefly, on each of a series of rounds, the weak learner picks one feature (weak hypothesis)

2Specifically, their assumption is equivalent to the infimum of the exponential loss being strictly positive (when the data is
separable it can be shown that the infimum is zero).
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hj . Note that the features h1� � � � � hn correspond to the entire space of weak hypotheses rather than merely
the weak hypotheses that were previously found up to that point by the weak learner. Of course, this will
often be an enormous space, but one, nevertheless, that can be discussed mathematically. In practice, it
may often be necessary to rely on a weak learner that can only approximately search the entire space. For
instance, greedy algorithms such as C4.5 are often used for this purpose to find a “good” decision tree from
the space of all possible decision trees.

To simplify the discussion, let us suppose for the moment that all of the weak hypotheses are Boolean,
i.e., with range f�1��1g. In this case, the weak learner attempts to choose the weak hypothesis with
smallest error rate, that is, with the smallest weighted number of mistakes (in which hj�xi� �� yi) relative
to a distribution over training examples selected by AdaBoost. Given the choice of weak hypothesis hj ,
AdaBoost then updates the associated parameter �j by adding some value� to it where� is a simple formula
of this weighted error rate (note that a parameter may be updated more than once in this framework).

As mentioned above, in practice, the weak learner may not always succeed in finding the “best” hj
(in the sense of minimizing weighted error rate), for instance, if the size of the space of weak hypotheses
precludes an exhaustive search. However, in this paper, we make the idealized assumption that the weak
learner always chooses the best hj . Given this assumption, it has been noted by Breiman (1997a, 1997b) and
various later authors (Friedman et al., 2000; Mason et al., 1999; Rätsch, Onoda, & Müller, 2001; Schapire
& Singer, 1999) that the choice of both hj and � are done in such a way as to cause the greatest decrease in
the exponential loss induced by �, given that only a single component of � is to be updated. In this paper,
we show for the first time that AdaBoost is in fact a provably effective method for finding parameters �
which minimize the exponential loss (assuming, as noted above, that the weak learner always chooses the
“best” hj).

In practice, early stopping (limiting the number of rounds of boosting, rather than running the algorithm
to convergence) is often used to mitigate problems with overtraining. In this case the sequential algorithms
in this paper can be considered to be feature selection methods, in that only a subset of the parameters will
obtain non-zero values. Thus, the sequential methods can be used both for feature selection, or for search
for the minimum of the loss function.

We also give an entirely new algorithm for minimizing exponential loss in which, on each round, all of
the parameters �j are updated in parallel rather than one at a time. Our hope is that in some situations this
parallel-update algorithm will be faster than the sequential-update algorithm. See Section 11 for preliminary
experiments in this regard.

Instead of using f� as a classification rule, we might instead postulate that the yi’s were generated
stochastically as a function of the xi’s and attempt to use f��x� to estimate the probability of the associated
label y. A well-studied way of doing this is to pass f� through a logistic function, that is, to use the estimate

P̂r�y � �1 j x� �
1

1 � e�f��x�
�

The likelihood of the labels occuring in the sample then is
mY
i�1

1
1 � exp

�
�yif��xi�

� �
Maximizing this likelihood then is equivalent to minimizing the log loss of this model

mX
i�1

ln
�
1 � exp

�
�yif��xi�

��
� �3�

Generalized and improved iterative scaling (Darroch & Ratcliff, 1972; Della Pietra et al., 1997) are
popular parallel-update methods for minimizing this loss. In this paper, we give an alternative parallel-
update algorithm which we compare to iterative scaling techniques in preliminary experiments in Section 11.
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3 Bregman-distance optimization

In this section, we give background on optimization using Bregman distances. This will form the unifying
basis for our study of boosting and logistic regression. The particular set-up that we follow is taken primarily
from Lafferty, Della Pietra and Della Pietra (1997).

Let F : Δ � R be a strictly convex function defined on a closed, convex set Δ � R
m. Assume F is

differentiable at all points of Δint, the interior of Δ, which we assume is nonempty. The Bregman distance
associated with F is defined for p � Δ and q � Δint to be

BF

�
p k q

� �
� F �p�� F �q��rF �q� � �p� q��

Thus, BF measures the difference between F and its first-order Taylor expansion about q, evaluated at
p. Bregman distances, first introduced by Bregman (1967), generalize some commonly studied distance
measures. For instance, when Δ � R

m
� and

F �p� �
mX
i�1

pi ln pi� �4�

BF becomes the (unnormalized) relative entropy

DU

�
p k q

�
�

mX
i�1

�
pi ln

�
pi
qi

�
� qi � pi

�
�

(We follow the standard convention that 0 log 0 � 0.) Generally, although not always a metric or even
symmetric, it can be shown that every Bregman distance is nonnegative and is equal to zero if and only
if its two arguments are equal. We assume that BF can be extended to a continuous extended real-valued
function over all of Δ	 Δ.

There is a natural optimization problem that can be associated with a Bregman distance, namely, to find
the vector p � Δ that is closest to a given vector q0 � Δ subject to a set of linear constraints. In other
words, the problem is to project q0 onto a linear subspace. The constraints defining the linear subspace are
specified by some m	 n matrix M and some vector p̃ � Δ. The vectors p satisfying these constraints are
those for which

pTM � p̃TM� �5�

This slightly odd way of writing the constraints ensures that the linear subspace is nonempty (i.e., there is
at least one solution, p � p̃). Thus, the problem is to find

arg min
p�P

BF

�
p k q0

�
�6�

where
P

�
�
n
p � Δ : pTM � p̃TM

o
� �7�

At this point, we introduce a functionLF and a setQ � Δ which are intimately related to the optimization
problem in Eqs. (6) and (7). After giving formal definitions, we give informal arguments—through the use
of Lagrange multipliers—for the relationships between P , Q and LF . Finally, we state Theorem 1, which
gives a complete connection between these concepts, and whose results will be used throughout this paper.

Let us define the function LF : Δint 	 R
m � Δint to be

LF �q�v� � �rF ��1�rF �q� � v��
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In order for this to be mathematically sound, we assume that rF is a bijective (one-to-one and onto)
mapping from Δint to Rm so that its inverse �rF ��1 is defined. It is straightforward to verify that LF has
the following “additive” property:

LF �LF �q�w��v� � LF �q�v �w� �8�

for q � Δint and v�w � R
m. We assume that LF can be extended to a continuous function mapping Δ	R

m

into Δ. For instance, when BF is unnormalized relative entropy, it can be verified that

LF �q�v�i � qie
�vi � �9�

Next, let Q be the set of all vectors of the form:

Q
�
� fLF �q0�M�� j � � R

ng� �10�

We now return to the optimization problem in Eqs. (6) and (7), and describe informally how it can be
solved in some cases using the method of Lagrange multipliers. To use this method, we start by forming the
Lagrangian:

K�p��� � BF

�
p k q0

�
� �pTM� p̃TM�� �11�

where � � R
n is a vector of Lagrange multipliers. By the usual theory of Lagrange multipliers, the

solution to the original optimization problem is determined by the saddle point of this Lagrangian, where
the minimum should be taken with respect to the parameters p, and the maximum should be taken with
respect to the Lagrange multipliers �.

Differentiating K�p��� with respect to p and setting the result equal to zero gives

rF �p� � rF �q0��M�� �12�

from which it follows that
p � LF �q0�M�� �13�

which implies that p � Q.
Differentiating K�p��� with respect to � and setting the result equal to zero simply implies that pmust

satisfy the constraints in Eq. (5), and hence that p � P . So we have shown that finding a saddle point of the
Lagrangian—and thereby solving the constrained optimization problem in Eqs. (6) and (7)—is equivalent
to finding a point in P 
Q.

Finally, if we plug Eq. (13) into the Lagrangian in Eq. (11), we are left with the problem of maximizing

K�LF �q0�M������

By straightforward algebra, it can be verified that this quantity is equal to

BF

�
p̃ k q0

�
�BF

�
p̃ k LF �q0�M��

�
�

In other words, becauseBF

�
p̃ k q0

�
is constant (relative to �), the original optimization problem has been

reduced to the “dual” problem of minimizing BF

�
p̃ k q

�
over q � Q.

To summarize, we have argued informally that if there is a point q� in P 
Q then this point minimizes
BF

�
p k q0

�
over p � P and also minimizes BF

�
p̃ k q

�
over q � Q. It turns out, however, that P 
Q

can sometimes be empty, in which case this method does not yield a solution. Nevertheless, if we instead
use the closure ofQ, which, intuitively, has the effect of allowing some or all of the Lagrange multipliers to
be infinite, then there will always exist a unique solution. That is, as stated in the next theorem, for a large
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family of Bregman distances, P 
 Q always contains exactly one point, and that one point is the unique
solution of both optimization problems (where we also extend the constraint set of the dual problem from
Q to Q).

We take Theorem 1 from Lafferty, Della Pietra and Della Pietra (1997). We do not give the full details
of the conditions that F must satisfy for this theorem to hold since these go beyond the scope of the present
paper. Instead, we refer the reader to Della Pietra, Della Pietra and Lafferty (2001) for a precise formulation
of these conditions and a complete proof. A proof for the case of (normalized) relative entropy is given by
Della Pietra, Della Pietra and Lafferty (1997). Moreover, their proof requires very minor modifications for
all of the cases considered in the present paper. Closely related results are given by Censor and Lent (1981)
and Csiszár (1991, 1995). See also Censor and Zenios’s book (1997).

Theorem 1 Let p̃, q0, M, Δ, F , BF , P and Q be as above. Assume BF

�
p̃ k q0

�
� �. Then for a

large family of functions F , including all functions considered in this paper, there exists a unique q� � Δ
satisfying:

1. q� � P 
Q

2. BF

�
p k q

�
� BF

�
p k q�

�
�BF

�
q� k q

�
for any p � P and q � Q

3. q� � arg minq�QBF

�
p̃ k q

�
4. q� � arg minp�P BF

�
p k q0

�
.

Moreover, any one of these four properties determines q� uniquely.

Proof sketch: As noted above, a complete and general proof is given by Della Pietra, Della Pietra and
Lafferty (2001). However, the proof given by Della Pietra, Della Pietra and Lafferty (1997) for normalized
relative entropy can be modified very easily for all of the cases of interest in the present paper. The only
step that needs slight modification is in showing that the minimum in part 3 exists. For this, we note in each
case that the set

fq � Δ j BF

�
p̃ k q

�
� BF

�
p̃ k q0

�
g

is bounded. Therefore, we can restrict the minimum in part 3 to the intersection ofQ with the closure of this
set. Since this smaller set is compact and since BF

�
p̃ k �

�
is continuous, the minimum must be attained

at some point q.
The rest of the proof is essentially identical (modulo superficial changes in notation).
This theorem will be extremely useful in proving the convergence of the algorithms described below. We

will show in the next section how boosting and logistic regression can be viewed as optimization problems of
the type given in part 3 of the theorem. Then, to prove optimality, we only need to show that our algorithms
converge to a point in P 
Q.

Part 2 of Theorem 1 is a kind of Pythagorean theorem that is often very useful (for instance, in the proof
of the theorem), though not used directly in this paper.

4 Boosting and logistic regression revisited

We return now to the boosting and logistic regression problems outlined in Section 2, and show how these
can be cast in the form of the optimization problems outlined above.
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Recall that for boosting, our goal is to find � such that

mX
i�1

exp

�
��yi nX

j�1

�jhj�xi�

�
A �14�

is minimized, or, more precisely, if the minimum is not attained at a finite �, then we seek a procedure for
finding a sequence�1��2� � � � which causes this function to converge to its infimum. For shorthand, we call
this the ExpLoss problem.

To view this problem in the form given in Section 3, we let p̃ � �, q0 � � (the all 0’s and all 1’s
vectors). We let Mij � yihj�xi�, from which it follows that �M��i �

Pn
j�1 �jyihj�xi�. We let the space

Δ � R
m
� . Finally, we take F to be as in Eq. (4) so that BF is the unnormalized relative entropy.

As noted earlier, in this case, LF �q�v� is as given in Eq. (9). In particular, this means that

Q �

	

�q � R

m
�

������ qi � exp

�
�� nX

j�1

�jyihj�xi�

�
A�� � R

n

�
��

Furthermore, it is trivial to see that

DU

�
� k q

�
�

mX
i�1

qi �15�

so that DU

�
� k LF �q0�M��

�
is equal to Eq. (14). Thus, minimizing DU

�
� k q

�
overq � Q is equivalent

to minimizing Eq. (14). By Theorem 1, this is equivalent to finding q � Q satisfying the constraints

mX
i�1

qiMij �
mX
i�1

qiyihj�xi� � 0 �16�

for j � 1� � � � � n.
Logistic regression can be reduced to an optimization problem of this form in nearly the same way.

Recall that here our goal is to find � (or a sequence of �’s) which minimize

mX
i�1

ln

�
�1 � exp

�
��yi nX

j�1

�jhj�xi�

�
A
�
A� �17�

For shorthand, we call this the LogLoss problem. We define p̃ and M exactly as for exponential loss. The
vector q0 is still constant, but now is defined to be �1�2��, and the space Δ is now restricted to be �0� 1�m.
These are minor differences, however. The only important difference is in the choice of the function F ,
namely,

F �p� �
mX
i�1

�
pi ln pi � �1� pi� ln�1� pi�

�
�

The resulting Bregman distance is

DB

�
p k q

�
�

mX
i�1

�
pi ln

�
pi
qi

�
� �1� pi� ln

�
1� pi
1� qi

��
�

Trivially,

DB

�
� k q

�
� �

mX
i�1

ln�1� qi�� �18�
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Parameters: Δ � R
m
�

F : Δ � R for which Theorem 1 holds and satisfying Conditions 1 and 2
q0 � Δ such that BF

�
� k q0

�
��

Input: Matrix M � ��1� 1�m�n where, for all i,
Pn

j�1 jMij j � 1

Output: �1��2� � � � such that

lim
t��

BF

�
� k LF �q0�M�t�

�
� inf

��R
n
BF

�
� k LF �q0�M��

�
�

Let �1 � �

For t � 1� 2� � � � :

� qt � LF �q0�M�t�
� For j � 1� � � � � n:

W�
t�j �

X
i:sign�Mij���1

qt�ijMij j

W�
t�j �

X
i:sign�Mij���1

qt�ijMij j

�t�j �
1
2

ln

�
W�

t�j

W�
t�j

�

� Update parameters: �t�1 � �t � �t

Figure 1: The parallel-update optimization algorithm.

For this choice of F , it can be verified using calculus that

LF �q�v�i �
qie

�vi

1� qi � qie�vi
�19�

so that

Q �

	

�q � �0� 1�m

������ qi � 	

�
� nX
j�1

�jyihj�xi�

�
A�� � R

n

�
��

where 	�x� � �1 � ex��1. Thus, DB

�
� k LF �q0�M��

�
is equal to Eq. (17) so minimizing DB

�
� k q

�
over q � Q is equivalent to minimizing Eq. (17). As before, this is the same as finding q � Q satisfying the
constraints in Eq. (16).

Thus, the exponential loss and logistic loss problems fit into our general framework using nearly identical
settings of the parameters. The main difference is in the choice of Bregman distance—unnormalized relative
entropy for exponential loss and binary relative entropy for logistic loss. The former measures distance
between nonnegative vectors representing weights over the instances, while the latter measures distance
between distributions on possible labels, summed over all of the instances.

5 Parallel optimization methods

In this section, we describe a new algorithm for the ExpLoss and LogLoss problems using an iterative
method in which all weights �j are updated on each iteration. The algorithm is shown in Fig. 1. The
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algorithm can be used with any function F satisfying certain conditions described below. In particular, we
will see that it can be used with the choices of F given in Section 4. Thus, this is really a single algorithm
that can be used for both loss-minimization problems by setting the parameters appropriately. Note that,
without loss of generality, we assume in this section that for all instances i,

Pn
j�1 jMij j � 1.

The algorithm is very simple. On each iteration, the vector �t is computed as shown and added to the
parameter vector �t. We assume for all our algorithms that the inputs are such that infinite-valued updates
never occur.

This algorithm is new for both minimization problems. Optimization methods for ExpLoss, notably
AdaBoost, have generally involved updates of one feature at a time. Parallel-update methods for LogLoss
are well known (see, for example, (Darroch & Ratcliff, 1972; Della Pietra et al., 1997)). However, our
updates take a different form from the usual updates derived for logistic models. We discuss the differences
in Section 9.

A useful point is that the distribution qt�1 is a simple function of the previous distribution qt. By
Eq. (8),

qt�1 � LF �q0�M��t � �t�� � LF �LF �q0�M�t��M�t�

� LF �qt�M�t�� (20)

This gives

qt�1�i �

	

�

qt�i exp
�
�
Pn

j�1 �t�jMij

�
forExpLoss

qt�i
h
�1� qt�i� exp

�Pn
j�1 �t�jMij

�
� qt�i

i�1
forLogLoss�

�21�

We will prove next that the algorithm given in Fig. 1 converges to optimality for either loss. We prove this
abstractly for any matrix M and vector q0, and for any function F satisfying Theorem 1 and the following
conditions:

Condition 1 For any v � R
m, q � Δ,

BF

�
0 k LF �q� v�

�
�BF

�
0 k q

�
�

mX
i�1

qi�e
�vi � 1��

Condition 2 For any c ��, the set

fq � Δ j BF

�
0 k q

�
� cg

is bounded.

We will show later that the choices of F given in Section 4 satisfy these conditions which will allow us
to prove convergence for ExpLoss and LogLoss.

To prove convergence, we use the auxiliary-function technique of Della Pietra, Della Pietra and Laf-
ferty (1997). Very roughly, the idea of the proof is to derive a nonnegative lower bound called an auxiliary
function on how much the loss decreases on each iteration. Since the loss never increases and is lower
bounded by zero, the auxiliary function must converge to zero. The final step is to show that when the
auxiliary function is zero, the constraints defining the set P must be satisfied, and therefore, by Theorem 1,
we must have converged to optimality.

More formally, we define an auxiliary function for a sequenceq1�q2� � � � and matrixM to be a continuous
function A : Δ � R satisfying the two conditions:

BF

�
� k qt�1

�
�BF

�
� k qt

�
� A�qt� � 0 �22�

11



and
A�q� � 0  qTM � �T � �23�

Before proving convergenceof specific algorithms, we prove the following lemma which shows, roughly,
that if a sequence has an auxiliary function, then the sequence converges to the optimum point q�. Thus,
proving convergence of a specific algorithm reduces to simply finding an auxiliary function.

Lemma 2 Let A be an auxiliary function for q1�q2� � � � and matrix M. Assume the qt’s lie in a compact
subspace of Q whereQ is as in Eq. (10). Assum F satisfies Theorem 1. Then

lim
t��

qt � q�
�
� arg min

q�Q
BF

�
0 k q

�
�

Note that the qt’s will lie in a compact subspace of Q if Condition 2 holds and BF

�
� k q1

�
��. In

the algorithm in Figure 1, and in general in the algorithms in this paper, �1 � �, so that q1 � q0 and the
condition BF

�
� k q0

�
�� implies BF

�
� k q1

�
��. BF

�
� k q0

�
�� is an input condition for all

of the algorithms in this paper.
Proof: By condition (22), BF

�
� k qt

�
is a nonincreasing sequence. As is the case for all Bregman

distances, BF

�
� k qt

�
is also bounded below by zero. Therefore, the sequence of differences

BF

�
� k qt�1

�
�BF

�
� k qt

�
must converge to zero. Using the condition of Eq. (22), this means that A�qt� must also converge to zero.
Because we assume that the qt’s lie in a compact space, the sequence of qt’s must have a subsequence
converging to some point q̂ � Δ. By continuity of A, we have A�q̂� � 0. Therefore, q̂ � P from the
condition given by Eq. (23), where P is as in Eq. (7). On the other hand, q̂ is the limit of a sequence of
points in Q so q̂ � Q. Thus, q̂ � P 
Q so q̂ � q� by Theorem 1.

This argument and the uniqueness of q� show that the qt’s have only a single limit point q�. Suppose
that the entire sequence did not converge to q�. Then we could find an open set B containing q� such that
fq1�q2� � � �g�B contains infinitely many points and therefore has a limit point which must be in the closed
set Δ � B and so must be different from q�. This, we have already argued, is impossible. Therefore, the
entire sequence converges to q�.

We can now apply this lemma to prove the convergence of the algorithm of Fig. 1.

Theorem 3 Let F satisfy Theorem 1 and Conditions 1 and 2, and assume that BF

�
0 k q0

�
��. Let the

sequences �1��2� � � � and q1�q2� � � � be generated by the algorithm of Fig. 1. Then

lim
t��

qt � arg min
q�Q

BF

�
0 k q

�

where Q is as in Eq. (10). That is,

lim
t��

BF

�
0 k LF �q0�M�t�

�
� inf

��R
n
BF

�
0 k LF �q0�M��

�
�

12



Proof: Let

W�
j �q� �

X
i:sign�Mij���1

qijMij j

W�
j �q� �

X
i:sign�Mij���1

qijMij j

so that W�
t�j � W�

j �qt� and W�
t�j � W�

j �qt�. We claim that the function

A�q� � �
nX
j�1

�q
W�

j �q��
q
W�

j �q�

�2

is an auxiliary function for q1�q2� � � �. Clearly, A is continuous and nonpositive.
Let sij

�
� sign�Mij�. We can upper bound the change in BF

�
� k qt

�
on round t by A�qt� as follows:

BF

�
� k qt�1

�
�BF

�
� k qt

�
� BF

�
� k LF �qt�M�t�

�
�BF

�
� k qt

�
(24)

�
mX
i�1

qt�i

�
�exp

�
�� nX

j�1

�t�jMij

�
A� 1

�
� (25)

�
mX
i�1

qt�i

�
�exp

�
�� nX

j�1

�t�jsijjMij j

�
A� 1

�
�

�
mX
i�1

qt�i

�
� nX
j�1

jMij j�e
��t�jsij � 1�

�
� (26)

�
nX
j�1

�
W�

t�je
��t�j �W�

t�je
�t�j �W�

t�j �W�
t�j

�
(27)

� �
nX
j�1

�q
W�

t�j �
q
W�

t�j

�2

� A�qt�� (28)

Eqs. (24) and (25) follow from Eq. (20) and Condition 1, respectively. Eq. (26) uses the fact that, for any
xj’s and for pj � 0 with

P
j pj � 1, we have

exp

�
�X

j

pjxj

�
A� 1 � exp

�
�X

j

pjxj � 0 �

�
�1�

X
j

pj

�
A
�
A� 1

�
X
j

pje
xi �

�
�1�

X
j

pj

�
A� 1 �

X
j

pj�e
xi � 1� (29)

by Jensen’s inequality applied to the convex function ex. Eq. (27) uses the definitions of W�
t�j and W�

t�j , and
Eq. (28) uses our choice of �t (indeed, �t was chosen specifically to minimize Eq. (27)).

If A�q� � 0 then for all j, W�
j �q� � W�

j �q�, that is,

0 � W�
j �q��W�

j �q� �
mX
i�1

qisijjMij j �
mX
i�1

qiMij�

Thus, A is an auxiliary function for q1�q2� � � �. The theorem now follows immediately from Lemma 2.
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To apply this theorem to the ExpLoss and LogLoss problems, we only need to verify that Conditions 1
and 2 are satisfied. Starting with Condition 1, for ExpLoss, we have

DU

�
� k LF �q�v�

�
�� DU

�
� k q

�
�

mX
i�1

qie
�vi �

mX
i�1

qi�

For LogLoss,

DB

�
� k LF �q�v�

�
� DB

�
� k q

�
�

mX
i�1

ln
�

1� qi
1� �LF �q�v��i

�

�
mX
i�1

ln
�
1� qi � qie

�vi
�

�
mX
i�1

�
�qi � qie

�vi
�
�

The first and second equalities use Eqs. (18) and (19), respectively. The final inequality uses 1�x � ex for
all x.

Condition 2 holds trivially for LogLoss since Δ � �0� 1�m is bounded. For ExpLoss, if BF

�
0 k q

�
�

DU

�
� k q

�
� c then

mX
i�1

qi � c

which clearly defines a bounded subset of Rm
� .

Note that while Condition 1 holds for the loss functions we are considering, it may not hold for all
Bregman distances. Lafferty, Della Pietra and Della Pietra (1997) describe parallel update algorithms for
Bregman distances, using the auxiliary function technique. Their method does not require Condition 1, and
therefore applies to arbitrary Bregman distances; however, each iteration of the algorithm requires solution
of a system of equations that requires a numerical search technique such as Newton’s method.

6 Sequential algorithms

In this section, we describe another algorithm for the minimization problems described in Section 4.
However, unlike the algorithm of Section 5, the one that we present now only updates the weight of one
feature at a time. While the parallel-update algorithm may give faster convergence when there are not too
many features, the sequential-update algorithm can be used when there are a very large number of features
using an oracle for selecting which feature to update next. For instance, AdaBoost, which is essentially
equivalent to the sequential-update algorithm for ExpLoss, uses an assumed weak learning algorithm to
select a weak hypothesis, i.e., one of the features. The sequential algorithm that we present for LogLoss can
be used in exactly the same way.

The algorithm is shown in Fig. 2. On each round, a single feature jt is first chosen to maximize the inner
product of the corresponding column of the matrix M with the vector qt. The quantity �t is then computed
and added to the jt’th component of �.

It may seem surprising or even paradoxical that the algorithm does not explicitly guarantee that all
of the components of � are eventually updated, and yet we are able to prove convergence to optimality.
Apparently, all components which “need” to be nonzero will eventually be selected by the algorithm for
updating. Moreover, on each iteration, although only one component is actually updated, in fact, all of the
components are considered for updating which means that all of them are implicitly used in the computation
of the eventual update to �.
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Parameters: Δ � R
m
�

F : Δ � R for which Theorem 1 holds and satisfying Conditions 1 and 2
q0 � Δ such that BF

�
� k q0

�
��

Input: Matrix M � ��1� 1�m�n

Output: �1��2� � � � such that

lim
t��

BF

�
� k LF �q0�M�t�

�
� inf

��R
n
BF

�
� k LF �q0�M��

�
�

Let �1 � �

For t � 1� 2� � � � :

� qt � LF �q0�M�t�

� jt � arg max
j

�����
mX
i�1

qt�iMij

�����
� rt �

mX
i�1

qt�iMijt

� Zt �
mX
i�1

qt�i

� �t �
1
2

ln
�
Zt � rt
Zt � rt

�

� �t�j �

�
�t if j � jt
0 otherwise

� Update parameters: �t�1 � �t � �t

Figure 2: The sequential-update optimization algorithm.

Theorem 4 Given the assumptions of Theorem 3, the algorithm of Fig. 2 converges to optimality in the
sense of Theorem 3.

Proof: For this theorem, we use the auxiliary function

A�q� �

vuut� mX
i�1

qi

�2

�max
j

�
mX
i�1

qiMij

�2

�
mX
i�1

qi�

This function is clearly continuous and nonpositive. We have that

BF

�
� k qt�1

�
�BF

�
� k qt

�
�

mX
i�1

qt�i

�
�exp

�
�� nX

j�1

�t�jMij

�
A� 1

�
A

�
mX
i�1

qt�i
�
exp

�
��tMijt

�
� 1

�
(30)

�
mX
i�1

qt�i

�
1 �Mijt

2
e��t �

1�Mijt

2
e�t � 1

�
(31)

�
Zt � rt

2
e��t �

Zt � rt
2

e�t � Zt (32)

�
q
Z2
t � r2

t � Zt � A�qt� (33)
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where Eq. (31) uses the convexity of e��tx, and Eq. (33) uses our choice of �t (as before, we chose �t to
minimize the bound in Eq. (32)).

If A�q� � 0 then

0 � max
j

�����
mX
i�1

qiMij

�����
so
P

i qiMij � 0 for all j. Thus, A is an auxiliary function for q1�q2� � � � and the theorem follows
immediately from Lemma 2.

As mentioned above, this algorithm is essentially equivalent to AdaBoost, specifically, the version of
AdaBoost first presented by Freund and Schapire (1997). In AdaBoost, on each iteration, a distribution
Dt over the training examples is computed and the weak learner seeks a weak hypothesis with low error
with respect to this distribution. The algorithm presented in this section assumes that the space of weak
hypotheses consists of the features h1� � � � � hn, and that the weak learner always succeeds in selecting the
feature with lowest error (or, more accurately, with error farthest from 1�2). Translating to our notation, the
weight Dt�i� assigned to example �xi� yi� by AdaBoost is exactly equal to qt�i�Zt, and the weighted error
of the t-th weak hypothesis is equal to

1
2

�
1�

rt
Zt

�
�

Theorem 4 then is the first proof that AdaBoost always converges to the minimum of the exponential
loss (assuming an idealized weak learner of the form above). Note that when q� �� �, this theorem also tells
us the exact form of limDt. However, we do not know what the limiting behavior of Dt is when q� � �,
nor do we know about the limiting behavior of the parameters �t (whether or not q� � �).

We have also presented in this section a new algorithm for logistic regression. In fact, this algorithm is
the same as one given by Duffy and Helmbold (1999) except for the choice of �t. In practical terms, very
little work would be required to alter an existing learning system based on AdaBoost so that it uses logistic
loss rather than exponential loss—the only difference is in the manner in which qt is computed from �t.
Thus, we could easily convert any system such as SLIPPER (Cohen & Singer, 1999), BoosTexter (Schapire
& Singer, 2000) or alternating trees (Freund & Mason, 1999) to use logistic loss. We can even do this for
systems based on “confidence-rated” boosting (Schapire & Singer, 1999) in which �t and jt are chosen
together on each round to minimize Eq. (30) rather than an approximation of this expression as used in the
algorithm of Fig. 2. (Note that the proof of Theorem 4 can easily be modified to prove the convergence of
such an algorithm using the same auxiliary function.)

7 A parameterized family of iterative algorithms

In previous sections, we described separate parallel-update and sequential-update algorithms. In this section,
we describe a parameterized family of algorithms that includes the parallel-update algorithm of Section 5
as well as a sequential-update algorithm that is different from the one in Section 6. Thus, in this section,
we show how the parallel and sequential viewpoints can themselves be unified in a manner that admits a
unified presentation and unified convergence proofs. Moreover, the family of algorithms that we present
includes a number of new algorithms including, as just mentioned, a sequential-update algorithm that, in
our experiments, consistently performed better than the one in Section 6. This family of algorithms also
includes other algorithms that may in certain situations be more appropriate than any of the algorithms
presented up to this point. For instance, one of these algorithms is tailored for the case when the Euclidean
norm of each row of the matrix M is bounded by a constant, in other words, for when the feature-vectors
associated with the examples are known to lie in a Euclidean ball (centered at the origin) of bounded radius.
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Parameters: Δ � R
m
�

F : Δ � R for which Theorem 1 holds and satisfying Conditions 1 and 2
q0 � Δ such that BF

�
� k q0

�
��

A � R
n
�

Input: Matrix M � R
m�n satisfying the condition that if we define

AM
�
� fa � A j �i :

X
j

ajjMij j � 1g

then �1 � j � n��a � AM for which aj 
 0

Output: �1��2� � � � such that

lim
t��

BF

�
� k LF �q0�M�t�

�
� inf

��R
n
BF

�
� k LF �q0�M��

�
�

Let �1 � �

For t � 1� 2� � � � :

� qt � LF �q0�M�t�
� For j � 1� � � � � n:

W�
t�j �

X
i:sign�Mij���1

qt�ijMij j

W�
t�j �

X
i:sign�Mij���1

qt�ijMij j

dt�j �
1
2

ln

�
W�

t�j

W�
t�j

�

� at � arg max
a�AM

nX
j�1

aj

�q
W�

t�j �
q
W�

t�j

�2

� Set �j : �t�j � at�jdt�j
� Update parameters: �t�1 � �t � �t

Figure 3: A parameterized family of iterative optimization algorithms.

The algorithm, which is shown in Fig. 3, is similar to the parallel-update algorithm of Fig. 1. On
each round, the quantities W�

t�j and W�
t�j are computed as before, and the vector dt is computed as �t was

computed in Fig. 1. Now, however, this vector dt is not added directly to �t. Instead, another vector at is
selected which provides a “scaling” of the features. This vector is chosen to maximize a measure of progress
while restricted to belong to the set AM. The allowed form of these scaling vectors is given by the set A, a
parameter of the algorithm; AM is the restriction ofA to those vectors a satisfying the constraint that for all
i,

nX
j�1

ajjMij j � 1�

The parallel-update algorithm of Fig. 1 is obtained by choosingA� f�g and assuming that
P

j jMij j � 1
for all i. (Equivalently, we can make no such assumption, and choose A � fc� j c 
 0g.) An alternative
is to not restrict the scaling vectors at all, i.e., we set A to be R

n
�. In this case, finding at is a linear

programming problem with n variables and m constraints, and the features are dynamically scaled to make
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optimal progress on each iteration. There may be computational reasons for doing this, in that the rate of
convergence may depend on the relative scaling of the features.

We can obtain a sequential-update algorithm by choosing A to be the set of unit vectors (i.e., with one
component equal to 1 and all others equal to 0), and assuming that Mij � ��1��1� for all i� j. The update
then becomes

�t�j �

�
dt�j if j � jt
0 else

where

jt � arg max
j

����
q
W�

t�j �
q
W�

t�j

�����
Another interesting case is when we assume that

P
jM

2
ij � 1 for all i. It is then natural to choose

A � fa � R
n
� j jjajj2 � 1g

which ensures that AM � A. Then the maximization overAM can be solved analytically giving the update

�t�j �
bjdt�j
jjbjj2

where bj �
�q

W�
t�j �

q
W�

t�j

�2
. This idea generalizes easily to the case in which

P
j jMij j

p � 1 and

jjajjq � 1 for any dual norms p and q ( 1
p
� 1

q
� 1).

We now prove the convergence of this entire family of algorithms.

Theorem 5 Given the assumptions of Theorem 3, the algorithm of Fig. 3 converges to optimality in the
sense of Theorem 3.

Proof: We use the auxiliary function

A�q� � � max
a�AM

nX
j�1

aj

�q
W�

j �q��
q
W�

j �q�

�2

where W�
j and W�

j are as in Theorem 3. This function is continuous and nonpositive. We can bound the
change in BF

�
� k qt

�
using the same technique given in Theorem 3:

BF

�
� k qt�1

�
�BF

�
� k qt

�
�

mX
i�1

qt�i

�
�exp

�
�� nX

j�1

�t�jMij

�
A� 1

�
�

�
mX
i�1

qt�i

�
�exp

�
�� nX

j�1

at�jdt�jsijjMij j

�
A� 1

�
�

�
mX
i�1

qt�i

�
� nX
j�1

at�j jMij j�e
�dt�jsij � 1�

�
�

�
nX
j�1

at�j
�
W�

t�je
�dt�j �W�

t�je
dt�j �W�

t�j �W�
t�j

�

� �
nX
j�1

at�j

�q
W�

t�j �
q
W�

t�j

�2

� A�qt��
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Finally, if A�q� � 0 then

max
a�AM

nX
j�1

aj

�q
W�

j �q��
q
W�

j �q�

�2

� 0�

Since for every j there exists a � AM with aj 
 0, this implies W�
j �q� � W�

j �q� for all j, i.e.,P
i qiMij � 0. Applying Lemma 2 completes the theorem.

8 Multiclass problems

In this section, we show how all of our results can be extended to the multiclass case. Because of the
generality of the preceding results, we will see that no new algorithms need be devised and no new
convergence proofs need be proved for this case. Rather, all of the preceding algorithms and proofs can be
directly applied to the multiclass case.

In the multiclass case, the label set Y has cardinality k. Each feature is of the form hj : X 	 Y � R.
In logistic regression, we use a model

P̂r�yjx� �
ef��x�y�P
��Y e

f��x���
�

1
1 �

P
���y e

f��x����f��x�y�
�34�

where f��x� y� �
Pn

j�1 �jhj�x� y�. The loss on a training set then is

mX
i�1

ln

�
�1 �

X
���yi

ef��xi����f��xi�yi�

�
�� �35�

We transform this into our framework as follows: Let

B � f�i� �� j 1 � i � m� � � Y � fyigg�

The vectors p, q, etc. that we work with are in RB�. That is, they are �k� 1�m-dimensional and are indexed
by pairs in B. Let p̄i denote

P
���yi pi��. The convex function F that we use for this case is

F �p� �
mX
i�1

�
�X
���yi

pi�� ln�pi��� � �1� p̄i� ln�1� p̄i�

�
�

which is defined over the space
Δ �

n
p � R

B
� j �i : p̄i � 1

o
�

The resulting Bregman distance is

BF

�
p k q

�
�

mX
i�1

�
�X
���yi

pi�� ln

�
pi��
qi��

�
� �1� p̄i� ln

�
1� p̄i
1� q̄i

����
This distance measures the relative entropy between the distributions over labels for instance i defined by p
and q, summed over all instances i. Clearly,

BF

�
� k q

�
� �

mX
i�1

ln�1� q̄i��
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It can be shown that

�LF �q�v���i��� �
qi��e

�vi��

1� q̄i �
P

���yi qi��e
�vi��

�

Condition 1 can be verified by noting that

BF

�
� k LF �q�v�

�
��BF

�
� k q

�
�

mX
i�1

ln

�
1� q̄i

1� �LF �q�v��i

�

�
mX
i�1

ln

�
�1� q̄i �

X
���yi

qi��e
�vi��

�
A (36)

�
mX
i�1

�
��q̄i � X

���yi

qi��e
�vi��

�
A

�
X

�i����B

qi���e
�vi�� � 1��

Now let M�i����j � hj�xi� yi� � hj�xi� ��, and let q0 � �1�k��. Plugging in these definitions gives that
BF

�
� k LF �q0�M��

�
is equal to Eq. (35). Thus, the algorithms of Sections 5, 6 and 7 can all be used to

solve this minimization problem, and the corresponding convergence proofs are also directly applicable.
There are several multiclass versions of AdaBoost. AdaBoost.M2 (Freund & Schapire, 1997) (a special

case of AdaBoost.MR (Schapire & Singer, 1999)), is based on the loss functionX
�i����B

exp
�
f��xi� ��� f��xi� yi�

�
� �37�

For this loss, we can use a similar set up except for the choice of F . We instead use

F �p� �
X

�i����B

pi�� ln pi��

for p � Δ � R
B
�. In fact, this is actually the same F used for (binary) AdaBoost. We have merely changed

the index set to B. Thus, as before,
BF

�
� k q

�
�

X
�i����B

qi��

and
�LF �q�v��i�� � qi��e

�vi�� �

ChoosingM as we did for multiclass logistic regression and q0 � �, we have that BF

�
� k LF �q0�M��

�
is equal to the loss in Eq. (37). We can thus use the preceding algorithms to solve this multiclass problem
as well. In particular, the sequential-update algorithm gives AdaBoost.M2.

AdaBoost.MH (Schapire & Singer, 1999) is another multiclass version of AdaBoost. For AdaBoost.MH,
we replace B by the index set

f1� � � � �mg 	 Y�

and for each example i and label � � Y , we define

ỹi�� �

�
�1 if � � yi
�1 if � �� yi.
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The loss function for AdaBoost.MH is
mX
i�1

X
��Y

exp
�
�ỹi�� f��xi� ��

�
� �38�

We now let M�i����j � ỹi��hj�xi� �� and use again the same F as in binary AdaBoost with q0 � � to obtain
this multiclass version of AdaBoost.

9 A comparison to iterative scaling

In this section, we describe the generalized iterative scaling (GIS) procedure of Darroch and Ratcliff (1972)
for comparison to our algorithms. We largely follow the description of GIS given by Berger, Della Pietra
and Della Pietra (1996) for the multiclass case. To make the comparison as stark as possible, we present
GIS in our notation and prove its convergence using the methods developed in previous sections. In doing
so, we are also able to relax one of the key assumptions traditionally used in studying GIS.

We adopt the notation and set-up used for multiclass logistic regression in Section 8. (To our knowledge,
there is no analog of GIS for the exponential loss so we only consider the case of logistic loss.) We also
extend this notation by defining qi�yi � 1� q̄i so that qi�� is now defined for all � � Y . Moreover, it can be
verified that qi�� � P̂r��jxi� as defined in Eq. (34) if q � LF �q0�M��.

In GIS, the following assumptions regarding the features are usually made:

�i� j� � : hj�xi� �� � 0 and �i� � :
nX
j�1

hj�xi� �� � 1 �

In this section, we prove that GIS converges with the second condition replaced by a milder one, namely,
that

�i� � :
nX
j�1

hj�xi� �� � 1 �

Since, in the multiclass case, a constant can be added to all features hj without changing the model or loss
function, and since the features can be scaled by any constant, the two assumptions we consider clearly
can be made to hold without loss of generality. The improved iterative scaling algorithm of Della Pietra,
Della Pietra and Lafferty (1997) also requires only these milder assumptions but is more complicated to
implement, requiring a numerical search (such as Newton-Raphson) for each feature on each iteration.

GIS works much like the parallel-update algorithm of Section 5 with F , M and q0 as defined for
multiclass logistic regression in Section 8. The only difference is in the computation of the vector of updates
�t, for which GIS requires direct access to the features hj . Specifically, in GIS, �t is defined to be

�t�j � ln

�
Hj

Ij�qt�

�

where

Hj �
mX
i�1

hj�xi� yi�

Ij�q� �
mX
i�1

X
��Y

qi��hj�xi� ���

Clearly, these updates are quite different from the updates described in this paper.
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Using notation from Sections 5 and 8, we can reformulate Ij�q� within our framework as follows:

Ij�q� �
mX
i�1

X
��Y

qi�� hj�xi� ��

�
mX
i�1

hj�xi� yi�

�
mX
i�1

X
��Y

qi��
�
hj�xi� ��� hj�xi� yi�

�
� Hj �

X
�i����B

qi��M�i����j

� Hj � �W�
j �q��W�

j �q�� � (39)

where we define B � f�i� �� j 1 � i � m� � � Y � fyigg, as in the case of logistic regression.
We can now prove the convergence of these updates using the usual auxiliary function method.

Theorem 6 Let F , M and q0 be as above. Then the modified GIS algorithm described above converges to
optimality in the sense of Theorem 3.

Proof: We will show that

A�q�
�
� �DU

�
hH1� � � � �Hni k hI1�q�� � � � � In�q�i

�
� �

nX
j�1

�
Hj ln

Hj

Ij�q�
� Ij�q��Hj

�
(40)

is an auxiliary function for the vectors q1�q2� � � � computed by GIS. Clearly, A is continuous, and the usual
nonnegativity properties of unnormalized relative entropy imply that A�q� � 0 with equality if and only if
Hj � Ij�q� for all j. From Eq. (39), Hj � Ij�q� if and only if W�

j �q� � W�
j �q�. Thus,A�q� � 0 implies

that the constraints qTM � �T as in the proof of Theorem 3. All that remains to be shown is that

BF

�
� k LF �q�M��

�
�BF

�
� k q

�
� A�q� �41�

where

�j � ln

�
Hj

Ij�q�

�
�

We introduce the notation

Δi��� �
nX
j�1

�jhj�xi� ���

and then rewrite the left hand side of Eq. (41) as follows using Eq. (36):

BF

�
� k LF �q�M��

�
�BF

�
� k q

�
�

mX
i�1

ln

�
�qi�yi�X

���yi

qi�� exp

�
�� nX

j�1

�jM�i����j

�
A
�
A

� �
mX
i�1

Δi�yi�

�
mX
i�1

ln

�
�eΔi�yi�

�
�qi�yi�X

���yi

qi��e
�
Pn

j�1
�jM�i����j

�
A
�
��

(42)
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Plugging in definitions, the first term of Eq. (42) can be written as
mX
i�1

Δi�yi� �
nX
j�1

�
ln

�
Hj

Ij�q�

�
mX
i�1

hj�xi� yi�

�

�
nX
j�1

Hj ln

�
Hj

Ij�q�

�
� (43)

Next we derive an upper bound on the second term of Eq. (42):

mX
i�1

ln

�
�eΔi�yi�

�
�qi�yi�X

���yi

qi��e
�
Pn

j�1
�jM�i����j

�
A
�
�

�
mX
i�1

ln

�
�qi�yieΔi�yi� �

X
���yi

qi��e
Δi���

�
A

�
mX
i�1

ln

�
�X
��Y

qi��e
Δi���

�
A

�
mX
i�1

�
�X
��Y

qi��e
Δi��� � 1

�
A (44)

�
mX
i�1

X
��Y

qi��

�
�exp

�
� nX
j�1

hj�xi� ���j

�
A� 1

�
� (45)

�
mX
i�1

X
��Y

qi��

nX
j�1

hj�xi� ���e
�j � 1� (46)

�
mX
i�1

X
��Y

qi��

nX
j�1

hj�xi� ��

�
Hj

Ij�q�
� 1

�
(47)

�
nX
j�1

�
Hj

Ij�q�
� 1

�
mX
i�1

X
��Y

qi��hj�xi� ��

�
nX
j�1

�Hj � Ij�q�� � (48)

Eq. (44) follows from the log bound ln x � x� 1. Eq. (46) uses Eq. (29) and our assumption on the form
of the hj’s. Eq. (47) follows from our definition of the update �.

Finally, combining Eqs. (40), (42), (43) and (48) gives Eq. (41) completing the proof.
It is clear that the differences between GIS and the updates given in this paper stem from Eq. (42), which

is derived from ln x � �C � ln
�
eCx

�
, with C � Δi�yi� on the i’th term in the sum. This choice of C

effectively means that the log bound is taken at a different point (lnx � �C� ln
�
eCx

�
� �C� eCx� 1).

In this more general case, the bound is exact at x � e�C ; hence, varyingC varies where the bound is taken,
and thereby varies the updates.

10 Discussion

In this section we discuss various notions of convergence of AdaBoost, relating the work in this paper to
previous work on boosting, and in particular to previous work on the convergence properties of AdaBoost.
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The algorithms in this paper define a sequence of parameter settings �1��2� � � �. There are various
functions of the parameter settings, for which sequences are therefore also defined and for which convergence
properties may be of interest. For instance, one can investigate convergence in value, i.e., convergence of
the exponential loss function, as defined in Eq. (14); convergence of either the unnormalized distributions
qt or the normalized distributions qt��

P
i q

t
i�, over the training examples; and convergence in parameters,

that is, convergence of �t.
In this paper, we have shown that AdaBoost, and the other algorithms proposed, converge to the infimum

of the exponential loss function. We have also shown that the unnormalized distribution converges to the
distribution q� as defined in Theorem 1. The normalized distribution converges, provided that q� �� �. In
the case q� � � the limit of qt��

P
i q

t
i� is clearly not well defined.

Kivinen and Warmuth (1999) show that the normalized distribution converges in the case that q� �� �.
They also show that the resulting normalized distribution is the solution to

min
q�Pm�qTM��T

DR

�
q k q0

�
� max
��R

n

�
� log

�
ExpLoss���

��

Here Pm is the simplex over the m training examples (i.e., the space of possible normalized distributions);
DR

�
q k q0

�
is the relative entropy between distributions q and q0; and q0 is the uniform distribution

over the training examples, q0 � �1�m��. This paper has discussed the properties of the unnormalized
distribution: it is interesting that Kivinen and Warmuth’s results imply analogous relations for the normalized
distribution.

We should note that we have implicitly assumed in the algorithms that the weak learner can make use of
an unnormalized distribution, rather than the normalized distribution over training examples that is usually
used by boosting algorithms. We think this is a minor point though: indeed, there is nothing to prevent the
normalized distribution being given to the weak learner instead (the algorithms would not change, and the
normalized distribution is well defined unless

P
qi � 0, in which case the algorithm has already converged).

In our view, the use of the unnormalized rather than the normalized distribution is a minor change, although
the use of the normalized distribution is perhaps more intuitive (for instance, the “edge” of a weak learner
is defined with respect to the normalized distribution).

Finally, the convergence of the parameter values �t is problematic. In the case that q� � �, some of the
parameter values must diverge to �� or ��. In fact, the parameter values can diverge even if q� �� �: all
that is needed is that one or more of the components of q� be equal to zero. Even if q� is on the interior
of Δ, there is no guarantee of convergence of the parameter values, for if the constraints are not linearly
independent, there may be several parameter values which give the optimal point. Thus, the parameters
may diverge under our assumptions, or even under the assumption that q� �� �. This is problematic, as the
values for � are used to define the final hypothesis that is applied to test data examples.

11 Experiments

In this section, we briefly describe some experiments using synthetic data. We stress that these experiments
are preliminary and are only intended to suggest the possibility of these algorithms’ having practical value.
More systematic experiments are clearly needed using both real-world and synthetic data, and comparing
the new algorithms to other commonly used procedures.

In our experiments, we generated random data and classified it using a very noisy hyperplane. More
specifically, in the 2-class case, we first generated a random hyperplane in 100-dimensional space represented
by a vector w � R

100 (chosen uniformly at random from the unit sphere). We then chose 1000 points
x � R

100. In the case of real-valued features, each point was normally distributed x � N��� I�. In
the case of Boolean features, each point x was chosen uniformly at random from the Boolean hypercube
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Figure 4: The training logistic loss on data generated by a noisy hyperplanes by various methods.
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Figure 5: The test misclassification error on data generated by noisy hyperplanes.
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f�1��1g100. We next assigned a label y to each point depending on whether it fell above or below the
chosen hyperplane, i.e., y � sign�w � x�. After each label was chosen, we perturbed each point x. In the
case of real-valued features, we did this by adding a random amount � to x where � � N��� 0�8 I�. For
Boolean features, we flipped each coordinate of x independently with probability 0�05. Note that both of
these forms of perturbation have the effect of causing the labels of points near the separating hyperplane to
be more noisy than points that are farther from it. The features were identified with coordinates of x.

For real-valued features, we also conducted a similar experiment involving ten classes rather than two.
In this case, we generated ten random hyperplanesw1� � � � �w10, each chosen uniformly at random from the
unit sphere, and classified each point x by arg maxywy � x (prior to perturbing x).

Finally, in some of the experiments, we limited each weight vector to depend on just 4 of the 100 possible
features.

In the first set of experiments, we tested the algorithms to see how effective they are at minimizing
the logistic loss on the training data. (We did not run corresponding experiments for exponential loss
since typically we are not interested in minimizing exponential loss per se, but rather in using it as a
proxy for some other quantity that we do want to minimize, such as the classification error rate.) We ran
the parallel-update algorithm of Section 5 (denoted “par” in the figures), as well as the sequential-update
algorithm that is a special case of the parameterized family described in Section 7 (denoted “seq”). Finally,
we ran the iterative scaling algorithm described in Section 9 (“i.s.”). (We did not run the sequential-update
algorithm of Section 6 since, in preliminary experiments, it seemed to consistently perform worse than the
sequential-update algorithm of Section 7).

As noted in Section 9, GIS requires that all features be nonnegative. Given features that do not satisfy
this constraint, one can subtract a constant cj from each feature hj without changing the model in Eq. (34);
thus, one can use a new set of features

h�j�x� y� � hj�x� y�� cj

where
cj � min

i��
hj�xi� ���

The new features define an identical model to that of the old features because the result of the change is that
the denominator and numerator in Eq. (34) are both multiplied by the same constant, exp

�
�
P

j �jcj
�
.

A slightly less obvious approach is to choose a feature transformation

h�j�x� y� � hj�x� y�� cj�x�

where
cj�x� � min

�
hj�x� ���

Like the former approach, this causes hj to be nonnegative without affecting the model of Eq. (34) (both

denominator and numerator of Eq. (34) are now multiplied by exp
�
�
P

j �jcj�x�
�
). Note that, in either

case, the constants (cj or cj�x�) are of no consequence during testing and so can be ignored once training is
complete.

In a preliminary version of this paper,3 we did experiments using only the former approach and found
that GIS performed uniformly and considerably worse than any of the other algorithms tested. After the
publication of that version, we tried the latter method of making the features nonnegative and obtained much
better performance. All of the experiments in the current paper, therefore, use this latter approach.

3Appeared in Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, 2000.
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The results of the first set of experiments are shown in Fig. 4. Each plot of this figure shows the logistic
loss on the training set for each of the three methods as a function of the number of iterations. (The loss
has been normalized to be 1 when � � �.) Each plot corresponds to a different variation on generating the
data, as described above. When there are only a small number of relevant features, the sequential-update
algorithms seems to have a clear advantage, but when there are many relevant features, none of the methods
seems to be best across-the-board. Of course, all methods eventually converge to the same level of loss.

In the second experiment, we tested how effective the new competitors of AdaBoost are at minimizing
the test misclassification error. For this experiment, we used the same parallel- and sequential-update
algorithms (denoted “par” and “seq”), and in both cases, we used variants based on exponential loss (“exp”)
and logistic loss (“log”).

Fig. 5 shows a plot of the classification error on a separate test set of 2000 examples. When there are few
relevant features, all of the methods overfit on this data, perhaps because of the high-level of noise. With
many relevant features, there is not a very large difference in the performance of the exponential and logistic
variants of the algorithms, but the parallel-update variants clearly do much better early on; they seem to “go
right to the solution,” exactly the kind of behavior we would hope for in such an algorithm.
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Höffgen, K.-U., & Simon, H.-U. (1992). Robust trainability of single neurons. In Proceedings of the Fifth
Annual ACM Workshop on Computational Learning Theory, pp. 428–439.

Kivinen, J., & Warmuth, M. K. (to appear). Relative loss bounds for multidimensional regression problems.
Machine Learning.

Kivinen, J., & Warmuth, M. K. (1997). Additive versus exponentiated gradient updates for linear prediction.
Information and Computation, 132(1), 1–64.

Kivinen, J., & Warmuth, M. K. (1999). Boosting as entropy projection. In Proceedings of the Twelfth
Annual Conference on Computational Learning Theory, pp. 134–144.

Lafferty, J. (1999). Additive models, boosting and inference for generalized divergences. In Proceedings of
the Twelfth Annual Conference on Computational Learning Theory, pp. 125–133.

Lafferty, J. D., Pietra, S. D., & Pietra, V. D. (1997). Statistical learning algorithms based on Bregman
distances. In Proceedings of the Canadian Workshop on Information Theory.

Littlestone, N., Long, P. M., & Warmuth, M. K. (1995). On-line learning of linear functions. Computational
Complexity, 5(1), 1–23.

29



Mason, L., Baxter, J., Bartlett, P., & Frean, M. (1999). Functional gradient techniques for combining
hypotheses. In Smola, A. J., Bartlett, P. J., Schölkopf, B., & Schuurmans, D. (Eds.), Advances in
Large Margin Classifiers. MIT Press.
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