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Abstract

We give a unified account of boosting and logistic regression in which each learning problem is
cast in terms of optimization of Bregman distances. The striking similarity of the two problems in
this framework allows us to design and analyze agorithms for both simultaneously, and to easily adapt
algorithmsdesigned for one problemto the other. For both problems, we give new algorithmsand explain
their potential advantages over existing methods. These algorithms are iterative and can be divided into
two types based on whether the parameters are updated sequentially (one at atime) or in parallel (all
at once). We also describe a parameterized family of algorithms that includes both a sequential- and a
parallel-update algorithm as special cases, thus showing how the sequential and parallel approaches can
themselvesbeunified. For al of thea gorithms, we give convergenceproofsusing ageneral formalization
of the auxiliary-function proof technique. As one of our sequential-update algorithms is equivalent to
AdaBoost, this provides the first general proof of convergence for AdaBoost. We show that all of our
algorithms generalize easily to the multiclass case, and we contrast the new algorithms with the iterative
scaling algorithm. We conclude with a few experimental results with synthetic data that highlight the
behavior of the old and newly proposed algorithmsin different settings.



1 Introduction

We give aunified account of boosting and logistic regression in which we show that both learning problems
can becast interms of optimization of Bregman distances. In our framework, thetwo problemsbecomevery
similar, the only real difference being in the choice of Bregman distance: unnormalized relative entropy for
boosting, and binary relative entropy for logistic regression.

The similarity of the two problems in our framework alows us to design and analyze algorithms
for both simultaneously. We are now able to borrow methods from the maximum-entropy literature for
logistic regression and apply them to the exponential 1oss used by AdaBoost, especially convergence-proof
techniques. Conversely, we can now easily adapt boosting methodsto the problem of minimizing thelogistic
loss used in logistic regression. The result is afamily of new agorithms for both problems together with
convergence proofs for the new algorithms as well as AdaBoost.

For both AdaBoost and logistic regression, we attempt to choose the parameters or weights associated
with a given family of functions called features or, in the boosting literature, weak hypotheses. AdaBoost
works by sequentially updating these parameters one by one. That is, on each of a series of iterations, a
single feature (weak hypothesis) is chosen and the parameter associated with that single feature is adjusted.
In contrast, methods for logistic regression, most notably iterative scaling (Darroch & Ratcliff, 1972;
Della Pietra, DellaPietra, & Lafferty, 1997), update all parametersin parallel on each iteration.

Our first new algorithm is amethod for optimizing the exponential loss using parallel updates. It seems
plausiblethat a parallel-update method will often converge faster than a sequential -update method, provided
that the number of features is not so large as to make parallel updates infeasible. A few experiments
described at the end of this paper suggest that thisis the case.

Our second algorithm is a parallel-update method for the logistic loss. Although parallel-update
algorithms are well known for this function, the updates that we derive are new. Because of the unified
treatment we give to the exponential and logistic loss functions, we are able to present and prove the
convergence of the algorithms for thesetwo losses simultaneously. The sameistruefor the other algorithms
presented in this paper aswell.

We next describe and analyze sequential -update algorithms for the two loss functions. For exponential
loss, this algorithm is equivaent to the AdaBoost algorithm of Freund and Schapire (1997). By viewing
the algorithm in our framework, we are able to prove that AdaBoost correctly converges to the minimum
of the exponential loss function. Thisis a new result: Although Kivinen and Warmuth (1999) and Ma
son et al. (1999) have given convergence proofs for AdaBoost, their proofs depend on assumptions about
the given minimization problem which may not hold in al cases. Our proof holds in general without such
assumptions.

Our unified view leadsdirectly to asequential -update algorithm for logistic regression that isonly aminor
maodification of AdaBoost andwhichisvery similar totheal gorithm proposed by Duffy and Helmbold (1999).
Like AdaBoost, this algorithm can be used in conjunction with any classification algorithm, usually called
the weak |earning algorithm, that can accept a distribution over examplesand return aweak hypothesiswith
low error rate with respect to the distribution. However, this new algorithm provably minimizes the logistic
loss rather than the arguably less natural exponential 1oss used by AdaBoost.

A potentially important advantage of the new algorithm for logistic regression is that the weights that
it places on examples are bounded in [0, 1]. This suggeststhat it may be possible to use the new algorithm
in a setting in which the boosting algorithm selects examples to present to the weak learning algorithm
by filtering a stream of examples (such as a very large dataset). As pointed out by Watanabe (1999) and
Domingo and Watanabe (2000), thisis not possible with AdaBoost since its weights may become extremely
large. They provide a modification of AdaBoost for this purpose in which the weights are truncated at 1.
We speculate that our new algorithm may lead to aviable and mathematically cleaner aternative.



We next describe a parameterized family of iterative algorithms that includes both parallel- and
sequential-update algorithms as well as a whole range of agorithms between these two extremes. The
convergence proof that we give holds for this entire family of agorithms.

Although most of this paper considers only the binary case in which there are just two possible labels
associated with each example, it turns out that the multiclass case requires no additional work. That is, all
of the algorithms and convergence proofs that we give for the binary case turn out to be directly applicable
to the multiclass case without modification.

For comparison, we also describe the generalized iterative scaling algorithm of Darroch and Rat-
cliff (1972). In rederiving this procedure in our setting, we are able to relax one of the main assumptions
usually required by this algorithm.

The paper is organized as follows: Section 2 describes the boosting and logistic regression models as
they are usually formulated. Section 3 gives background on optimization using Bregman distances, and
Section 4 then describes how boosting and logistic regression can be cast within this framework. Section 5
gives our parallel-update algorithms and proofs of their convergence, while Section 6 gives the sequential-
update algorithms and convergence proofs. The parameterized family of iterative algorithmsis described in
Section 7. Theextensionto multiclass problemsisgivenin Section 8. In Section 9, we contrast our methods
with the iterative scaling algorithm. In Section 10, we discuss various notions of convergence of AdaBoost
and relate our results to previous work on boosting. In Section 11, we give some initial experiments that
demonstrate the qualitative behavior of the various algorithms in different settings.

Previous work

Variants of our sequential-update algorithmsfit into the general family of “arcing” algorithms presented by
Breiman (1997b, 1997a), as well as Mason et a.'s “AnyBoost” family of algorithms (Mason et al., 1999).
The information-geometric view that we take also shows that some of the agorithms we study, including
AdaBoogt, fit into a family of algorithms described in 1967 by Bregman (1967), and elaborated upon by
Censor and Lent (1981), for satisfying a set of constraints.

Our work is based directly on the general setting of Lafferty, Della Pietra and Della Pietra (1997) in
which one attempts to solve optimization problems based on general Bregman distances. They gave a
method for deriving and analyzing parallel-update algorithms in this setting through the use of auxiliary
functions. All of our algorithms and convergence proofs are based on this method.

Our work builds on several previous papers which have compared boosting approaches to logistic
regression. Friedman, Hastie and Tibshirani (2000) first noted the similarity between the boosting and
logistic regression loss functions, and derived the sequentia -update algorithm LogitBoost for the logistic
loss. However, unlike our algorithm, theirs requires that the weak learner solve least-squares problems
rather than classification problems.

Duffy and Helmbold (1999) gave conditions under which a loss function gives a boosting algorithm.
They showed that minimizing logistic loss does|ead to aboosting algorithm in the PAC sense. Thissuggests
that the logistic loss algorithm of section 6 of this paper, which is close to theirs, may turn out also to have
the PAC boosting property. We leave this as an open problem.

Lafferty (1999) went further in studying the relationship between | ogistic regression and the exponential
lossthrough the use of afamily of Bregman distances. However, the setting described in his paper apparently
cannot be extended to precisely include the exponential loss. The use of Bregman distancesthat we describe

"More specifically, Bregman (1967) and later Censor and Lent (1981) describe optimi zation methods based on Bregman distances
where one constraint is satisfied at each iteration, for example, a method where the constraint which makes the most impact on the
objective function is greedily chosen at each iteration. The simplest version of AdaBoost, which assumes weak hypotheses with
valuesin {—1, +1}, isan agorithm of this type if we assume that the weak learner is always able to choose the weak hypothesis
with minimum weighted error.



has important differences leading to a natural treatment of the exponential loss and a new view of logistic
regression.

Our work builds heavily on that of Kivinen and Warmuth (1999) who, along with Lafferty, werethefirst
to make a connection between AdaBoost and information geometry. They showed that the update used by
AdaBoost isaform of “entropy projection.” However, the Bregman distance that they used differed dightly
from the one that we have chosen (normalized relative entropy rather than unnormalized relative entropy)
so that AdaBoost’sfit in this model was not quite complete; in particular, their convergence proof depended
on an assumption that does not hold in general.? Kivinen and Warmuth also described updates for general
Bregman distancesincluding, asone of their examples, the Bregman distance that we useto capturelogistic
regression.

Cesa-Bianchi, Krogh and Warmuth (1994) describe an algorithm for a closely related problem to ours:
minimization of a relative entropy subject to linear constraints. In related work, Littlestone, Long and
Warmuth (1995) describe algorithms where convergence properties are analyzed through a method that is
similar to the auxiliary function techniques. A variety of work in the online learning literature, such asthe
work by Littlestone, Long, and Warmuth (1995) and the work by Kivinen and Warmuth (1997, to appear)
on exponentiated gradient methods, also use Bregman divergences, and techniques that are related to the
auxiliary function method.

2 Boosting, logistic models and loss functions

Let S = ((z1,v1),- .-, (Tm,ym)) beaset of training exampleswhere each instance x; belongsto adomain
or instance space X', and each label y; € {—1,+1}.
We assumethat we are also given aset of real-valued functionson X, h, .. ., h,,. Following convention

in the Maximum-Entropy literature, we call these functions features; in the boosting literature, these would
be called weak or base hypotheses.

We study the problem of approximating the y;’s using alinear combination of features. That is, we are
interested in the problem of finding a vector of parameters A € R™ suchthat fi(z;) = -7 Ajhj(z;) isa
“good approximation” of y;. How we measure the goodness of such an approximation varies with the task
that we have in mind.

For classification problems, a natural goal isto try to match the sign of f(xz;) to y;, that is, to attempt
to minimize

f:[[yz’fA(iEi) <0] (1)
i—1

where [r] is 1if = istrue and O otherwise. Although minimization of the number of classification errors
may be aworthwhile goal, inits most general form, the problem isintractable (see, for instance, (Hoffgen &
Simon, 1992)). It istherefore often advantageousto instead minimize some other nonnegativeloss function.
For instance, the boosting algorithm AdaBoost (Freund & Schapire, 1997; Schapire & Singer, 1999) is
based on the exponential loss

i exp (—yifa(zs)). (2)
i—1

It can be verified that Eq. (1) is upper bounded by Eq. (2). However, the latter loss is much easier to work
with as demonstrated by AdaBoost.

AdaBoost is usually described as a procedure that workstogether with an oracle or subroutine called the
weak learner. Briefly, on each of a series of rounds, the weak learner picks one feature (weak hypothesis)

2gpecifically, their assumption is equivalent to the infimum of the exponential loss being strictly positive (when the data is
separable it can be shown that the infimum is zero).



h;. Note that the features h, . . . , h,, correspond to the entire space of weak hypotheses rather than merely
the weak hypotheses that were previously found up to that point by the weak learner. Of course, this will
often be an enormous space, but one, nevertheless, that can be discussed mathematically. In practice, it
may often be necessary to rely on aweak learner that can only approximately search the entire space. For
instance, greedy algorithms such as C4.5 are often used for this purposeto find a“good” decision tree from
the space of all possible decision trees.

To simplify the discussion, let us suppose for the moment that all of the weak hypotheses are Boolean,
i.e., with range {—1,+1}. In this case, the weak learner attempts to choose the weak hypothesis with
smallest error rate, that is, with the smallest weighted number of mistakes (in which h;(z;) # y;) relative
to a distribution over training examples selected by AdaBoost. Given the choice of weak hypothesis &,
AdaBoost then updatesthe associated parameter A ; by adding somevaluea toit where« isasimpleformula
of thisweighted error rate (note that a parameter may be updated more than once in this framework).

As mentioned above, in practice, the weak learner may not always succeed in finding the “best” £
(in the sense of minimizing weighted error rate), for instance, if the size of the space of weak hypotheses
precludes an exhaustive search. However, in this paper, we make the idealized assumption that the weak
learner always choosesthebest /. ;. Given thisassumption, it has been noted by Breiman (1997a, 1997b) and
various later authors (Friedman et al., 2000; Mason et al., 1999; Ratsch, Onoda, & Miller, 2001; Schapire
& Singer, 1999) that the choice of both ; and a are done in such away asto cause the greatest decreasein
the exponential lossinduced by A, given that only a single component of X isto be updated. In this paper,
we show for the first time that AdaBoost is in fact a provably effective method for finding parameters A
which minimize the exponential loss (assuming, as noted above, that the weak learner always chooses the
“best” hj).

In practice, early stopping (limiting the number of rounds of boosting, rather than running the algorithm
to convergence) is often used to mitigate problems with overtraining. In this case the sequential algorithms
in this paper can be considered to be feature selection methods, in that only a subset of the parameters will
obtain non-zero values. Thus, the sequential methods can be used both for feature selection, or for search
for the minimum of the loss function.

We aso give an entirely new algorithm for minimizing exponential loss in which, on each round, all of
the parameters \; are updated in parallel rather than one at atime. Our hope is that in some situations this
parallel-update algorithm will be faster than the sequential-update algorithm. See Section 11 for preliminary
experimentsin this regard.

Instead of using f) as a classification rule, we might instead postulate that the 1;'s were generated
stochastically as afunction of the z;'s and attempt to use f)(x) to estimate the probability of the associated
label y. A well-studied way of doing thisisto pass f) through alogistic function, that is, to use the estimate

- 1
Prly =+1]| z] = T @

Thelikelihood of the labels occuring in the samplethenis
m
H 1
op L+ exp (—yifa(zi)

Maximizing this likelihood then is equivalent to minimizing the log loss of this model

> In(1+exp (—yifa(e:))). (3)

i=1
Generalized and improved iterative scaling (Darroch & Ratcliff, 1972; Della Pietra et d., 1997) are
popular parallel-update methods for minimizing this loss. In this paper, we give an aternative parallel-
update al gorithm which we compareto iterative scaling techniquesin preliminary experimentsin Section 11.



3 Bregman-distance optimization

In this section, we give background on optimization using Bregman distances. Thiswill form the unifying
basisfor our study of boosting and logistic regression. The particular set-up that wefollow istaken primarily
from Lafferty, Della Pietra and Della Pietra (1997).

Let F : A — R be adtrictly convex function defined on a closed, convex set A C R™. Assume F' is
differentiable at al points of Ay, theinterior of A, which we assume is nonempty. The Bregman distance
associated with F' isdefined for p € A and q € Ajn; to be

Br(p |l @) = F(p) - F(q) — VF(q) - (p — q).

Thus, Br measures the difference between F' and its first-order Taylor expansion about q, evaluated at
p. Bregman distances, first introduced by Bregman (1967), generalize some commonly studied distance
measures. For instance, when A = R and

F(p) =3 pilnp. (4
=1

Bpr becomes the (unnormalized) relative entropy

m
Dy(p || @) =) (Piln <&> + gi —pz-)-
i=1 gl
(We follow the standard convention that 0log0 = 0.) Generally, although not always a metric or even
symmetric, it can be shown that every Bregman distance is nonnegative and is equal to zero if and only
if its two arguments are equal. We assume that By can be extended to a continuous extended real-valued
function over al of A x A.

Thereisanatural optimization problem that can be associated with a Bregman distance, namely, to find
the vector p € A that is closest to a given vector qp € A subject to a set of linear constraints. In other
words, the problem is to project qp onto alinear subspace. The constraints defining the linear subspace are
specified by somem x n matrix M and some vector p € A. The vectors p satisfying these constraints are
those for which

p'M=p"M. (5

This dlightly odd way of writing the constraints ensures that the linear subspace is nonempty (i.e., thereis
at least one solution, p = p). Thus, the problemisto find

arg min Br(p | ao) (6)

where
’Pi{pEA:pTM:f)TM}. (7)

Atthispoint, weintroduceafunction Lr andaset @ C Awhichareintimately related to the optimization
problemin Egs. (6) and (7). After giving formal definitions, we give informal arguments—through the use
of Lagrange multipliers—for the relationships between P, Q and L. Finaly, we state Theorem 1, which
gives a compl ete connection between these concepts, and whose results will be used throughout this paper.

Let usdefinethefunction Lg : Aint X R™ — Ajn to be

Lr(q,v) = (VF)"Y(VF(q) - v).



In order for this to be mathematically sound, we assume that V F is a bijective (one-to-one and onto)
mapping from Ajp; to R™ so that itsinverse (VF) ! is defined. It is straightforward to verify that £ has
the following “ additive’ property:

Lr(Lr(q,w),v) = Lr(q, v+ w) (8)

forq € Arand v, w € R™. Weassumethat £ can be extended to a continuousfunction mapping A x R™
into A. For instance, when B isunnormalized relative entropy, it can be verified that

ﬁF(qa V)i = Qie_vi' (9)
Next, let O be the set of al vectors of the form:
Q = {Lr(qo,MA) | A € R"}. (10)

We now return to the optimization problem in Egs. (6) and (7), and describe informally how it can be
solved in some cases using the method of Lagrange multipliers. To use this method, we start by forming the
Lagrangian:

K(p,A\)=Br(p || @)+ (P'M—-p' M)A (12)

where A € R" is a vector of Lagrange multipliers. By the usua theory of Lagrange multipliers, the
solution to the origina optimization problem is determined by the saddle point of this Lagrangian, where
the minimum should be taken with respect to the parameters p, and the maximum should be taken with
respect to the Lagrange multipliers A.

Differentiating K (p, A) with respect to p and setting the result equal to zero gives

VF(p) = VF(qo) — M. (12)

from which it follows that
P = Lr(qo, MA) (13)

whichimpliesthat p € Q.

Differentiating K (p, A) with respect to A and setting the result equal to zero simply implies that p must
satisfy the constraintsin Eq. (5), and hencethat p € P. So we have shown that finding a saddle point of the
Lagrangian—and thereby solving the constrained optimization problem in Egs. (6) and (7)—is equivalent
to finding apointin? N Q.

Finally, if we plug Eqg. (13) into the Lagrangian in Eq. (11), we are left with the problem of maximizing

K(Lr(do, MA), A).
By straightforward algebra, it can be verified that this quantity is equal to

Br (P || o) —Br (P Il Lr(qo,MX)).

In other words, because Br (p || qo) isconstant (relativeto A), the original optimization problem has been
reduced to the “dual” problem of minimizing Br (p || q) overq € Q.

To summarize, we have argued informally that if thereisapoint g, in P N @ then this point minimizes
Br (p || qo) over p € P andasominimizes Br (p || q) overq € Q. It turnsout, however, that P N Q
can sometimes be empty, in which case this method does not yield a solution. Nevertheless, if we instead
usethe closure of Q, which, intuitively, has the effect of allowing some or all of the Lagrange multipliersto
be infinite, then there will always exist aunique solution. That is, as stated in the next theorem, for alarge



family of Bregman distances, P N Q always contains exactly one point, and that one point is the unique
solution of both optimization problems (where we also extend the constraint set of the dual problem from
Q1o Q).

We take Theorem 1 from Lafferty, Della Pietra and Della Pietra (1997). We do not give the full details
of the conditionsthat F' must satisfy for this theorem to hold since these go beyond the scope of the present
paper. Instead, werefer the reader to DellaPietra, DellaPietraand Lafferty (2001) for aprecise formulation
of these conditions and a complete proof. A proof for the case of (normalized) relative entropy is given by
Della Pietra, Della Pietra and Lafferty (1997). Moreover, their proof requires very minor modifications for
all of the cases considered in the present paper. Closely related results are given by Censor and Lent (1981)
and Csiszar (1991, 1995). See also Censor and Zenios's book (1997).

Theorem1 Let , qo, M, A, F, Br, P and Q be as above. Assume By (P || go) < oo. Then for a
large family of functions F, including all functions considered in this paper, there exists a unique g, € A
satisfying:

1. 9, €ePNO

2.Br(p |l a)=Br(p || ax) +Br (g || q)foranype Pandqe Q
3. g, =agmin,5 Br (p || q)

4. g, = agmingep Br (p || qo)-

Moreover, any one of these four properties determines g, uniquely.

Proof sketch: As noted above, a complete and general proof is given by Della Pietra, Della Pietra and
Lafferty (2001). However, the proof given by Della Pietra, Della Pietra and Lafferty (1997) for normalized
relative entropy can be modified very easily for all of the cases of interest in the present paper. The only
step that needs slight modification isin showing that the minimum in part 3 exists. For this, we notein each
case that the set

{acA|Br(® |l @) <Br(® Il qo)}

isbounded. Therefore, we can restrict the minimum in part 3 to theintersection of Q with the closure of this
set. Since this smaller set is compact and since By (p || ) is continuous, the minimum must be attained
at some point q.

Therest of the proof is essentially identical (modulo superficial changesin notation). =

Thistheoremwill be extremely useful in proving the convergenceof the algorithms described below. We
will show in the next section how boosting and logistic regression can be viewed as optimization problems of
the type givenin part 3 of the theorem. Then, to prove optimality, we only need to show that our algorithms
convergeto apointin? N Q.

Part 2 of Theorem 1isakind of Pythagorean theorem that is often very useful (for instance, in the proof
of the theorem), though not used directly in this paper.

4 Boosting and logistic regression revisited

We return now to the boosting and logistic regression problems outlined in Section 2, and show how these
can be cast in the form of the optimization problems outlined above.



Recall that for boosting, our goal isto find A such that

> exp (_yi ijhj(l“z‘)) (14)
i-1 =1

is minimized, or, more precisely, if the minimum is not attained at a finite A, then we seek a procedure for
finding asequence A1, Ao, . . . which causesthis function to convergeto its infimum. For shorthand, we call
this the ExpLoss problem.

To view this problem in the form given in Section 3, welet p = 0, qo = 1 (theal O'sand al 1's
vectors). We let M;; = y;h;(x;), from which it follows that (MX); = ?:1 A\jyihj(z;). We let the space
A = R’". Finaly, wetake F' to be asin Eq. (4) so that Br isthe unnormalized relative entropy.

Asnoted earlier, inthiscase, L (q, v) isasgivenin Eq. (9). In particular, this means that

q; = eX ( Z)\Jyl ) )\E]R"}

01 a Zqz (15)

Qz{qERT

Furthermore, it istrivia to seethat

sothatDyr (0 || L£r(qo, MA)) isequal to Eq. (14). Thus, minimizingDy; (0 || q) overq € Qisequivaent
to minimizing Eq. (14). By Theorem 1, thisis equivalent to finding q € Q satisfying the constraints

Z qiMi; = Z qiyih; = (16)

forj=1,...,n
Logistic regression can be reduced to an optimization problem of this form in nearly the same way.
Recall that here our goal isto find A (or a sequence of X’s) which minimize

m n
Zln 1+ exp —inAjhj(J?i) . (17)
i=1 j=1
For shorthand, we call this the LogLoss problem. We define p and M exactly as for exponential loss. The
vector qp is still constant, but now is defined to be (1/2)1, and the space A is now restricted to be [0, 1]™
These are minor differences, however. The only important difference is in the choice of the function F',
namely,

m

F(p) =) _ (pilnpi + (1—p;) In(1 - p;)).
i=1

The resulting Bregman distanceis

w1 @) =3 (in (Z) + @-pomn (122)).

i=1

Trivialy,
01 a Zlnl a)- (18)



Parameters. A C R
F : A — R for which Theorem 1 holds and satisfying Conditions 1 and 2
qo € Asuchthat By (0 || qo) < o

Input: Matrix M € [—1, 1]™*" where, for all i, 3-7_ 1 [M;;] < 1

Output: Ag, Ay,. .. suchthat
t'l}TOBF (0 || Lr(qo, M)\t))Z/\'ef]gn Br (0 || Lr(go,MX)).

LetA;1 =0
Fort=12...:

* q; = Lr(qo, M)
e FOorj=1,...,n:

Wy = Yoo @il Myl
isign(M;;)=+1
Wi, = Yo @il Myl

isign(M;;)=-1
W
Orj = }In <—t’]>
2 \Wy,
e Update parameters: Ay 1 = s + 6
Figure 1. The parallel-update optimization algorithm.

For this choice of F, it can be verified using calculus that

Ui

o gie
LF(qa V)Z - 1— qi + Qieivi (19)
so that
n
Q= {q S [O, 1]m g, =0 (Z )\]yzh](:L‘Z)> ,)\ € R" }
j=1

whereo(z) = (1+¢%) L. Thus,Dg (0 || Lr(qo, MA)) isequal to Eq. (17) sominimizing D (0 || q)
over q € Q isequivalent to minimizing Eq. (17). Asbefore, thisisthe sameasfinding g € O satisfying the
constraintsin Eq. (16).

Thus, the exponential lossand | ogistic loss problemsfit into our general framework using nearly identical
settings of the parameters. The main differenceisin the choice of Bregman distance—unnormalized rel ative
entropy for exponential loss and binary relative entropy for logistic loss. The former measures distance
between nonnegative vectors representing weights over the instances, while the latter measures distance
between distributions on possible [abels, summed over all of the instances.

5 Parallel optimization methods

In this section, we describe a new algorithm for the ExpLoss and LogLoss problems using an iterative
method in which all weights \; are updated on each iteration. The algorithm is shown in Fig. 1. The

10



algorithm can be used with any function F' satisfying certain conditions described below. In particular, we
will seethat it can be used with the choices of F' given in Section 4. Thus, thisis really asingle algorithm
that can be used for both loss-minimization problems by setting the parameters appropriately. Note that,
without loss of generality, we assumein this section that for all instancesi, 37 [M;;| < 1.

The agorithm is very simple. On each iteration, the vector &, is computed as shown and added to the
parameter vector A;. We assume for al our algorithms that the inputs are such that infinite-valued updates
never occur.

This algorithm is new for both minimization problems. Optimization methods for ExpLoss, notably
AdaBoost, have generally involved updates of one feature at atime. Parallel-update methods for LogLoss
are well known (see, for example, (Darroch & Ratcliff, 1972; Della Pietra et al., 1997)). However, our
updates take a different form from the usual updates derived for logistic models. We discussthe differences
in Section 9.

A useful point is that the distribution q;1 is a simple function of the previous distribution q;. By

Eq. (8),

i1 = Lr(qo, M(A; +61)) = Lr(Lr(qo, MA;), M)
= Lp(qe, Mdy). (20)
Thisgives
qt,i EXp (— 21 5t,jMij) forExpLoss
qt+1i = " -1 (21)
i [(1 — Q1) EXp (ijl 5t,jM,-j) + qt,i] forLogLoss.
Wewill provenext that the algorithm givenin Fig. 1 convergesto optimality for either loss. Weprovethis

abstractly for any matrix M and vector qo, and for any function F' satisfying Theorem 1 and the following
conditions:

Condition 1 Foranyv € R™, g € A,

Br (0 || £r(@V) =Br (0 | a) <D qie™ —1).
i=1

Condition 2 For any ¢ < oo, the set
{aeA|Br (0| a) <}
is bounded.

We will show later that the choices of F' given in Section 4 satisfy these conditions which will allow us
to prove convergence for ExpLoss and LogLoss.

To prove convergence, we use the auxiliary-function technique of Della Pietra, Della Pietra and Laf-
ferty (1997). Very roughly, the idea of the proof is to derive a nonnegative lower bound called an auxiliary
function on how much the loss decreases on each iteration. Since the loss never increases and is lower
bounded by zero, the auxiliary function must converge to zero. The final step is to show that when the
auxiliary function is zero, the constraints defining the set P must be satisfied, and therefore, by Theorem 1,
we must have converged to optimality.

Moreformally, we definean auxiliary function for asequenceqs, qo, - . . and matrix M to beacontinuous
function A : A — R satisfying the two conditions:

Bp (0 || di+1) = Br (0 || ar) < Aaqr) <0 (22)

11



and
Alq)=0=>q'M=0". (23)

Beforeproving convergenceof specific algorithms, we provethefollowing lemmawhich shows, roughly,
that if a sequence has an auxiliary function, then the sequence converges to the optimum point q,. Thus,
proving convergence of a specific algorithm reduces to simply finding an auxiliary function.

Lemma2 Let A be an auxiliary function for g, gy, ... and matrix M. Assume the g;’s lie in a compact
subspace of @ where Q is as in Eq. (10). Assum F' satisfies Theorem 1. Then

tlim q: =0, =agminBr (0 || q).
— 00 qu

Note that the q,’s will lie in acompact subspace of Q if Condition 2 holdsand B (0 || q1) < oco. In
the algorithm in Figure 1, and in general in the algorithms in this paper, A1 = 0, so that q1 = qg and the
condition By (0 || qo) < oo impliesBr (0 || q1) < oo. Br (0 || qo) < oo isaninput condition for all
of the algorithms in this paper.

Proof: By condition (22), Br (0 || q¢) is a nonincreasing sequence. As is the case for al Bregman
distances, Br (0 || q;) isalso bounded below by zero. Therefore, the sequence of differences

Br (0 I Qt+1) — Br (0 I Qt)

must converge to zero. Using the condition of Eq. (22), this meansthat A(q;) must also converge to zero.
Because we assume that the q;’'s lie in a compact space, the sequence of q;'s must have a subsequence
converging to some point @ € A. By continuity of A, we have A(q) = 0. Therefore, @ € P from the
condition given by Eq. (23), where P isasin Eq. (7). On the other hand, q is the limit of a sequence of
pointsin @ soq € Q. Thus,q € PN Q s0 g = q, by Theorem 1.

This argument and the uniqueness of q, show that the q;’s have only a single limit point q,. Suppose
that the entire sequence did not converge to q,. Then we could find an open set B containing q,. such that
{q1, q2, ...} — B containsinfinitely many points and therefore has alimit point which must bein the closed
set A — B and so must be different from q,. This, we have already argued, is impossible. Therefore, the
entire sequence corvergestoq,. M

We can now apply thislemmato prove the convergence of the algorithm of Fig. 1.

Theorem 3 Let F satisfy Theorem 1 and Conditions 1 and 2, and assume that Br (0 || qo) < oo. Letthe
sequences A1, Ay, ... and di, 0z, - - - be generated by the algorithm of Fig. 1. Then

lim g, =agminBr (0 | q)
t—o00 qed
where Q is as in Eg. (10). That is,

Jlim B (0 || EF(CIO,M)\::))ZA'E’%” Bp (0 || Lr(qo,MA)).

12



Proof: Let

Wi(a) = > qi| M;j|
i:§ign(M;;)=+1
Wi (q) = > qi| M|

i:§ign(M;;)=-1

sothat W, = W (q;) and W, ; = W, (q;). Weclaim that the function

A =3 (Vi@ - W @)
j=1

isan auxiliary function for qi1, qo, . . .. Clearly, A is continuous and nonpositive.
Let s;; = sign(M;;). We can upper bound the changein Bx (0 || q;) onroundt by A(q;) asfollows:

Br (0 || ai+1) —Br (0 || ;) = Br(0 || Lr(q:,,Mé;)) —Br (0 || q) (24)

< > ailep| =D 6,My | -1 (25)
i1 | =1

= > aqi|exp| = djsiI Myl | —1
i1 | =1

< S i | M| (e %t — 1) (26)
i1 |j=1

= 3 (Wihe™ s + Wisel —wih - W) 27)
=1

- -y (Vw5 - JWT])Z = Ala)- (28)
j=1

Egs. (24) and (25) follow from Eqg. (20) and Condition 1, respectively. Eqg. (26) uses the fact that, for any
z;'sand for p; > Owith 3=, p; < 1, we have

exp (Zp]w]) -1 = exp (ij$j+0' (1—2;0]-)) -1

J J J
2pet (1_2.%) —1= Y p(en - 1) (29
J J J

IA

by Jensen’sinequality applied to the convex function e®. EQ. (27) usesthe definitions of Wtfj and W, ,
Eq. (28) uses our choice of 4, (indeed, §; was chosen specifically to minimize Eq. (27)).
If A(q) = Othenforal j, W]*(q) =W, (q), thatis,

and

m m
0=W;(a) =W (a) =D @isij|Myj| = _ q: M.

Thus, A isan auxiliary functionfor qi, g2, - . .. Thetheorem now followsimmediately from Lemma2. =
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To apply this theorem to the ExpLoss and LogLoss problems, we only need to verify that Conditions 1
and 2 are satisfied. Starting with Condition 1, for ExpLoss, we have

Du (0 || £r(q,v))) =D (0 || @) =D gie ™ =) g
=1 =1

For LogLoss,

s

-
[
&N

D5 (0 || Lr(q,v))—Dp (0 | @) = '”(1—(2;(2 v)))

In (1 —q; + qz'e_vi)

Il
M= 1M

-
[l
=

< (—qi + gie™").
Thefirst and second equalities use Egs. (18) and (19), respectively. Thefina inequality uses1+ z < e for
al z.

Condition 2 holds trivially for LogLoss since A = [0, 1] is bounded. For ExpLoss, if Bx (0 || q) =
Dy (0 || q) < cthen

m
ZQZ' <c
i=1

which clearly defines a bounded subset of R”.

Note that while Condition 1 holds for the loss functions we are considering, it may not hold for all
Bregman distances. Lafferty, Della Pietra and Della Pietra (1997) describe parallel update algorithms for
Bregman distances, using the auxiliary function technique. Their method does not require Condition 1, and
therefore applies to arbitrary Bregman distances; however, each iteration of the algorithm requires solution
of asystem of equationsthat requires a numerical search technique such as Newton's method.

6 Sequential algorithms

In this section, we describe another algorithm for the minimization problems described in Section 4.
However, unlike the algorithm of Section 5, the one that we present now only updates the weight of one
feature at atime. While the parallel-update algorithm may give faster convergence when there are not too
many features, the sequential-update al gorithm can be used when there are avery large number of features
using an oracle for selecting which feature to update next. For instance, AdaBoost, which is essentially
equivalent to the sequential-update algorithm for ExpLoss, uses an assumed weak learning algorithm to
select aweak hypothesis, i.e., one of the features. The sequential algorithm that we present for LogLoss can
be used in exactly the same way.

Thealgorithmisshownin Fig. 2. On eachround, asinglefeature j; isfirst chosento maximizetheinner
product of the corresponding column of the matrix M with the vector q;. The quantity «; isthen computed
and added to the j;"th component of .

It may seem surprising or even paradoxical that the algorithm does not explicitly guarantee that all
of the components of A are eventually updated, and yet we are able to prove convergence to optimality.
Apparently, all components which “need” to be nonzero will eventually be selected by the algorithm for
updating. Moreover, on each iteration, although only one component is actually updated, in fact, all of the
componentsare considered for updating which meansthat all of them areimplicitly used in the computation
of the eventual updateto A.

14



Parameters. A C R
F : A — R for which Theorem 1 holds and satisfying Conditions 1 and 2
qo € Asuchthat By (0 || qo) < o

Input: Matrix M € [—1, 1]™*"
Output: A1, Ao, ...

LeteX1=0
Fort=12,...:

® q: = ﬁF(QOa M)\t)

® Jji

m
Tt = Z qtiM;
i=1

such that

Jim Br (0 || Lr(qo, MAt)):ALr&n Br (0 || Lr(qo,MA)).

= ag mjax > ariMy;

i=1

s

m
Zy = Z i

i=1
= }In<
Ay = 2
o
=1 o

Zt +’)”t>
Zy — 1t
ifj =7
otherwise

Update parameters: A;11 = A; + 0

Figure 2: The sequential-update optimization algorithm.

Theorem 4 Given the assumptions of Theorem 3, the algorithm of Fig. 2 converges to optimality in the
sense of Theorem 3.

Proof: For this theorem, we use the auxiliary function

Thisfunctionis clearly continuous and nonpositive. We have that

> (exp (— > 5t,jMij> - 1)
i—1 j=1

Br (0

H Qt+1)

~Br(0

I Qt)

<

Z qti (€Xp (—
i=1

m

Z
t—zi‘rte,at

15
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a;Mij,) — 1)

’)”teat

2
Alaqr)

1—

_Zt

(30)

(31)

(32)
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where Eq. (31) uses the convexity of e~ %%, and Eq. (33) uses our choice of «; (as before, we chose o; to
minimize the bound in Eq. (32)).

If A(q) = Othen
> qiM;
i=1
0 Y, qiM;; = 0 for al j. Thus, A is an auxiliary function for qi,qp,... and the theorem follows
immediately from Lemma2. =

As mentioned above, this algorithm is essentially equivalent to AdaBoost, specifically, the version of
AdaBoost first presented by Freund and Schapire (1997). In AdaBoost, on each iteration, a distribution
D, over the training examples is computed and the weak learner seeks a weak hypothesis with low error
with respect to this distribution. The algorithm presented in this section assumes that the space of weak
hypotheses consists of the features 1, .. ., h,, and that the weak learner always succeeds in selecting the
feature with lowest error (or, more accurately, with error farthest from 1/2). Trandlating to our notation, the
weight D,(7) assigned to example (z;,y;) by AdaBoost is exactly equal to ¢; ;/Z;, and the weighted error
of the ¢-th weak hypothesisis equal to L

Tt
2(1-%)

Theorem 4 then is the first proof that AdaBoost always cornverges to the minimum of the exponential
loss (assuming an idealized weak |earner of the form above). Notethat when g, # 0, thistheorem alsotells
us the exact form of lim D,. However, we do not know what the limiting behavior of D, iswhen q, = 0,
nor do we know about the limiting behavior of the parameters A; (whether or not q, = 0).

We have also presented in this section a new algorithm for logistic regression. In fact, thisalgorithm is
the same as one given by Duffy and Helmbold (1999) except for the choice of a;. In practical terms, very
little work would be required to alter an existing learning system based on AdaBoost so that it useslogistic
loss rather than exponential loss—the only difference is in the manner in which q; is computed from ;.
Thus, we could easily convert any system such as SLIPPER (Cohen & Singer, 1999), BoosTexter (Schapire
& Singer, 2000) or alternating trees (Freund & Mason, 1999) to use logistic loss. We can even do this for
systems based on “confidence-rated” boosting (Schapire & Singer, 1999) in which «; and j; are chosen
together on each round to minimize Eqg. (30) rather than an approximation of this expression as used in the
algorithm of Fig. 2. (Note that the proof of Theorem 4 can easily be maodified to prove the convergence of
such an algorithm using the same auxiliary function.)

0 = max

7 A parameterized family of iterativealgorithms

In previous sections, we described separate parall el -update and sequential -update algorithms. Inthissection,
we describe a parameterized family of algorithms that includes the parallel-update algorithm of Section 5
as well as a sequential-update algorithm that is different from the one in Section 6. Thus, in this section,
we show how the parallel and sequential viewpoints can themselves be unified in a manner that admits a
unified presentation and unified convergence proofs. Moreover, the family of agorithms that we present
includes a number of new agorithms including, as just mentioned, a sequential-update algorithm that, in
our experiments, consistently performed better than the one in Section 6. This family of agorithms also
includes other algorithms that may in certain situations be more appropriate than any of the algorithms
presented up to this point. For instance, one of these algorithmsiis tailored for the case when the Euclidean
norm of each row of the matrix M is bounded by a constant, in other words, for when the feature-vectors
associated with the examples are known to liein a Euclidean ball (centered at the origin) of bounded radius.
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Parameters: A C R
F : A — R for which Theorem 1 holds and satisfying Conditions 1 and 2
qo € Asuchthat By (0 || qo) < o
ACRY

Input: Matrix M € R™*" satisfying the condition that if we define
Am = {a eA | Vi . Zaj|Mij| < 1}
J

thenvl < j <n,3Ja € Ay forwhicha; >0
Output: Ajg, A, ... such that

Jim Br (0 || Lr(qo, M)\t))Z/\'ef]gn Br (0 || Lr(qo,MX)).

LetA; =0
Fort=12...:

* q; = Lr(qo, M)
e FOorj=1,...,n:

Wy = Y @il Myl
isign(M;;)=+1
Wi, = Yoo @il Myl

isign(M;;)=-1

d Lin (Wi
o= Sin{ 2
2 \wy;

n 2
* a, = arg max ]Zlaj (MW;“]- — \/Wt,j>

[} Seth . (St,j = at,jdt,j
e Update parameters: A;11 = Ay + 6

Figure 3: A parameterized family of iterative optimization algorithms.

The agorithm, which is shown in Fig. 3, is similar to the parallel-update algorithm of Fig. 1. On
each round, the quantities Wtj;. and W, are computed as before, and the vector d, is computed as é, was
computed in Fig. 1. Now, however, this vector d; is not added directly to A;. Instead, ancther vector a; is
selected which providesa® scaling” of the features. Thisvector ischosen to maximize ameasure of progress
while restricted to belong to the set Ay. The allowed form of these scaling vectorsis given by the set A, a
parameter of the algorithm; Ay isthe restriction of A to those vectors a satisfying the constraint that for all

2
n

> aj| Myl < 1.
j=1
Theparallel-updatealgorithmof Fig. 1isobtained by choosing. A = {1} andassumingthat 3°; | M;;| <1
for al 7. (Equivalently, we can make no such assumption, and choose A = {c1 | ¢ > 0}.) An dternative
is to not restrict the scaling vectors at all, i.e., we set A to be R"}. In this case, finding a; is a linear
programming problem with n variables and m constraints, and the features are dynamically scaled to make
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optimal progress on each iteration. There may be computational reasons for doing this, in that the rate of
convergence may depend on the relative scaling of the features.

We can obtain a sequential-update algorithm by choosing A to be the set of unit vectors (i.e., with one
component equal to 1 and all others equal to 0), and assuming that A/;; € [—1,+1] for al ¢, j. The update

then becomes _
P dij if5 =7
L) 0 dse

Another interesting case is when we assumethat 3 ; Mz-zj < 1fordl . It isthen natural to choose

where

A={acr}||lall2=1}
which ensuresthat Ay = A. Then the maximization over Ay can be solved analytically giving the update

bjdy;

8rj =
Y bl

2
where b; = (,/Wtfj - ./Wtjj) . This idea generalizes easily to the case in which 3°; [M;;|” < 1 and

||al|; = 1for any dual normsp and ¢ (% + % =1).
We now prove the convergence of this entire family of algorithms.

Theorem 5 Given the assumptions of Theorem 3, the algorithm of Fig. 3 converges to optimality in the
sense of Theorem 3.

Proof: We use the auxiliary function

Alq) = — max ¥ 0 (W] (@) - Wj(q))z
1

acAy “
]:

where W and W, are asin Theorem 3. This function is continuous and nonpositive. We can bound the
changein B (0 || q;) using the same technique given in Theorem 3:

Br (0 || ai+1) —Br (0 || ;) < ZQt,i exp (—Z5t,jMij) _1]
i=1

=1
m [ n

= Y aqui|exp| =D ayjdisi| Ml | -1
=1 | j=1

IN

m i n
> i | D an | Mij|(e” % — 1)
=1 |j=1

n
- . + —dyj -t _wt _w—
= Z“tu(Wt,y’e T Wy et =Wy Wt,j)
7=1

= =Y (VW - ) =
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Finaly, if A(q) = Othen

acy = aJ <\/W+ \/Wj_ (Q)>2 =0.

Since for every j there exists a € Ay with a; > 0, this implies W]-Jr(q) = Wj*(q) for dl 7, i.e,
>-; ¢iM;; = 0. Applying Lemma 2 completesthe theorem. =

8 Multiclass problems

In this section, we show how all of our results can be extended to the multiclass case. Because of the
generality of the preceding results, we will see that no new algorithms need be devised and no new
convergence proofs need be proved for this case. Rather, all of the preceding algorithms and proofs can be
directly applied to the multiclass case.

In the multiclass case, the label set ) has cardinality k. Each featureis of theform h; : X x Y — R.
In logistic regression, we use a model

efk(xvy) 1
Z[Gy efk(le) o 1+ Zl;éy efk(xrl)ffk(m’y)

Priyle] = (34)

where fy(7,y) = >j-1Ajhj(z,y). Thelossonatraining set thenis

Zln [1+ 3 eh@ib=h wﬂ}. (35)

[ l#yz
We transform this into our framework asfollows: Let
B={@0|1<i<m,ted—{yi}}

Thevectorsp, q, etc. that wework with arein ]Rﬁ. That is, they are (k — 1)m-dimensional and are indexed
by pairsin B. Let p; denote -, pi ¢. The convex function F that we use for this caseis

lepzelnpu (1—pi)In(1— pz)]

=1 | tFy;

which is defined over the space
A:{p€R§_|‘v’i:p_i§l}.
The resulting Bregman distanceis

rlp ll @ = Z[Zmln(m>+(1—;7i)|n<1_1§>].

=1 |ty 1-a

This distance measuresthe relative entropy between the distributions over labelsfor instance 7 defined by p
and q, summed over al instancesi. Clearly,

#(0 || q) = Zlnl @i)-
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It can be shown that
giee "

1= Gi+ Yppy, Giee "ot

(Lr(a,v))ie =

Condition 1 can be verified by noting that

Bi (0 || Lrav) = Br(0 | ) = im(l_(l—L>
=1

Lp (qa V))z
= Z In|1—q;+ Z gipe (36)
i=1 iy,
< Y| G+ Y giee
i=1 LZy;
= Y gl — 1),
(i,)eB

Now let M; ¢y ; = hj(zi,y:) — hj(w,€), and let qo = (1/k)1. Plugging in these definitions gives that
Br (0 || Lr(qo, MA)) isequal to Eq. (35). Thus, the algorithms of Sections5, 6 and 7 can all be used to
solve this minimization problem, and the corresponding convergence proofs are also directly applicable.

There are several multiclass versions of AdaBoost. AdaBoost.M2 (Freund & Schapire, 1997) (aspecial
case of AdaBoost. MR (Schapire & Singer, 1999)), is based on the loss function

> exp(falzib) — falzi i) (37)

(i,)eB

For thisloss, we can use asimilar set up except for the choice of F'. We instead use

F(p)= > pislnpig
(i,)eB

forpe A= Rﬁ. In fact, thisis actually the same F' used for (binary) AdaBoost. We have merely changed
the index set to B. Thus, as before,
Br(0 ]l @)= > gis

(i,0)eB
and
(Lr(a,v))ie = gige "
Choosing M aswedid for multiclasslogistic regressionand qo = 1, we havethat Br (0 || Lr(qo, MA))
isequal to thelossin Eq. (37). We can thus use the preceding algorithms to solve this multiclass problem
aswell. In particular, the sequential-update algorithm gives AdaBoost.M2.
AdaBoost.MH (Schapire & Singer, 1999) isanother multiclassversion of AdaBoost. For AdaBoost.MH,

we replace B by the index set
{1,...,m} x ),

and for each exampled and label / € ), we define

.41 ife=y,
St =N —1 i £y
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Theloss function for AdaBoost.MH is

Zzexp yz(f)\ Ly, )) (38)

i=1/0c)

We now let M(; 5 ; = %ji ehj(z;,£) and use again the same F asin binary AdaBoost with qo = 1 to obtain
this multiclass version of AdaBoost.

9 A comparison to iterative scaling

In this section, we describe the generalized iterative scaling (GIS) procedure of Darroch and Ratcliff (1972)
for comparison to our algorithms. We largely follow the description of GIS given by Berger, Della Pietra
and Della Pietra (1996) for the multiclass case. To make the comparison as stark as possible, we present
GISin our notation and prove its convergence using the methods developed in previous sections. In doing
s0, we are also able to relax one of the key assumptions traditionally used in studying GIS.

We adopt the notation and set-up used for multiclasslogistic regressionin Section 8. (To our knowledge,
there is no analog of GIS for the exponential loss so we only consider the case of logistic loss.) We also
extend this notation by defining ¢;,,, = 1 — ¢; sothat ¢; ¢ is now defined for all £ € ). Moreover, it can be
verified that ¢; = Pr[¢|x;] asdefined in Eq. (34) if ¢ = Lr(qo, MA).

In GIS, the following assumptions regarding the features are usually made:

Vi, j, € hj(zi,0) >0 and Vi, £: > hj(z;,€) =1.
j=1

In this section, we prove that GIS converges with the second condition replaced by a milder one, namely,
that "
Vil > hy(zi,0) <1
j=1

Since, in the multiclass case, a constant can be added to all features £ ; without changing the model or loss
function, and since the features can be scaled by any constant, the two assumptions we consider clearly
can be made to hold without loss of generality. The improved iterative scaling algorithm of Della Pietra,
Della Pietra and Lafferty (1997) aso requires only these milder assumptions but is more complicated to
implement, requiring a numerical search (such as Newton-Raphson) for each feature on each iteration.

GIS works much like the parallel-update algorithm of Section 5 with ¥, M and qo as defined for
multiclasslogistic regressionin Section 8. The only differenceisin the computation of the vector of updates
44, for which GIS requires direct accessto the features ;. Specifically, in GIS, é§; is defined to be

H,
%y =10 (Ij@))

m

Hj = Z hj(@i,y:)

Lil@) = > aishj(zi,0)

=14y

where

Clearly, these updates are quite different from the updates described in this paper.
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Using notation from Sections 5 and 8, we can reformulate ; (q) within our framework as follows:

L@ = Y. aiehi(zi0)

1=1/0€)y

= Zhj(wi,yi)
+Z Z‘hé J (zi,4 h](xuyz)]

i=1/0c)
= Hj— Y ¢ieMg,
(i,0)eB

wherewedefine B = {(i,4) | 1<i<m,¢ €Y —{y;}}, asinthe case of logistic regression.
We can now prove the convergence of these updates using the usual auxiliary function method.

Theorem 6 Let F', M and o be as above. Then the modified GIS algorithm described above converges to
optimality in the sense of Theorem 3.

Proof: We will show that

Al@) = Dy ((Hy,.. ) | (B(@),.... Tn(@))
I H;
_ ]221<H it - Hj> (40)

isan auxiliary function for the vectorsq1, q», . . . computed by GIS. Clearly, A is continuous, and the usual
nonnegativity properties of unnormalized relative entropy imply that A(q) < O with equality if and only if
H; = I;(q)foral j. FromEq. (39), H; = I;(q) if and only if W]*(q) =W, (a). Thus, A(q) = Oimplies
that the constraintsq"M = 0" asin the proof of Theorem 3. All that remains to be shown is that

Br (0 || Lr(q,M6)) —Br (0 || q) < A(q) (41)

H.
5]' =In (I]((]])>

j=1

and then rewrite the left hand side of Eq. (41) asfollows using Eq. (36):

7 (0 || Lr(q,Md)) —Br (0 || @) = Z'n(qz,yﬂrzqzzexr)( zn:%M(zyé),j))
j=1

L2y;

= _ZAi(yi)
+Z|n[€ (o) ((Izyff'z%ee = 1‘“”““])]

where

We introduce the notation

LZy;
(42)
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Plugging in definitions, the first term of Eq. (42) can be written as
S Aily) = ). [In ( ) Zhj(%,yi)]
i=1 i=1

j=1
n ' Hj
;HJ In <Ij(q)> : (43)

Next we derive an upper bound on the second term of Eq. (42):

= nsM
Z In eAi(yi) Qi,yi + Z (]i,lei Ej=1 V(L)
i=1

H;
Ii(a)

LZy;

= Z In (qi’yieAi(yi) + Z Qi,leAi(£)>
=1

LZy;

= Z In (Z qi,geAi(l))

i=1 =Y

< f: (Z Qi,éeAi(l)—l) (44)
i=1 \LeY

= DD die [exp (Zhj(xi,mj) —1] (45)
i=1¢4ey j=1

< DD ey hyzi (e 1) (46)
i=10cy  j=1

NS S (e[

— ;%qz,e]zlh]( ”€)<Ij(q) 1> (47)

s ([ H NSNS b

= 2_(H; = i) - (48)
j=1

Eq. (44) follows from the log bound Inz < = — 1. Eq. (46) uses Eq. (29) and our assumption on the form
of the h;’s. Eq. (47) follows from our definition of the update 4.

Finally, combining Egs. (40), (42), (43) and (48) gives Eq. (41) completing the proof. =

Itisclear that the differences between GI S and the updates givenin this paper stem from Eq. (42), which
is derived from Inz = —C + In (ecx), with C' = A;(y;) on the i"th term in the sum. This choice of C

effectively meansthat the log bound istaken at adifferent point (Inz = —C +1In (ecx) < —CH+e“z—1).

In this more general case, the bound isexact at = = e~¢; hence, varying C' varieswhere the bound is taken,
and thereby varies the updates.

10 Discussion

In this section we discuss various notions of convergence of AdaBoost, relating the work in this paper to
previous work on boosting, and in particular to previous work on the convergence properties of AdaBoost.
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The algorithms in this paper define a sequence of parameter settings A1, A2, .... There are various
functionsof the parameter settings, for which sequencesaretherefore al so defined and for which convergence
properties may be of interest. For instance, one can investigate convergence in value, i.e., convergence of
the exponential loss function, as defined in Eq. (14); convergence of either the unnormalized distributions
q; or the normalized distributions q;/(3°; q¢), over the training examples; and convergence in parameters,
that is, convergence of ;.

In this paper, we have shown that AdaBoost, and the other algorithms proposed, convergeto theinfimum
of the exponential loss function. We have also shown that the unnormalized distribution converges to the
distribution q, as defined in Theorem 1. The normalized distribution converges, provided that g, # 0. In
the case q, = 0 thelimit of q;/(3"; ¢) isclearly not well defined.

Kivinen and Warmuth (1999) show that the normalized distribution convergesin the case that q, # 0.
They also show that the resulting normalized distribution is the solution to

wer, 0o PR (@ || ao) = max (—log (ExpLoss(A)))
Here P, isthe simplex over the m training examples (i.e., the space of possible normalized distributions);
Dr(q || qo) isthe relative entropy between distributions q and qo; and qq is the uniform distribution
over the training examples, qo = (1/m)1. This paper has discussed the properties of the unnormalized
distribution: itisinteresting that Kivinen and Warmuth'’sresultsimply analogousrelationsfor the normalized
distribution.

We should note that we haveimplicitly assumed in the algorithms that the weak |earner can make use of
an unnormalized distribution, rather than the normalized distribution over training examplesthat is usually
used by boosting algorithms. We think thisis aminor point though: indeed, there is nothing to prevent the
normalized distribution being given to the weak learner instead (the algorithms would not change, and the
normalized distribution iswell definedunless " ¢; = 0, in which casethe algorithm hasalready converged).
In our view, the use of the unnormalized rather than the normalized distribution isaminor change, although
the use of the normalized distribution is perhaps more intuitive (for instance, the “edge” of a weak learner
is defined with respect to the normalized distribution).

Finally, the convergence of the parameter values ), is problematic. Inthe casethat q, = 0, someof the
parameter values must divergeto +oo or —oco. In fact, the parameter values can diverge even if g, # 0: all
that is needed is that one or more of the components of q, be equal to zero. Even if q, ison the interior
of A, there is no guarantee of convergence of the parameter values, for if the constraints are not linearly
independent, there may be several parameter values which give the optimal point. Thus, the parameters
may diverge under our assumptions, or even under the assumption that q,. # 0. Thisis problematic, asthe
valuesfor A are used to define the final hypothesisthat is applied to test data examples.

11 Experiments

In this section, we briefly describe some experiments using synthetic data. We stress that these experiments
are preliminary and are only intended to suggest the possibility of these algorithms' having practical value.
More systematic experiments are clearly needed using both real-world and synthetic data, and comparing
the new algorithms to other commonly used procedures.

In our experiments, we generated random data and classified it using a very noisy hyperplane. More
specifically, inthe 2-class case, wefirst generated arandom hyperplanein 100-dimensional spacerepresented
by a vector w € R'® (chosen uniformly at random from the unit sphere). We then chose 1000 points
x € R, In the case of real-valued features, each point was normally distributed x ~ N(0,I). In
the case of Boolean features, each point x was chosen uniformly at random from the Boolean hypercube
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{—1,+1}'%. We next assigned a label y to each point depending on whether it fell above or below the
chosen hyperplane, i.e., y = sign(w - x). After each label was chosen, we perturbed each point x. In the
case of real-valued features, we did this by adding a random amount e to x wheree ~ N(0,0.8 I). For
Boolean features, we flipped each coordinate of x independently with probability 0.05. Note that both of
these forms of perturbation have the effect of causing the labels of points near the separating hyperplaneto
be more noisy than pointsthat are farther from it. The features were identified with coordinates of x.

For real-valued features, we also conducted a similar experiment involving ten classes rather than two.
In this case, we generated ten random hyperplaneswy, . . ., wig, €ach chosen uniformly at random from the
unit sphere, and classified each point x by argmax, w, - x (prior to perturbing x).

Finally, in some of the experiments, we limited each weight vector to depend on just 4 of the 100 possible
features.

In the first set of experiments, we tested the algorithms to see how effective they are at minimizing
the logistic loss on the training data. (We did not run corresponding experiments for exponential loss
since typically we are not interested in minimizing exponential loss per se, but rather in using it as a
proxy for some other quantity that we do want to minimize, such as the classification error rate.) We ran
the parallel-update algorithm of Section 5 (denoted “par” in the figures), as well as the sequential-update
algorithm that is aspecial case of the parameterized family described in Section 7 (denoted “seq”). Finaly,
we ran the iterative scaling algorithm described in Section 9 (*i.s”). (We did not run the sequential-update
algorithm of Section 6 since, in preliminary experiments, it seemed to consistently perform worse than the
sequential-update algorithm of Section 7).

Asnoted in Section 9, GIS requires that all features be nonnegative. Given features that do not satisfy
this constraint, one can subtract a constant c; from each feature ; without changing the model in Eq. (34);
thus, one can use a new set of features

where
cj = mlénhj(xz,é)
2

The new features define an identical model to that of the old features because the result of the changeisthat
the denominator and numerator in Eq. (34) are both multiplied by the same constant, exp (— > Ajcj).
A dlightly less abvious approach is to choose a feature transformation

h;-(ac,y) = hj(z,y) — cj(v)

where
cj(z) = m[inhj(x,ﬁ).

Like the former approach, this causes /; to be nonnegative without affecting the model of Eq. (34) (both
denominator and numerator of Eq. (34) are now multiplied by exp (— > Ajcj(m))). Note that, in either
case, the constants (¢; or ¢j(x)) are of no consequence during testing and so can beignored oncetraining is
complete.

In apreliminary version of this paper, we did experiments using only the former approach and found
that GIS performed uniformly and considerably worse than any of the other algorithms tested. After the
publication of that version, wetried the latter method of making the features nonnegative and obtained much
better performance. All of the experimentsin the current paper, therefore, use this latter approach.

3Appeared in Proceedings of the Thirteenth Annual Conference on Computational Learning Theory, 2000.
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Theresults of thefirst set of experimentsare shownin Fig. 4. Each plot of this figure showsthe logistic
loss on the training set for each of the three methods as a function of the number of iterations. (The loss
has been normalized to be 1 when A = 0.) Each plot correspondsto a different variation on generating the
data, as described above. When there are only a small number of relevant features, the sequential-update
algorithms seemsto have a clear advantage, but when there are many relevant features, none of the methods
seemsto be best across-the-board. Of course, all methods eventually converge to the same level of loss.

In the second experiment, we tested how effective the new competitors of AdaBoost are at minimizing
the test misclassification error. For this experiment, we used the same parallel- and sequential-update
algorithms (denoted “ par” and “seq”), and in both cases, we used variants based on exponential loss (“exp”)
and logistic loss (“log”).

Fig. 5 showsaplot of the classification error on a separatetest set of 2000 examples. When there arefew
relevant features, all of the methods overfit on this data, perhaps because of the high-level of noise. With
many relevant features, thereisnot avery large difference in the performance of the exponential and logistic
variants of the algorithms, but the parallel-update variants clearly do much better early on; they seemto “go
right to the solution,” exactly the kind of behavior we would hope for in such an algorithm.
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