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By Nicolò Cesa-Bianchi and Gábor Lugosi2

Sequential randomized prediction of an arbitrary binary sequence

is investigated. No assumption is made on the mechanism of generating

the bit sequence. The goal of the predictor is to minimize its relative loss

(or regret), i.e., to make almost as few mistakes as the best “expert” in

a fixed, possibly infinite, set of experts. We point out a surprising con-

nection between this prediction problem and empirical process theory.

First, in the special case of static (memoryless) experts, we completely

characterize the minimax regret in terms of the maximum of an as-

sociated Rademacher process. Then we show general upper and lower

bounds on the minimax regret in terms of the geometry of the class of

experts. As main examples, we determine the exact order of magnitude

of the minimax regret for the class of autoregressive linear predictors

and for the class of Markov experts.
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1. Introduction Consider the problem of predicting sequentially an arbi-

trary binary sequence of length n. At each time unit t = 1, . . . , n, after making

a guess, one observes the t-th bit of the sequence. Predictions are allowed to

depend on the outcome of biased coin flips. The loss at time t is defined as the

probability (with respect to the coin flip) of predicting incorrectly the t-th bit of

the sequence. The goal is to predict any sequence almost as well as the best “ex-

pert” in a given set of experts. In this paper we investigate the minimum number

of excess mistakes, with respect to the mistakes of the best expert, achievable

in a worst-case sense; that is, when no assumptions are made on the mechanism

generating the binary sequence.

To formally define the prediction problem, we introduce the notion of expert.

An expert F is a sequence of functions Ft : {0, 1}t−1 → [0, 1], t ≥ 1. Each expert

defines a prediction strategy in the following way: upon observing the first t− 1

bits yt−1 = (y1, . . . , yt−1) ∈ {0, 1}t−1, expert F predicts that the next bit yt is 1

with probability Ft(yt−1).

We now describe the binary prediction problem as an iterated game between

a predictor and the environment (see also [29]). This game is parametrized by a

positive integer n (number of game rounds to play) and by a set F of experts

(the expert class). On each round t = 1, . . . , n:

1. The predictor picks a number Pt ∈ [0, 1].

2. The environment picks a bit yt ∈ {0, 1}.

3. Each F ∈ F incurs loss |Ft(yt−1)−yt| and the predictor incurs loss |Pt−yt|.

For each positive integer n, one may view an expert F as a probability dis-

tribution over the set {0, 1}n of binary strings of length n such that, for each
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yt−1 ∈ {0, 1}t−1, Ft(yt−1) stands for the conditional probability of yt = 1 given

the past yt−1. (Here y0 denotes the empty sequence.) In this respect, the loss

|Ft(yt−1) − yt| of expert F at time t may be intepreted as the probability of

error P{Xt 6= yt} if the expert’s guess Xt ∈ {0, 1} were to be drawn randomly

according to the probability P{Xt = 1} = Ft(yt−1).

As our goal is to compare the loss of the predictor with the loss of the best

expert in F , we find it convenient to define the strategy P of the predictor

in the same way as we defined experts. That is, P is a sequence of functions

Pt : {0, 1}t−1 → [0, 1], t ≥ 1, and P predicts that yt is 1 with probability Pt(yt−1),

where yt−1 is the sequence of previously observed bits. Note that the predictor’s

strategy P may (and in general will) be defined in terms of the given expert class

F . Finally, as we did with experts, for each n ≥ 1 we may view the predictor’s

strategy as a distribution P over {0, 1}n and interpret the loss |Pt(yt−1)− yt| as

the error probability P{Ŷt 6= yt}, where the prediction Ŷt ∈ {0, 1} is randomly

drawn according to the probability P{Ŷt = 1} = Pt(yt−1).

We now move on to define some quantities characterizing the performance of

a strategy P in the prediction game. The cumulative loss of each expert F ∈ F

is defined by

LF (yn) def=
n∑

t=1

|Ft(yt−1)− yn| ,

and the cumulative loss of the predictor using strategy P is

LP (yn) def=
n∑

t=1

|Pt(yt−1)− yn| .

The goal of the predictor P is to minimize its worst-case regret, defined by

Rn(P,F) def= max
yn∈{0,1}n

(
LP (yn)− inf

F∈F
LF (yn)

)
.
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Finally, we define the minimax regret as the smallest worst-case regret achievable

by any predictor,

Vn(F) def= min
P

Rn(P,F),

where the minimum is taken over the compact set of all distributions P over

{0, 1}n. In the rest of this work, we show that Vn(F) is characterized by metric

properties of the class F , and we give examples of this characterization for specific

choices of F .

The first study of the quantity Vn(F), though for a very specific choice of

the expert class F , goes back to a 1965 paper by Cover [8]. He proves that

Vn(F) = Θ(
√
n) when F contains two experts: one always predicting 0 and

the other always predicting 1. A remarkable extension was achieved by Feder,

Merhav, and Gutman [11], who considered the class of all finite-state experts. In

particular, they show that Vn(F) = O
(√

2kn
)

when F contains all k-th order

Markov experts (a subclass of all finite-state experts). Cesa-Bianchi et al. [3],

building on results of Vovk [28] and Littlestone and Warmuth [19], consider

arbitrary finite classes of experts and prove that the minimax regret is bounded

from above as

Vn(F) ≤
√

(n/2) ln |F| .(1.1)

(In fact, the bound shown in [3] has a slightly different form. The above inequality

is proved in Theorem 1 below.) This surprising result shows that there exists a

prediction algorithm such that the number of mistakes is only a constant times
√
n larger than the number of errors committed by the best expert, regardless

of the outcome of the bit sequence. (Typically, the number of mistakes made by

the best expert grows linearly with n.) Moreover, the constant is proportional to
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the logarithm of the size of the expert class.

In [3] it is also shown that the upper bound (1.1) is asymptotically tight in

a worst-case sense. That is, for each N ≥ 1 there exists an expert class FN of

cardinality N such that

lim inf
N→∞

lim inf
n→∞

Vn(FN )√
(n/2) lnN

= 1 .

The approach taken in this paper is different. We treat F as a fixed class and

try to estimate the size of the minimax regret Vn(F) for this class. It turns

out that for a fixed class, the order of magnitude of Vn(F) may be significantly

smaller than
√

(n/2) ln |F|. (Just consider a class F of two experts such that the

predictions of the two experts are always the same except in the first time instant

t = 1. In this case it is easy to see that Vn(F) = 1/2.) In general, the value of

Vn(F) depends on the geometry of the expert class. As the above-mentioned

examples of Cover and Feder et al. show, even for infinite classes of experts one

may be able to determine meaningful upper bounds.

The paper is organized as follows: In Section 2 we give a new simple proof

of inequality (1.1) and extend it to expert classes defined as a convex hull of

finitely many experts. In Section 3 a special type of experts is considered. These

so-called static experts predict according to prespecified probabilities, indepen-

dently of the past bits of the sequence. In this special case it is possible to

characterize the minimax regret Vn(F) by the maximum of a Rademacher pro-

cess, which highlights an intriguing connection to empirical process theory. In

Section 4 we use the insight provided by the example of static experts to define

a general algorithm for prediction, and derive a general upper bound for Vn(F).

In Section 5 lower bounds for Vn(F) are derived. To demonstrate the tightness
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of the upper and lower bounds, we consider two main examples: In Section 6 we

derive matching upper and lower bounds for the class of k-th order autoregres-

sive linear predictors. Finally, in Section 7 we take another look at the class of

Markov experts of Feder, Merhav, and Gutman.

2. Finite classes and their convex hulls We start with a new short proof

of (1.1). The algorithm is a simple version of a “weighted majority” method

proposed by Vovk [28] and Littlestone and Warmuth [19]. However, whereas

previous analyses of this algorithm did not get the best leading costant of (1.1),

we are able to do so using a proof technique similar to that used for proving [5,

Theorem 5].

Theorem 1. For any finite expert class F , define the predictor strategy P

by

Pt(yt−1) def=
∑

F∈F e
−ηLF (yt−1)Ft(yt−1)∑

F∈F e
−ηLF (yt−1)

,

where η > 0 is a parameter. If η =
√

8 ln |F|/n then, for any yn ∈ {0, 1}n,

LP (yn)−min
F

LF (yn) ≤
√
n

2
ln |F| .

Proof. Fix an arbitrary sequence yn ∈ {0, 1}n. Define W1 = ln |F|, and for

all t > 1 let

Wt =
∑
F∈F

e−ηLF (yt−1) .

Then

ln
Wn+1

W1
= ln

(∑
F∈F

e−ηLF (yn)

)
− ln |F|

≥ ln
(

max
F∈F

e−ηLF (yn)

)
− ln |F|
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= −η min
F∈F

LF (yn)− ln |F| .(2.2)

On the other hand, for each t = 1, . . . , n

ln
Wt+1

Wt
= ln

∑
F e

−η|Ft(y
t−1)−yt|e−ηLF (yt−1)∑

F e
−ηLF (yt−1)

= lnEF∼Qt

[
e−η|Ft(y

t−1)−yt|
]
,

where EF∼Qt
denotes expectation taken with respect to a distribution Qt on F

which assigns a probability proportional to e−ηLF (yt−1) to each F ∈ F . Recalling

Hoeffding’s bound [17] on the moment-generating function of bounded random

variables (see also [9, Lemma 8.1]), we observe that

lnEF∼Qt

[
e−η|Ft(y

t−1)−yt|
]

≤ −ηEF∼Qt

∣∣Ft(yt−1)− yt

∣∣+ η2

8

= −η
∣∣EF∼Qt

[Ft(yt−1)]− yt

∣∣+ η2

8
(2.3)

= −η
∣∣Pt(yt−1)− yt

∣∣+ η2

8
,(2.4)

where equation (2.3) holds because yt ∈ {0, 1}, and (2.4) holds by definition of

Pt.

Summing over t = 1, . . . , n we get

ln
Wn+1

W1
≤ −ηLP (yn) +

η2

8
n .

Combining this with (2.2) and solving for LP (yn) we find that

LP (yn) ≤ min
F

LF (yn) +
ln |F|
η

+
η

8
n .

Finally, choosing η =
√

8 ln |F|/n yields the desired bound.

The upper bound of Theorem 1 may be easily extended to infinite classes of

experts which may be written as a convex hull of finitely many experts:
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Theorem 2. Let F (1), . . . , F (N) be arbitrary experts, and consider the class

F of all convex combinations of F (1), . . . , F (N), that is,

F =


N∑

j=1

qjF
(j) : q1, . . . , qN ≥ 0,

N∑
j=1

qj = 1

 .

Then

Vn(F) ≤
√

(n/2) lnN.

Proof. The theorem immediately follows from Theorem 1 and the simple

fact that for any bit sequence yn ∈ {0, 1}n and expert G =
∑N

j=1 qjF
(j) ∈ F

there exists an expert among F (1), . . . , F (N) whose loss on yn is not larger than

that of G. To see this note that

LG(yn) =
n∑

t=1

|Gt(yt−1)− yt|

=
n∑

t=1

∣∣∣∣∣∣
N∑

j=1

qjF
(j)
t (yt−1)− yt

∣∣∣∣∣∣
=

n∑
t=1

N∑
j=1

qj

∣∣∣F (j)
t (yt−1)− yt

∣∣∣
=

N∑
j=1

qj

n∑
t=1

∣∣∣F (j)
t (yt−1)− yt

∣∣∣
=

N∑
j=1

qjLF (j)(yn)

≥ min
j=1,...,N

LF (j)(yn) .

3. Prediction with static experts In this section we study the important

special case when every F ∈ F is such that the prediction of F at time t depends

only on t but not on the past yt−1. We use F̄t ∈ [0, 1] to denote the prediction

at time t of a static expert F . Thus, Ft(yt−1) = F̄t for all t = 1, . . . , n and all
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yt−1 ∈ {0, 1}t−1. Such experts are called static in [3]. When interpreting experts

as probability distributions on {0, 1}n, this means that every expert corresponds

to a product distribution. Note that every static expert is determined by a vector

(F̄1, . . . , F̄n), and F may be thought of as a subset of [0, 1]n.

Next we derive a formula for the minimax regret of any (finite or infinite) fixed

class F of static experts. This enables us to derive sharp upper bounds, as well as

corresponding lower bounds, in terms of the geometry of F . We start by observing

that a previous characterization of the minimax regret, implicitely shown in [3],

corresponds to the expected supremum of a class of random variables.

Theorem 3. For any class F of static experts,

Vn(F) = E

[
sup
F∈F

n∑
t=1

(
1
2
− F̄t

)
(1− 2Yt)

]

where Y1, . . . , Yn are independent Bernoulli (1/2) random variables.

Proof. From the statement of [3, Theorem 3.1.2, page 441], we have that

if Y1, . . . , Yn are independent Bernoulli (1/2) random variables, then

Vn(F) =
n

2
−E

[
inf

F∈F

n∑
t=1

|F̄t − Yt|

]

= E

[
sup
F∈F

n∑
t=1

(
1
2
− |F̄t − Yt|

)]

= E

[
sup
F∈F

n∑
t=1

(
1
2
− F̄t

)
(1− 2Yt)

]
.

Remark. The fact that Vn(F) ≥ (n/2) − E
[
infF∈F

∑n
t=1 |F̄t − Yt|

]
may

be proven very easily, and, in fact, it can be extended to classes of arbitrary

experts (see Theorem 10 below.) The more involved proof of the other direction,

given in [3], is based on an inductive argument and exhibits a minimax optimal
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prediction algorithm achieving Vn(F) for any class of static experts F . The

algorithm (described in this form in [7, Section 2.6.2]) is as follows: Suppose

yn ∈ {0, 1}n is the sequence to predict. Then the prediction at each time t =

1, . . . , n is

Pt(yt−1) =
1
2

+ E
[
infF LF (yt−10Y n−t)− infF LF (yt−11Y n−t)

2

]
.

Theorems 4 and 5 below provide performance bounds for this algorithm. 2

With a more compact notation, Theorem 3 states

Vn(F) =
1
2

E

[
sup
F∈F

n∑
t=1

F̃tZt

]
,(3.5)

where Z1, . . . , Zn are independent Rademacher random variables (i.e., P{Zt =

−1} = P{Zt = +1} = 1/2) and each F̃t is the constant 1 − 2F̄t. Rademacher

averages of this type appear in the study of uniform deviations of averages from

their means, and they have been thoroughly studied in empirical process theory.

(For excellent surveys on empirical process theory we refer to Pollard [23] and

Giné [14].)

Based on the characterization (3.5) of Vn(F) as a Rademacher average, we

get the following two results, which give useful upper and lower bounds for the

minimax loss in terms of certain covering numbers of the class of experts. These

covering numbers are defined as follows. For any class F of static experts, let

N2(F , r) be the minimum cardinality of a set Fr of static experts (possibly not

all belonging to F) such that

(∀F ∈ F) (∃G ∈ Fr)

√√√√ n∑
t=1

(
F̄t − Ḡt

)2 ≤ r .
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Theorem 4. For any class F of static experts,

Vn(F) ≤ 12
∫ √

n/2

0

√
ln(N2(F , r) + 1) dr .

Proof. According to (3.5), it suffices to derive the upper bound for the

Rademacher process characterizing Vn(F). Such bounds are well-known, the

bound given here is Dudley’s metric entropy bound and may be proved by the

technique of “chaining”, as explained very nicely in Pollard [23].

Theorem 4 may be used to obtain bounds which are not achievable by earlier

methods (see examples below).

Theorem 5. Let F be a class of static experts containing F and G such that

F̄t = 0 and Ḡt = 1 for all t = 1, . . . , n. Then, for some universal constant K > 0,

Vn(F) ≥ K sup
r
r
√

lnN2(F , r) .

Theorem 5 is a direct consequence of (3.5) and Corollary 4.14 in Ledoux and

Talagrand [18]. In most cases of static experts, Theorem 5 gives a lower bound

matching (up to a constant factor) the upper bound obtained by Theorem 4.

(See Talagrand [26] for a detailed discussion about the tightness of such bounds

and possible improvements.) Now we describe two natural examples which show

how to use the above results in concrete situations. We start with the simplest

case.

Let F be the class of all experts F ∈ F of the form Ft(yt−1) = p regardless of

t and the past outcomes yt−1. The class contains all such experts with p ∈ [0, 1].

Since each expert in F is static, and N2(F , r) ≤
√
n/r, we may use Theorem 4
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to bound the minimax value from above. After simple calculations we obtain

Vn(F) ≤ c
√
n

for some constant c. Note that in this case one may obtain a better constant by

different methods. For example, it follows from Theorem 2 that

Vn(F) ≤
√

(n/2) ln 2 .

Thus the bound of Theorem 4 does not give optimal constants, but it almost al-

ways gives bounds which have the correct order of magnitude. In this special case

the sharpest upper and lower bounds may be directly obtained from Theorem 3,

since

Vn(F) = E

[
sup

p∈[0,1]

n∑
t=1

(
1
2
− p

)
(1− 2Yt)

]

= E

[
max

{
n∑

t=1

(
1
2
− Yt

)
,

n∑
t=1

(
Yt −

1
2

)}]

= E

∣∣∣∣∣
n∑

t=1

(
1
2
− Yt

)∣∣∣∣∣ .
Now on the one hand, by the Cauchy-Schwarz inequality,

E

∣∣∣∣∣
n∑

t=1

(
1
2
− Yt

)∣∣∣∣∣ ≤
√√√√E

(
n∑

t=1

(
1
2
− Yt

))2

=
√
n

2
,

and on the other hand, Khinchine’s inequality (see Szarek [25]) for the expected

deviation of a binomial random variable from its mean implies

E

∣∣∣∣∣
n∑

t=1

(
1
2
− Yt

)∣∣∣∣∣ ≥
√
n

8
.

Summarizing the upper and lower bounds, for every n, we have

0.3535 ≤ Vn(F)√
n

≤ 0.5.
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(For example, for n = 100, there exists a prediction strategy such that for any

sequence y1, . . . , y100 the number of mistakes is not more than that of the best

expert plus 5, but for any prediction strategy there exists a sequence y1, . . . , y100

such that the number of excess errors is at least 3.) Note that by the central

limit theorem, Vn(F)/
√
n → 1/

√
2π ≈ 0.3989 (this exact asymptotical value

was originally shown by Cover [8].) It is easy to see that Theorem 5 also gives a

lower bound of the right order of magnitude, though with a suboptimal constant.

We now show a case where Theorem 4 yields an upper bound significantly

better than those obtainable with any of the previous techniques. Let F be the

class of all static experts which predict in a monotonic way, that is, for each

F ∈ F , either F̄t ≤ F̄t+1 for all t ≥ 1 or F̄t ≥ F̄t+1 for all t ≥ 1. In view of

applying Theorem 4, we upper bound the log of N2(F , r) for any 0 < r <
√
n.

Consider the class Fr of all monotone static experts taking values in

{
(2k + 1)r/

√
n : k = 0, 1, . . . ,m

}
wherem is the largest integer such that (2m+1)r/

√
n ≤ 1. Thenm ≤ b

√
n/(2r)c.

Let d = m + 1 be the cardinality of the range of the functions in Fr. Clearly,

N2(F , r) ≤ |Fr| ≤ 2
(
n+d

d

)
. Using

ln
(
n+ d

d

)
≤ d(ln(1 + n/d) + 1)

and n/d ≤ 2r
√
n we get lnN2(F , r) = O ((

√
n/r) ln(rn)). Hence, applying The-

orem 4, we obtain

Vn(F) = O
(√

n log n
)
.

Note that this is a large “nonparametric” class of experts, yet, we have been

able to derive a bound which is just slightly larger than those obtained for finite
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classes.

In the special case of static classes F such that F̄t ∈ {0, 1} for each F ∈ F ,

a quantity which may be used to obtain good bounds on the covering numbers

is the Vapnik-Chervonenkis (VC) dimension [27]. If a class F has VC-dimension

bounded by a positive constant d, then, using a result of Haussler [16, Theorem

1], one may show that

N2(F , r) ≤ e(d+ 1)
(

2en
r2

)d

.

For such classes, Theorem 4 gives Vn(F) = O
(√

dn
)
, which was not obtainable

with previous techniques. Note that this bound can not be improved in general.

In fact, Haussler [16, Theorem 2] exhibits, for each positive integer d ≥ 1 and

for each n integer multiple of d, a class Fd with VC-dimension d and such that

N2(Fd, r) ≥
(

n

2e(2r2 + d)

)d

.

Hence, the above discussion and Theorem 5 together yield Vn(Fd) = Θ
(√

dn
)
.

4. Chaining: a general prediction algorithm In this section we obtain

general upper bounds for binary prediction without assuming that the experts

in F are static. Our aim is to extend the upper bound (1.1) to arbitrary (i.e., not

necessarily finite) expert classes. The simplest way to do this is by discretizing the

expert class, that is, taking a finite set of experts that approximately represent

the whole class, and use the algorithm described in Theorem 1 for the finite

class. As we will shortly see, this leads to a simple but suboptimal upper bound.

To state this bound, we need to introduce a notion of covering numbers for a

nonstatic expert class: The r-covering number N1(F , r) of a class F of experts
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is the minimum cardinality of a set Fr of experts such that

(∀F ∈ F) (∀yn ∈ {0, 1}n) (∃G ∈ Fr)
n∑

t=1

∣∣Ft(yt−1)−Gt(yt−1)
∣∣ ≤ r .

Then we have the following easy consequence of (1.1).

Corollary 6. For any expert class F ,

Vn(F) ≤ inf
r>0

(
r +

√
n lnN1(F , r)

2

)
.

Proof. For each r > 0, the r-covering Fr satisfies Vn(F) ≤ r + Vn(Fr).

Applying (1.1) to bound Vn(Fr) yields the upper bound.

Note that for finite classes this bound is at least as good as (1.1) as, trivially,

N1(F , r) ≤ |F|. Corollary 6 provides a quite acceptable upper bound in many

cases, though sometimes it is way off-mark. One such example is the class of

“monotone” experts considered in Section 3. For this class Theorem 4 implies

Vn(F) = O(
√
n log n), while the best bound one can get by Corollary 6 is about

the order of n2/3. Indeed, it is easy to see that lnN1(F , r) = O ((n/r) ln r).

Taking r = n2/3 shows that Vn(Fr) = O
(
n2/3(lnn)1/3

)
.

To achieve the near-optimal upper bound of Theorem 4 in the case of static

experts, a technique called “chaining” is used, a standard method in empirical

process theory. For nonstatic experts, however, unfortunately we do not have a

characterization of the minimax regret by an empirical process. Still, the idea of

chaining turns out to be useful even in this case. Next we use this idea to define

a prediction algorithm, and derive a performance bound, which, in turn, leads

to a general upper bound on Vn(F) of the same form as the upper bound stated

in Theorem 4 for static experts, albeit we use a somewhat stronger notion of

covering numbers.



16 N. Cesa-Bianchi and G. Lugosi

In the argument below we need the assumption that the expert class F is

such that all predictors are bounded away from 0 and 1. That is, there exists

0 < δ < 1/2 such that for every F ∈ F , t ≤ n, and yt−1 ∈ {0, 1}t−1, Ft(yt−1) ∈

[δ, 1− δ]. We call such a class δ-bounded. We do not know whether it is possible

to drop this assumption, but the predictor presented here does not seem to work

for classes of experts not satisfying such a property. In the remainder of this

section we assume that F is δ-bounded.

We start by defining the covering number used in the bound. For any class F

of experts, define the metric ρ by

ρ(F,G) def= max
1≤t≤n

yn∈{0,1}n

∣∣Ft(yt−1)−Gt(yt−1)
∣∣ .

For any ε > 0, an ε-cover of F (with respect to the metric ρ) is a set Fε ⊂ F

of experts on {0, 1}n such that for all F ∈ F , there exists an expert G ∈ Fε

such that ρ(F,G) ≤ ε. The ε-covering number N∞(F , ε) is the cardinality of the

smallest ε-cover of F .

We now move on to the description of the predictor P for a δ-bounded class

of experts F . For all k ≥ 1, define

εk =
1− 2δ

2(1 + 2δ)
(2δ)k and ak = (1− 2δ)(2δ)k−1 .

Let Gk be an εk-cover of F of cardinality Nk = N∞ (F , εk). Define G0 = {F (0)}

as the singleton class containing the static expert F (0) such that F̄ (0)
t = 1/2 for

each t = 1, . . . , n.

For each k ≥ 1 define Qk as the class of all experts of form

Qt
def=

1
2

+
1
ak

(
F

(k)
t − F

(k−1)
t

)
for each pair (F (k−1), F (k)) ∈ Gk−1×Gk satisfying the condition ρ(F (k), F (k−1)) ≤
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ak/2. By definition of the metric ρ and by the above condition,

1
ak

∣∣∣F (k)
t (yt−1)− F

(k−1)
t (yt−1)

∣∣∣ ≤ 1
ak

ρ(F (k), F (k−1)) ≤ 1
2
.

This implies that each Q ∈ Qk satifies 0 ≤ Qt(yt−1) ≤ 1 and, therefore, is indeed

a bona fide expert.

Now, for each k ≥ 1 we choose a predictor P (k), for example, the one defined

in Theorem 1, such that its minimax regret with respect to the finite class Qk

achieves the bound (1.1). Namely, for all yn ∈ {0, 1}n

LP (k)(yn)− min
Q∈Qk

LQ(k)(yn) ≤
√
n

2
ln |Qk| ≤

√
n lnNk .(4.6)

where the last inequality holds because |Qk| ≤ NkNk−1 ≤ N2
k . Define P by

Pt
def=

∞∑
k=1

akP
(k)
t .

Note that
∑∞

k=1 ak = 1, and therefore P is indeed a valid predictor, taking values

in [0, 1].

Theorem 7. For all classes F of δ-bounded experts and for the predictor P

defined above

LP (yn)− inf
F∈F

LF (yn) ≤ 1 + 2δ
δ(1− 2δ)

√
n

∫ 1

0

√
lnN∞(F , ε) dε .

Proof. We fix a sequence yn and, to simplify notation, we write Ft instead

of Ft(yt−1). Let F ∗ ∈ F be an expert for which LF∗(yn) = infF∈F LF (yn).

(If no such F ∗ exists, for any small ε > 0 we may consider an F ∗ such that

LF∗(yn) < infF∈F LF (yn) + ε and the same proof works.) Consider the “chain”

F (0), F (1), . . .

formed by experts F (k) ∈ Gk satisfying

ρ(F (k), F ∗) ≤ εk , k ≥ 1.
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Note that such a chain exists by the definition of the Gk’s. Now, as

lim
k→∞

ρ
(
F (k), F ∗

)
= 0 ,

we may write

F ∗t = lim
k→∞

F
(k)
t

= F
(0)
t +

∞∑
k=1

(
F

(k)
t − F

(k−1)
t

)

=
1
2

+
∞∑

k=1

(
F

(k)
t − F

(k−1)
t

)

=
∞∑

k=1

akQ
(k)
t

where

Q
(k)
t =

1
2

+
1
ak

(F (k)
t − F

(k−1)
t ) .(4.7)

Claim 8. For each k ≥ 1, the expert Q(k) defined in (4.7) belongs to Qk.

Proof of the claim. We must check that ρ(F (k), F (k−1)) ≤ ak/2 for each

k ≥ 1. For k = 1,

ρ(F, F (0)) ≤ 1
2
− δ =

a1

2

for each F ∈ G1, due to the δ-boundedness of F (recall that F (0) predicts 1/2 all

the time). Now take k ≥ 2. By the triangle inequality we clearly have

ρ(F (k), F (k−1)) ≤ ρ(F (k), F ∗) + ρ(F ∗, F (k−1)) ≤ εk + εk−1 =
ak

2

and this concludes the proof of the claim.

Thus, for all t = 1, . . . , n,

|Pt − yt| − |F ∗t − yt| =

∣∣∣∣∣
∞∑

k=1

akP
(k)
t − yt

∣∣∣∣∣−
∣∣∣∣∣
∞∑

k=1

akQ
(k)
t − yt

∣∣∣∣∣
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=
∞∑

k=1

ak

[ ∣∣∣P (k)
t − yt

∣∣∣− ∣∣∣Q(k)
t − yt

∣∣∣ ] .(4.8)

Therefore, summing the above equality over t = 1, . . . , n and applying (4.6) to

each predictor P (k), k ≥ 1, we obtain

LP (yn)− inf
F∈F

LF (yn) =
∞∑

k=1

ak

(
LP (k)(yn)− LQ(k)(yn)

)
≤

∞∑
k=1

ak

(
LP (k)(yn)− min

Q∈Qk

LQ(yn)
)

≤
∞∑

k=1

ak

√
n lnNk

=
∞∑

k=1

ak

√
n lnN∞ (F , εk)

=
√
n

∞∑
k=1

1 + 2δ
δ(1− 2δ)

(εk − εk+1)
√

lnN∞ (F , εk)

≤
√
n

1 + 2δ
δ(1− 2δ)

∫ 1

0

√
lnN∞ (F , ε) dε,

as desired.

The predictor P can be easily modified so to avoid the infinite sum. Define

the new predictor P ′ by

P ′t
def=

t−1∑
k=1

akP
(k)
t +

∞∑
k=t

ak .(4.9)

Here, only P (1), . . . , P (n−1) are actually used to predict any sequence yn. More

precisely, each P (k) is only used to predict the n − k bits yk+1, . . . , yn. The

performance of P ′ is derived from (4.8) as follows

|P ′t − yt| − |F ∗t − yt| ≤
t−1∑
k=1

ak

[ ∣∣∣P (k)
t − yt

∣∣∣− ∣∣∣Q(k)
t − yt

∣∣∣ ]+
∞∑

k=t

ak .(4.10)
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Note that

∞∑
k=t

ak = (2δ)t−1 .

Therefore, summing (4.10) over t = 1, . . . , n, we get

LP ′(yn)− inf
F∈F

LF (yn) ≤
n∑

t=2

t−1∑
k=1

ak

[ ∣∣∣P (k)
t − yt

∣∣∣− ∣∣∣Q(k)
t − yt

∣∣∣ ]+
n∑

t=1

(2δ)t−1

≤
n−1∑
k=1

n∑
t=k+1

ak

[ ∣∣∣P (k)
t − yt

∣∣∣− ∣∣∣Q(k)
t − yt

∣∣∣ ]+
1

1− 2δ

=
n−1∑
k=1

ak

(
LP (k)(yn

k+1)− LQ(k)(yn
k+1)

)
+

1
1− 2δ

≤
n−1∑
k=1

ak

(
LP (k)(yn

k+1) − min
Q∈Qk

LQ(yn
k+1)

)
+

1
1− 2δ

≤
n−1∑
k=1

ak

(√
(n− k) lnNk

)
+

1
1− 2δ

.

(Here and in what follows, yq
p = (yp, yp+1, . . . , yq) for p ≤ q.)

Hence, concluding the proof as we did in Theorem 7, we obtain the following.

Corollary 9. For all classes F of δ-bounded experts and for the predictor

P ′ defined above

LP ′(yn)− inf
F∈F

LF (yn) ≤
√
n

1 + 2δ
δ(1− 2δ)

∫ 1

0

√
lnN∞(F , ε) dε +

1
1− 2δ

.

5. Lower bounds In this section we derive lower bounds for the minimax

regret Vn(F) of general classes of experts. Recall that in the case of static experts,

by Theorem 3, we have the following characterization:

Vn(F) = E

[
sup
F∈F

n∑
t=1

(
1
2
− F̄t

)
(1− 2Yt)

]
,

where the Yi’s are independent Bernoulli (1/2) random variables. Unfortunately,

this equality is not true for general classes of experts. However, the right-hand
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side is always a lower bound for Vn(F), and the following inequality is our starting

point.

Theorem 10. For any expert class F ,

Vn(F) ≥ E

[
sup
F∈F

n∑
t=1

(
1
2
− Ft(Y t−1)

)
(1− 2Yt)

]
,

where Y1, . . . , Yn are independent Bernoulli (1/2) random variables,

Proof. For any prediction strategy P , if Yt is a Bernoulli (1/2) random

variable then E|Pt(yt−1)− Yt| = 1/2 for each yt−1. Hence

Vn(F) ≥ Rn(P,F)

= max
yn∈{0,1}n

(
LP (yn)− inf

F∈F
LF (yn)

)
≥ E

[
LP (Y n)− inf

F∈F
LF (Y n)

]
=
n

2
−E

[
inf

F∈F
LF (Y n)

]

= E

[
sup
F∈F

n∑
t=1

(
1
2
− Ft(Y t−1)

)
(1− 2Yt)

]
.

Theorem 10 will be directly applied in Section 6 to the class of linear experts.

Next, we prove a different lower bound on Vn(F) in terms of the packing number

of F with respect to a random metric. This result will be applied in Section 7.

We make use of the following notations.

For any class F of experts and for all yn ∈ {0, 1}n, F|yn is the class of static

experts F ′ such that F̄ ′t = Ft(yt−1).

For each expert F , for all t = 1, . . . , n, and for all zt−1 = (z1, . . . , zt−1) ∈

{−1,+1}t−1, we define F̃t by F̃t(zt−1) = 1− 2Ft ((1− z1)/2, . . . , (1− zt−1)/2).
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As we did in the case of static experts, we write the inequality proven in

Theorem 10 using the more compact notation

Vn(F) ≥ 1
2

E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
,(5.11)

where Z1, . . . , Zn are now independent Rademacher random variables.

Theorem 11. Let F be a class of experts containing two static experts F

and G such that F̄t = 0 and Ḡt = 1 for all t. If there exists a positive constant c

such that

E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Ut

]
≤ cE

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
(5.12)

where Z1, . . . , Zn, U1, . . . , Un are independent Rademacher random variables, then

Vn(F) ≥ K

2c
E
[
sup

r
r
√

lnN2(F|Y n , r)
]
,

where Y1, . . . , Yn are independent Bernoulli (1/2) random variables and K is the

universal constant appearing in Theorem 5. In particular, if in addition to the

above, for some r > 0, there exists a set Gr of experts such that with probability

at least 1/2 it is an r-packing with respect to the (random) metric

dY n(F,G) =

√√√√ n∑
t=1

(Ft(Y t−1)−Gt(Y t−1))2 ,

then

Vn(F) ≥ Kr

4c

√
ln |Gr| .

Proof. For each fixed yn ∈ {0, 1}n, we can apply Theorem 5 to the static

class F|yn and prove

E

[
sup
F∈F

n∑
t=1

F̃t(zt−1)Ut

]
≥ K sup

r
r
√

lnN2(F|yn , r) ,
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where zt = 1− 2yt. Then, by averaging over yn, we get

Vn(F) ≥ 1
2
E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
by inequality (5.11)

≥ 1
2c

E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Ut

]
by hypothesis

≥ K

2c
E
[
sup

r
r
√

lnN2(F|Y n , r)
]

concluding the proof of the first statement. The second statement is a trivial

consequence.

6. Linear predictors In this section we study the class Lk of k-th order

autoregressive linear predictors, where k ≥ 2 is a fixed positive integer. As each

prediction of a k-th order autoregressive linear predictor is determined by the

last k bits observed, we add an arbitrary prefix y−k+1, . . . , y0 to the sequence

yn to be predicted. We use yn
1−k to denote the resulting sequence of n+ k bits.

Accordingly, for such predictors the minimax regret is re-defined by

Vn(F) = min
P

max
yn
1−k

∈{0,1}n+k

(
LP (yn

1−k)− inf
F∈F

LF (yn
1−k)

)
,

where

LP (yn
1−k)

n∑
t=1

∣∣Pt(yt−1
1−k)− yt

∣∣
and LF (yn

1−k) is defined analogously. Similar remarks hold for the next section.

The class Lk contains all experts F such that

Ft(yt−1
1−k) =

k∑
i=1

qiyt−i

for some q1, . . . , qk ≥ 0 with
∑k

i=1 qi = 1. In other words, an expert F predicts

according to a convex combination of the k most recent outcomes of the sequence.

Convexity of the coefficients qi assures that Ft(yt−1
1−k) ∈ [0, 1]. The same class of
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experts (without the convexity assumption) was considered also by Singer and

Feder [24] who studied a rather different problem. The main result of this section

determines the exact order of magnitude of the minimax regret for Lk.

Theorem 12. For any positive integers n and k ≥ 2,

Vn(Lk) ≤
√
n ln k

2
≈ 0.707

√
n ln k

and for all k > 5

lim inf
n→∞

Vn(Lk)√
n

≥
(

1
4
− 1

4e

)√
ln k −

√
1
8π

≈ 0.158
√

ln k − 0.199 .(6.13)

Moreover,

lim inf
k→∞

lim inf
n→∞

Vn(Lk)√
n ln k

=
1√
2
≈ 0.707.

Remarks. For small k, the lower bound (6.13) holds vacuously. However,

for all k ≥ 2, one can prove that lim infn→∞ Vn(Lk)/
√
n ≥ 1/6. With more work

is also possible to obtain nonasymptotical lower bounds of the “right” order
√
n ln k by studying the rate of convergence in the martingale central theorem

used in the proof below. Such nonasymptotical bounds will be derived for the

class Markov experts in Section 7. Finally note that the last statement implies

that the upper bound cannot be improved: the constant 1/
√

2 is optimal. 2

Proof of Theorem 12. The first statement is a straighforward conse-

quence of Theorem 2 if we observe that Lk is the convex hull of the k experts

F (1), . . . , F (k) defined by

F
(i)
t (yt−1) = yt−i, i = 1, . . . , k.
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We prove the second statement by applying directly Theorem 10 in the compact

form (5.11),

Vn(Lk) ≥ 1
2
E

[
sup

F∈Lk

n∑
t=1

F̃t(Zt−1)Zt

]
=

1
2
E

[
max
1≤i≤k

n∑
t=1

ZtZt−i

]

where Z−k+1, . . . , Zn are independent Rademacher variables and the last step

holds simply because a linear function over a convex polygon takes its maximum

in one of the vertices of the polygon.

Consider now the k-vector Xn = (Xn,1, . . . , Xn,k) of components

Xn,i
def=

1√
n

n∑
t=1

ZtZt−i, i = 1, . . . , k.

By the “Cramér-Wold device” (see, e.g., Billingsley [2, p. 48]), the sequence

of vectors {Xn} converges in distribution to a vector random variable N =

(N1, . . . , Nk) if and only if
∑k

i=1 aiXn,i converges in distribution to
∑k

i=1 aiNi

for all possible choices of the coefficients a1, . . . , ak. Thus, consider

k∑
i=1

aiXn,i =
1√
n

n∑
t=1

Zt

k∑
i=1

aiZt−i.

It is easy to see that the sequence of random variables
√
nXn,i, n = 1, 2, . . .,

forms a martingale with respect to the sequence of σ-algebras Gt generated by

Z−k+1, . . . , Zt. Furthermore, by the martingale central limit theorem (see, e.g.,

Hall and Heyde [15, Theorem 3.2])
∑k

i=1 aiXn,i converges in distribution, as

n → ∞, to a zero-mean normal random variable with variance
∑k

i=1 a
2
i . Then,

by the Cramér-Wold device, as n→∞ the vector Xn converges in distribution to

N = (N1, . . . , Nk), where N1, . . . , Nk are independent standard normal random

variables.

Convergence in distribution implies that for any bounded continuous function
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ψ : Rk → R,

lim
n→∞

E [ψ(Xn,1, . . . , Xn,k)] = E [ψ(N1, . . . , Nk)] .(6.14)

Consider, in particular, the function ψ(x1, . . . , xk) = φL(maxi xi), where L > 0,

and φL is the “thresholding” function

φL(x) =


−L if x < −L

x if |x| ≤ L

L if x > L.

Clearly, φL is bounded and continuous. Hence, by (6.14), we conclude

lim
n→∞

E
[
φL

(
max
1≤i≤k

Xn,i

)]
= E

[
φL

(
max
1≤i≤k

Ni

)]
.

Now note that for any L > 0,

E
[

max
1≤i≤k

Xn,i

]
≥ E

[
φL

(
max
1≤i≤k

Xn,i

)]
+ E

[(
L+ max

1≤i≤k
Xn,i

)
I{max1≤i≤k Xn,i<−L}

]
,

where ∣∣∣∣E [(L+ max
1≤i≤k

Xn,i

)
I{max1≤i≤k Xn,i<−L}

]∣∣∣∣
≤ E

[(∣∣∣∣ max
1≤i≤k

Xn,i

∣∣∣∣− L

)
I{|max1≤i≤k Xn,i|−L>0}

]
=
∫ ∞

0

P
{∣∣∣∣ max

1≤i≤k
Xn,i

∣∣∣∣ > L+ u

}
du

=
∫ ∞

L

P
{∣∣∣∣ max

1≤i≤k
Xn,i

∣∣∣∣ > u

}
du

≤
∫ ∞

L

k max
1≤i≤k

P {|Xn,i| > u} du

≤ 2k
∫ ∞

L

e−u2/2du

(by the Hoeffding-Azuma inequality)
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≤ 2k
∫ ∞

L

(
1 +

1
u2

)
e−u2/2du

=
2k
L
e−L2/2.

Therefore, we have that for any L > 0,

lim inf
n→∞

E
[

max
1≤i≤k

Xn,i

]
≥ E

[
φL

(
max
1≤i≤k

Ni

)]
− 2k

L
e−L2/2 .

Letting L→∞ on the right-hand side, we see that

lim inf
n→∞

E
[

max
1≤i≤k

Xn,i

]
≥ E

[
max
1≤i≤k

Ni

]
.

(Note that one can similarly show that, in fact, E [max1≤i≤k Xn,i] →

E [max1≤i≤k Ni] as n → ∞.) Using a standard estimate for the expected

value of the maximum of k independent standard normal variables (see, e.g.,

[18, p. 80]), which holds for k > 5, we obtain

lim inf
n→∞

Vn(Lk)√
n

≥ 1
2
E
[

max
1≤i≤k

Ni

]
≥
(

1
4
− 1

4e

)√
ln k −

√
1
8π

.

The last statement now follows from the fact that

lim
k→∞

E [max1≤i≤k Ni]√
ln k

=
√

2,

see, for example, Galambos [12].

7. Markov experts This section is devoted to an important family of ex-

amples (i.e., k-th order Markov experts), another example of how the upper

and lower bounds obtained in Sections 4 and 5 may be used in concrete situ-

ations. The same class of experts was also considered by Feder, Merhav, and

Gutman [11], who derived an upper bound. The main novelty of this section is

a matching nonasymptotical lower bound, obtained via Theorem 11, revealing

the exact value (to within constant factors) of the minimax regret for Markov

experts.
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For an arbitrary k ≥ 1, we consider the class Mk of experts that, when

considered as probability measures on {0, 1}n, represent all stationary k-th order

Markov measures. The rigorous definition is as follows (as each prediction of a

k-th order Markov expert is determined by the last k bits observed, we add a

prefix y−k+1, . . . , y0 to the sequence to predict in the same way we did in the

previous section for the autoregressive experts): The class Mk is indexed by the

set [0, 1]2
k

so that the index of any F ∈Mk is the vector f = (f0, f1, . . . , f2k−1)

with fs ∈ [0, 1] for 0 ≤ s < 2k. If F has index f then Ft(yt−1
−k+1) = fs for

all 1 ≤ t ≤ n and for all yt−1
−k+1 ∈ {0, 1}t+k−1, where s has binary expansion

yt−k, . . . , yt−1. (Note that, due to the need of adding a prefix y−k+1, . . . , y0 to

the sequence to predict, the function Ft is now defined over the set {0, 1}t+k−1.)

As mentioned in Section 1, Feder et al. [11] showed that

Vn(Mk) ≤ C
√

2kn ,

where C is a universal constant. Interestingly, both Theorem 2 and Theorem 7

imply the same upper bound. The best constant C =
√

(ln 2)/2 is achieved by

Theorem 2. (To see why Theorem 7 implies a bound of the same order of magni-

tude, just observe that N∞(F , δ) ≤ δ−2k

for all δ ∈ (0, 1).) We now complement

this result by showing a matching lower bound on Vn(Mk) that holds for all

k ≥ 1 and for all sufficiently large n.

Theorem 13. There exist universal constants C1 and C2 such that for all

k ≥ 1 and for all n ≥ C1k
222k

Vn(Mk) ≥ C2

√
2kn

Remark. In the proof, we will show that the theorem holds for C1 = 78941
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and C2 = K/690 (where K is the universal constant appearing in Theorem 5)

provided that n is also a multiple of 2k. It should be clear from the analysis that

this condition on n could be indeed removed by a suitable increase of C1 and C2.

2

We prove this theorem by applying the lower bound of Theorem 11. How-

ever, instead of checking directly that Markov experts satisfy condition (5.12),

we proceed as follows: First, we define two simple properties (symmetry and

contraction) whose conjunction is shown to imply condition (5.12). Second, we

prove that Markov experts have both of these properties.

Definition 14 (Symmetry). An expert class F is symmetric if for each

F ∈ F and for each yn ∈ {0, 1}n there exists F ′ ∈ F such that F ′t (y
t−1) =

1− Ft(yt−1) for each t = 1, . . . , n.

This condition is quite mild, and even if it is not satisfied, one may easily “sym-

metrize” the expert class by adding to F a “symmetric” expert F ′ = 1 − F for

each F ∈ F . This operation just slightly increases the size of F .

Definition 15 (Contraction). Let c be a positive constant. An expert

class F is c-contractive if

E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)ZtYt

]
≤ cE

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
where Z1, . . . , Zn, Y1, . . . , Yn are independent random variables such that each Zt

is Rademacher and each Yt is Bernoulli (1/2).

The next result shows that symmetry and c-contraction imply condition (5.12)

with constant 2c+ 1.
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Lemma 16. If an expert class F is symmetric, c-contractive, and contains

some static expert F such that F̄t = 1 for all t, then

E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Ut

]
≤ (2c+ 1)E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]

where Z1, . . . , Zn, U1, . . . , Un are independent Rademacher random variables.

Proof. Consider the chain of inequalities

(2c+ 1)E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
− E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Ut

]

= 2cE

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]

−

(
E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Ut

]
− E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

])

≥ 2cE

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
− E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)(Ut − Zt)

]
.

Now pick independent Bernoulli (1/2) random variables Y1, . . . , Yn. We further

bound as follows.

2cE

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
− E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)(Ut − Zt)

]

= 2cE

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
− 2E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)(−Zt)Yt

]
(7.15)

= 2cE

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)Zt

]
− 2E

[
sup
F∈F

n∑
t=1

F̃t(Zt−1)ZtYt

]
(7.16)

≥ 0 .(7.17)

To show (7.15) fix any zn and notice that, for each t, the distribution of Ut − zt

is the same as the distribution of −2Ytzt. Finally, symmetry of F implies (7.16)

and contractiveness implies (7.17).



Prediction of Individual Sequences 31

As Mk is clearly symmetric and contains some static expert F such that

F̄t = 1 for all t, all we have to show, by Lemma 16, is that Mk is contractive,

and then the existence of a packing set Gr with the required property. These

properties are stated by the next two lemmas.

Lemma 17. For all k ≥ 1 and all n ≥ 78941k222k multiple of 2k, Mk is(
10
√

2
)
-contractive.

To prove this result we need some preliminary definitions and a few technical sub-

lemmas. Fix any k ≥ 1. For each s ∈ {−1, 1}k, for each z = zn
−k+1 ∈ {−1, 1}n+k,

and for each t = 1, . . . , n define

at(s, z)
def=


1 if zt−1

t−k = s and zt = 1,

−1 if zt−1
t−k = s and zt = −1,

0 otherwise.

Recall that, by definition of k-th order Markov expert, for any F ∈ Mk the

quantity F̃t(zt−1
−k+1) depends only on the subsequence zt−1

t−k. Hence,

max
F∈Mk

n∑
t=1

F̃t(zt−1
−k+1)zt =

∑
s∈{−1,1}k

∣∣∣∣∣∑
t

at(s, z)

∣∣∣∣∣ .
So, showing that Mk is

(
10
√

2
)
-contractive amounts to showing that∑

s∈{−1,1}k

E

∣∣∣∣∣∑
t

at(s, Z)Yt

∣∣∣∣∣ ≤ (
10
√

2
) ∑

s∈{−1,1}k

E

∣∣∣∣∣∑
t

at(s, Z)

∣∣∣∣∣(7.18)

where Z = (Z−k+1, . . . , Zn) is a vector of n+k independent Rademacher random

variables. Define m(s, z) =
∑n

t=1 |at(s, z)|, so m(s, z) is just the number of times

s occurs in z. We now prove the following.

Lemma 18. For all s ∈ {−1, 1}k,

Var

∣∣∣∣∣∑
t

at(s, Z)

∣∣∣∣∣ ≤ E

(∑
t

at(s, Z)

)2
 = E[m(s, Z)] ,(7.19)
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E

∣∣∣∣∣∑
t

at(s, Z)Yt

∣∣∣∣∣ ≤
√

E[m(s, Z)]
2

,(7.20)

E[m(s, Z)] =
n

2k
.(7.21)

Proof. We start with (7.19). Note that

E

(∑
t

at(s, Z)

)2
 = E

[∑
t

at(s, Z)2
]

+ E

∑
t6=v

at(s, Z)av(s, Z)


= E[m(s, Z)] +

∑
t6=v

E [at(s, Z)av(s, Z)] .

To investigate one term of the sum on the right-hand side, assume without loss

of generality that t > v and write

E [at(s, Z)av(s, Z)] = E
[
E
[
at(s, Z)av(s, Z) | Zt−1

−k+1

]]
= E

[
av(s, Z)E

[
at(s, Z) | Zt−1

−k+1

]]
(since av(s, Z) is determined by Zt−1

−k+1)

= 0

and this concludes the proof of (7.19). To prove (7.20) fix z ∈ {−1, 1}n+k and

consider the chain of inequalities

E

∣∣∣∣∣∑
t

at(s, z)Yt

∣∣∣∣∣ ≤
√√√√√E

(∑
t

at(s, z)Yt

)2


=

√√√√√E

[∑
t

at(s, z)2Y 2
t

]
+ E

∑
t6=v

at(s, z)av(s, z)YtYv


=
√

1
2

∑
t

at(s, z)2 +
1
4

∑
t6=v

at(s, z)av(s, z)

=
1
2

√√√√(∑
t

at(s, z)

)2

+m(s, z) .
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Averaging both sides with respect to z ∈ {−1, 1}n+k yields

E

∣∣∣∣∣∑
t

at(s, Z)Yt

∣∣∣∣∣ ≤ 1
2
E

√√√√(∑
t

at(s, Z)

)2

+m(s, Z)

≤ 1
2

√√√√√E

(∑
t

at(s, Z)

)2
+ E[m(s, Z)]

=

√
E[m(s, Z)]

2
.

Finally, to prove (7.21) just observe

E[m(s, Z)] =
n∑

t=1

P
{
Zt−1

t−k = s
}

= n/2k .

Lemma 19. For all n ≥ 78941k222k multiple of 2k and all s ∈ {−1, 1}k,

P

{
|
∑n

t=1 at(s, Z)|√
E[m(s, Z)]

≥ 1
4

}
≥ 1

5
.

Proof. Recall that the functions a1, . . . , an are such that for all s ∈

{−1, 1}k and z ∈ {−1, 1}n+k, each at(s, z) is determined by s and (zt−k, . . . , zt)

only. Hence, we can extend each function’s domain by adding infinitely many

arbitrary components zn+1, zn+2, . . . to the vector z without affecting the func-

tion’s value on a pair (s, z). Call a′1, . . . , a
′
n these extended functions, which are

now defined on pairs (s, z′) where z′ = (z′−k+1, . . . , z
′
0, z

′
1, . . .). Thus, we have

that for each such pair (s, z′),

a′t(s, z
′) = at

(
s, (z′)n

−k+1

)
where, as usual, (z′)n

−k+1 = (z′−k+1, . . . , z
′
n). As the function m is the sum of

a1, . . . , an, we can extend m to m′ so that m′(s, z′) =
∑n

t=1 |a′t(s, z′)|. Now,

if Z = (Z−k+1, . . . , Zn) is a vector of n + k independent Rademacher r.v.’s

and Z ′ = (Z ′−k+1, . . . , Z
′
0, Z

′
1, . . .) is a vector of infinitely many independent
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Rademacher r.v.’s, then

P

{
|
∑n

t=1 at(s, Z)|√
E[m(s, Z)]

≥ 1
4

}
= P


∣∣∑n

t=1 at

(
s, (Z ′)n

−k+1

)∣∣√
E
[
m
(
s, (Z ′)n

−k+1

)] ≥ 1
4


= P

{
|
∑n

t=1 a
′
t(s, Z

′)|√
E [m′(s, Z ′)]

≥ 1
4

}
.(7.22)

We now lower bound (7.22). To keep the notation tidy, in the rest of the proof

we will write at, zt, and Zt instead of a′t, z
′
t, and Z ′t.

Fix any s ∈ {−1, 1}k. Define the random variables T1, . . . , Tn such that Ti(z) =

t iff zt
t−k+1 is the i-th occurrence of s in z. More formally,

T1(z) = inf {t ≥ 0 : zp = sp, t− k < p ≤ t}

and, inductively for each i > 1,

Ti(z) = inf {t > Ti−1(z) : zp = sp, t− k < p ≤ t} .

Now, for all 1 ≤ ` ≤ n, let

S`(z)
def=
∑̀
i=1

zTi(z)+1 .

Then

n∑
t=1

at(s, z) =
m(s,z)∑

i=1

zTi(z)+1 = Sm(s,z)(z) .

To control Sm(s,z)(z), we use a technique due to Doeblin and Ascombe (see,

e.g., [6, Theorem 1, page 322]). The use of this technique relies on the following

key observation.

Claim 20. For any integer m ≥ 0, the random variables ZT1+1, . . . , ZTm+1

are independent Rademacher.
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Proof (of the claim). We use the following idea due to Merhav and

Weissman [21]. Consider the nested sequence {Ω, ?} = A0 ⊆ A1 ⊆ . . . of

σ-algebras, where each At is the σ-algebra generated by the r.v.’s Z1, . . . , Zt. To

see that ZT1+1, . . . , ZTm+1 are indeed Rademacher note that

P {ZTi+1 = 1} =
∞∑

t=0

P {ZTi+1 = 1 | Ti = t}P {Ti = t}

=
∞∑

t=0

P {Zt+1 = 1 | Ti = t}P {Ti = t}

=
1
2

∞∑
t=0

P {Ti = t}

(as {Ti = t} ∈ At and Zt+1 is independent of At)

=
1
2
.

Independence is proven by induction as follows: The random variable ZT1+1

is trivially independent. Now assume by induction that ZT1+1, . . . , ZTj+1 are

independent. By construction, ZT1+1, . . . , ZTj+1 are all ATj+1-measurable. Now

the fact that ZTj+1+1 is independent ofATj+1 (and therefore of ZT1+1, . . . , ZTj+1)

follows from observing that Tj+1 > Tj and from applying [6, Lemma 2, page 138]

to the finite stopping time Tj . This concludes the proof of the Claim.

Let kn = E[m(s, Z)]. Note that (7.21) in Lemma 18 and the assumption that

2k divides n imply that kn is integer. We have

P

{
|
∑n

t=1 at(s, Z)|√
E[m(s, Z)]

≥ 1
4

}
= P

{∣∣Sm(s,Z)(Z)
∣∣

√
kn

≥ 1
4

}

≥ P
{
|Skn

(Z)| ≥
√
kn

2
and |Sm(s,Z)(Z)− Skn

(Z)| ≤
√
kn

4

}
(7.23)

≥ P
{
|Skn

(Z)| ≥
√
kn

2

}
− P

{
|Sm(s,Z)(Z)− Skn

(Z)| ≥
√
kn

4

}
(7.24)
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where (7.23) holds since

|Sm(s,Z)(Z)| ≥ |Skn
(Z)| − |Sm(s,Z)(Z)− Skn

(Z)|

and (7.24) holds since P{A ∩ B} ≥ P{A} − P{Bc}. Note that Skn
(Z) =∑kn

i=1 ZTi(Z), where kn is constant and, by Claim 20, ZT1 , . . . , ZTkn
are inde-

pendent Rademacher random variables. Hence, if IA is the indicator function of

the event A,

P
{
|Skn(Z)| ≥

√
kn

2

}
≥ 2P

{
kn∑
i=1

I{ZTi
=1} ≥

kn∑
i=1

I{ZTi
=−1} +

√
kn

2

}

= 2P

{
kn∑
i=1

I{ZTi
=1} ≥

kn

2
+
√
kn

4

}

≥ 2
(

1− Φ(1/2)− 1√
kn

)
(7.25)

where the last inequality follows from the Berry-Esséen theorem (see Chow and

Teicher [6, Corollary 4, page 305] where we took cδ = 1) with Φ being the Normal

distribution function. As 1 − Φ(1/2) > 3/10, the quantity in (7.25) is at least

2/5 for kn ≥ 100, that is for n ≥ (100)2k. Now, for any α > 0,

P
{
|Sm(s,Z)(Z)− Skn

(Z)| ≥
√
kn

4

}
≤ P

{
|Sm(s,Z)(Z)− Skn

(Z)| ≥
√
kn

4
and |m(s, Z)− kn| ≤ αkn

}
(7.26)

+P {|m(s, Z)− kn| > αkn} .(7.27)

We start to bound (7.26) by establishing the following:(
|Sm(s,z)(z)− Skn

(z)| ≥
√
kn

4

)
∧ (|m(s, z)− kn| ≤ αkn)

implies (
max

kn≤j≤(1+α)kn

|Sj(z)− Skn(z)| ≥
√
kn

4

)
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∨
(

max
(1−α)kn≤j≤kn

|Sj(z)− Skn
(z)| ≥

√
kn

4

)
.

Hence we have

P
{
|Sm(s,Z)(Z)− Skn

(Z)| ≥
√
kn

4
∧ |m(s, Z)− kn| ≤ αkn}

≤ P
{

max
kn≤j≤(1+α)kn

|Sj(Z)− Skn
(Z)| ≥

√
kn

4

}
+P

{
max

(1−α)kn≤j≤kn

|Sj(Z)− Skn(Z)| ≥
√
kn

4

}
.

Note that, again by Claim 20, |Sj(Z) − Skn(Z)| is the absolute value of the

sum of at most bαknc independent Rademacher random variables. Hence, by

Kolmogorov’s inequality,

P
{

max
kn≤j≤(1+α)kn

|Sj(Z)− Skn
(Z)| ≥

√
kn

4

}
+P

{
max

(1−α)kn≤j≤kn

|Sj(Z)− Skn
(Z)| ≥

√
kn

4

}
≤ 16
kn

E
[(
Skn+bαknc(Z)− Skn

(Z)
)2]

+
16
kn

E
[(
Skn

(Z)− Skn−bαknc(Z)
)2]

≤ 16α+ 16α .

Now we bound (7.27). As m(s, z) can change by at most k by changing the value

of zt for at most one 1 ≤ t ≤ n, we can apply McDiarmid’s inequality [20] (see

also [9, p. 136]) and conclude, recalling that E[m(s, Z)] = 2k/n by (7.21) in

Lemma 18,

P {|m(s, Z)−E[m(s, Z)]| > αE[m(s, Z)]} ≤ 2 exp
(
− 2α2n

k222k

)
= δ .

Hence,

P

{
|
∑n

t=1 at(s, Z)|√
E[m(s, Z)]

≥ 1
4

}
≥ 2

5
− 32α− δ.
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By choosing α = 1/165 and n ≥ 78941k222k, we get δ ≤ 1/165 implying 32α+δ ≤

1/5.

Proof of Lemma 17. To prove the lemma, by (7.18) it suffices to show

that, for any s ∈ {−1, 1}k and for all n multiple of 2k and larger or equal than

78941k222k,

E

∣∣∣∣∣
n∑

t=1

at(s, Z)Yt

∣∣∣∣∣ ≤ (10
√

2
)
E

∣∣∣∣∣
n∑

t=1

at(s, Z)

∣∣∣∣∣ .
Lemma 19 and Markov’s inequality imply

1
5
≤ P

{∣∣∣∣∣
n∑

t=1

at(s, Z)

∣∣∣∣∣ ≥ 1
4

√
E[m(s, Z)]

}
≤

4E |
∑n

t=1 at(s, Z)|√
E[m(s, Z)]

.

Now, from (7.20) in Lemma 18,

E

∣∣∣∣∣
n∑

t=1

at(s, Z)Yt

∣∣∣∣∣ ≤
√

E[m(s, Z)]√
2

≤
(
10
√

2
)

E

∣∣∣∣∣
n∑

t=1

at(s, Z)

∣∣∣∣∣
as desired.

Lemma 21. If n ≥ 2k+5, there exists a subset of Markov experts of cardinality

22k/3 which, with probability at least 1/2, is an r =
√
n/8-packing of F with respect

to the random metric

dY n(F,G) =

√√√√ n∑
t=1

(Ft(Y t−1)−Gt(Y t−1))2 .

Proof. The key tool is Gilbert’s [13] packing bound which states that if

A(`, r) is the largest number of sequences of length ` in {0, 1}` such that the

Hamming distance (i.e., the number of disagreements) between any two of them

is at least 2r + 1, then

A(`, r) ≥ 2`∑2r
i=1

(
`
i

) .
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In particular,

A(`, `/8) ≥ 2`∑`/4
i=1

(
`
i

) ≥ 2`−` h(1/4) ≥ 2`/3,(7.28)

where h is the binary entropy function.

We need to prove the existence of a set

Gr = {F (1), . . . , F (M)} ⊂ F

such that

P

min
i,j≤M

i 6=j

dY n(F (i), F (j)) > r

 ≥ 1
2

where M = 22k/3 and r =
√
n/8. We choose the packing set Gr as follows. Let

M′
k contain all F ∈ Mk such that Ft(yt−1) ∈ {0, 1} for all 1 ≤ t ≤ n and

for all yt−1. By the Gilbert lower bound (7.28), there exists a set Gr ⊆ M′
k of

cardinality M = 22k/3 so that any two distinct F (i), F (j) ∈ Gr are indexed by

vectors f (i), f (j) ∈ {0, 1}2k

that disagree on at least 2k/4 components. Then,

E
[(
dY n(F (i), F (j))

)2
]

=
n

2k

2k−1∑
s=0

(
f (i)

s − f (j)
s

)2

≥ n

2k

2k

4
=
n

4
,

and therefore

P

min
i,j≤M

i 6=j

dY n(F (i), F (j)) ≤ r


≤
(
22k/3

)2

max
i,j≤M

P

{
n∑

t=1

(
F

(i)
t (Y t−1

−k+1)− F
(j)
t (Y t−1

−k+1)
)2

≤ r2

}

≤ 22k

max
i,j≤M

P

{
n∑

t=1

(
F

(i)
t (Y t−1

−k+1)− F
(j)
t (Y t−1

−k+1)
)2
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− E
[(
dY n(F (i), F (j))

)2
]
≤ r2 − n

4

}
(by the above inequality for the expected value)

= 22k

max
i,j≤M

P

{
n∑

t=1

(
F

(i)
t (Y t−1

−k+1)− F
(j)
t (Y t−k

−k+1)
)2

− E
[(
dY n(F (i), F (j))

)2
]
≤ −n

8

}
(choosing r2 = n/8)

≤ 22k

e−n/32

where at the last step we used the Hoeffding-Azuma inequality for sums of

bounded martingale differences [1, 17], (see also [9, Theorem 9.1]). This upper

bound is less than 1/2 whenever n ≥ 2k+5, which is guaranteed by assumption.

The proof is now complete.

8. Conclusion and remarks In this work we demonstrate that ideas and

results from empirical process theory can be successfully applied to the problem

of predicting arbitrary binary sequences given a fixed set of experts. For general

expert classes, we prove upper and lower bounds on the minimax regret in terms

of the metric entropy of the expert class. In the special case of static experts, the

prediction problem turns out to be precisely equivalent to a Rademacher pro-

cess; hence we can prove tighter upper and lower bounds on the corresponding

minimax regret. Furthemore, applications of our results to the classes of autore-

gressive linear predictors, Markov experts, and (static) monotone experts yield

bounds that were not apparently obtainable with any of the previous techniques.

As we noted before, the loss function considered here may be interpreted as

the expected loss |Ŷt − yt| of a randomized prediction strategy whose prediction
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at time t is the binary random variable Ŷt, where Ŷ1, . . . , Ŷn are independent,

and P{Ŷt = 1} = 1 − P{Ŷt = 0} = Pt. Then an obvious question is how the

actual (random) loss
∑n

t=1 |Ŷt − yt| relates to its expected value LP (yn). Luck-

ily, this difference may be easily bounded by general concentration-of-measure

inequalities. Since all prediction algorithms considered in this paper calculate Pt

by looking at the expected losses of the experts up to time t − 1, it is easy to

see that changing the value of one Ŷt cannot change the cumulative loss by more

than one. Therefore, for example, McDiarmid’s inequality [20] (see also [9, p.

136]) implies that for any u > 0,

P

{∣∣∣∣∣
n∑

t=1

|Ŷt − yt| − LP (yn)

∣∣∣∣∣ > u

}
≤ 2e−2u2/n.

In other words, the random loss
∑n

t=1 |Ŷt − yt| with very large probability is at

most O(
√
n)-away from LP (yn), regardless of the expert class.

The loss function considered here is by no means the only interesting one. The

most popular loss function considered in the literature is the so-called “log loss”

− log
(
Pt(yt−1)I{yt=1} + (1− Pt(yt−1))I{yt=0}

)
,

which has several interesting interpretations in coding theory, gambling, and

stock-market prediction. Instead of surveying the literature, we refer to the ex-

cellent recent review paper of Merhav and Feder [10]. For the log loss with static

experts, and under some additional conditions, Opper and Haussler [22] bounded

the minimax regret with an expression whose form is similar to Theorem 7. This

result was recently extended to more general (nonstatic) experts in [4].
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