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Hilbert’s Inequality
and Compensating Difficulties

Some of the most satisfying experiences in problem solving take place
when one starts out on a natural path and then bumps into an unex-
pected difficulty. On occasion this deeper view of the problem forces us
to look for an entirely new approach. Perhaps more often, we only need
to find a way to press harder on an appropriate variation of the original
plan.

This chapter’s introductory problem provides an instructive case; here
we will discover two difficulties. Nevertheless, we manage to achieve our
goal by pitting one difficulty against the other.

Problem 10.1 Show that there is a constant C such that for every pair
of sequences of real numbers {an} and {bn} one has

∞∑
m=1

∞∑
n=1

ambn

m + n
< C

( ∞∑
m=1

a2
m

) 1
2
( ∞∑

n=1

b2
n

) 1
2

. (10.1)

Some Historical Background

This famous inequality was discovered in the early 1900’s by David
Hilbert; specifically, Hilbert proved that the inequality (10.1) holds with
C = 2π. Several years after Hilbert’s discovery, Isaai Schur provided a
new proof which showed Hilbert’s inequality actually holds with C = π.
We will see shortly that no smaller value of C will suffice.

Despite the similarities between Hilbert’s inequality and Cauchy’s in-
equality, Hilbert’s original proof did not call on Cauchy’s inequality; he
took an entirely different approach that exploited the evaluation of some
cleverly chosen trigonometric integrals. Nevertheless, one can prove
Hilbert’s inequality through an appropriate application of Cauchy’s in-
equality. The proof turns out to be both simple and instructive.
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154 Hilbert’s Inequality and Compensating Difficulties

If S is any countable set and {αs} and {βs} are collections of real
numbers indexed by S, then Cauchy’s inequality can be written as

∑
s∈S

αsβs ≤
(∑

s∈S

α2
s

) 1
2
(∑

s∈S

β2
s

) 1
2

. (10.2)

Strangely enough, this modest reformulation of Cauchy’s inequality some-
times illuminates our possibilities just a bit more clearly. Here, of course,
one hopes that a cleaver choice of S, {αs}, and {βs} will lead us from
the bound (10.2) to the Hilbert inequality (10.1) which we would like to
prove.

An Obvious First Attempt

If we charge ahead without too much thought, we might simply take
the index set to be S = {(m,n) : m ≥ 1, n ≥ 1} and take αs and βs to
be defined by the splitting

αs =
am√
m + n

and βs =
bn√

m + n
where s = (m,n).

By design, the products αsβs recapture the terms one finds on the
left-hand side of Hilbert’s inequality, but the bound one obtains from
Cauchy’s inequality (10.2) turns out to be disappointing. Specifically, it
gives us the double sum estimate( ∞∑

m=1

∞∑
n=1

ambn

m + n

)2

≤
∞∑

m=1

∞∑
n=1

a2
m

m + n

∞∑
n=1

∞∑
m=1

b2
n

m + n
, (10.3)

but, unfortunately, both of the last two factors turn out to be infinite.
The first factor on the right-hand side of the bound (10.3) diverges

like a harmonic series when we sum on n, and the second factor diverges
like a harmonic series when we sum on m. Thus, in itself, inequality
(10.3) is virtually worthless. Nevertheless, if we look more deeply, we
soon find that the complementary nature of these failings points the way
to a wiser choice of {αs} and {βs}.
Exploiting Compensating Difficulties

The two sums on the right-hand side of the naive bound (10.3) diverge,
but the good news is that they diverge for different reasons. In a sense,
the first factor diverges because

αs =
am√
m + n
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is too big as a function of n, whereas the second factor diverges because

βs =
bn√

m + n

is too big as a function of m. All told, this suggests that we might
improve on αs and βs if we multiply αs by a decreasing function of n

and multiply βs by a decreasing function of m. Since we want to preserve
the basic property that

αsβs =
ambn

m + n
,

we may not need long to hit on idea of introducing a parametric family
of candidates such as

αs =
am√
m + n

(
m

n

)λ

and βs =
bn√

m + n

(
n

m

)λ

, (10.4)

where s = (m,n) and where λ > 0 is a constant that can be chosen
later. This new family of candidates turns out to lead us quickly to the
proof of Hilbert’s inequality.

Execution of the Plan

When we apply Cauchy’s inequality (10.2) to the pair (10.4), we find( ∞∑
m=1

∞∑
n=1

ambn

m + n

)2

≤
∞∑

m=1

∞∑
n=1

a2
m

m + n

(
m

n

)2λ ∞∑
n=1

∞∑
m=1

b2
n

m + n

(
n

m

)2λ

,

so, when we consider the first factor on the right-hand side we see
∞∑

m=1

∞∑
n=1

a2
m

m + n

(
m

n

)2λ

=
∞∑

m=1

a2
m

∞∑
n=1

1
m + n

(
m

n

)2λ

.

By the symmetry of the summands ambn/(m+n) in our target sum, we
now see that the proof of Hilbert’s inequality will be complete if we can
show that for some choice of λ there is a constant Bλ < ∞ such that

∞∑
n=1

1
m + n

(
m

n

)2λ

≤ Bλ for all m ≥ 1. (10.5)

Now we just need to estimate the sum (10.5), and we first recall that
for any nonnegative decreasing function f : [0,∞) → R, we have the
integral bound

∞∑
n=1

f(n) ≤
∫ ∞

0

f(x) dx.
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In the specific case of f(x) = m2λx2λ(m + x)−1, we therefore find
∞∑

n=1

1
m + n

(
m

n

)2λ

≤
∫ ∞

0

1
m + x

m2λ

x2λ
dx =

∫ ∞

0

1
(1 + y)

1
y2λ

dy, (10.6)

where the last equality comes from the change of variables x = my. The
integral on the right-hand side of inequality (10.6) is clearly convergent
when λ satisfies 0 < λ < 1/2, and, by our earlier observation (10.5), the
existence of any such λ would suffice to complete the proof of Hilbert’s
inequality (10.1).

Seizing an Opportunity

Our problem has been solved as stated, but we would be derelict in
our duties if we did not take a moment to find value of the constant
C that is provided by our proof. When we look over our argument, we
actually find that we have proved that Hilbert’s inequality (10.1) must
hold for any C = Cλ with

Cλ =
∫ ∞

0

1
(1 + y)

1
y2λ

dy for 0 < λ < 1/2. (10.7)

Naturally, we should find the value of λ that provides the smallest of
these.

By a quick and lazy consultation of Mathematica or Maple, we discover
that we are in luck; the integral for Cλ turns out to both simple and
explicit: ∫ ∞

0

1
(1 + y)

1
y2λ

dy =
π

sin 2πλ
for 0 < λ < 1/2. (10.8)

Now, since sin 2πλ is maximized when λ = 1/4, we see that the smallest
value attained by any of the Cλ is equal to

C = C1/4 =
∫ ∞

0

1
(1 + y)

1√
y

dy = π. (10.9)

Quite remarkably, our direct assault on Hilbert’s inequality has almost
effortlessly provided the sharp constant C = π that was discovered by
Schur.

This is a fine achievement for Cauchy’s inequality, but it should not
be oversold. Many proofs of Hilbert’s inequality are now available, and
some of these are quite brief. Nevertheless, for the connoisseur of tech-
niques for exploiting Cauchy’s inequality, this proof of Hilbert’s inequal-
ity is a sweet victory.

Finally, there is a small point that we should note in passing. The
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integral (10.8) is actually a textbook classic; both Bak and Newman
(1997) and Cartan (1995) use it to illustrate the standard technique for
integrating R(x)/xα over [0,∞) where R(x) is a rational function and
0 < α < 1. This integral also has a connection to a noteworthy gamma
function identity that is described in Exercise 10.7.

Of Miracles and Converses

For a Cauchy-Schwarz argument to be precise enough to show that
one can take C = π in Hilbert’s inequality may seem to require a miracle,
but there is another way of looking at the relation between the two sides
of Hilbert’s inequality that makes it clear that no miracle was required.
With the right point of view, one can see that both π and the special
integrals (10.8) have an inevitable role. To develop this connection, we
will take on the challenge of proving a converse to our first problem.

Problem 10.2 Suppose that the constant C satisfies

∞∑
m=1

∞∑
n=1

ambn

m + n
< C

( ∞∑
m=1

a2
m

) 1
2
( ∞∑

n=1

b2
n

) 1
2

(10.10)

for all pairs of sequences of real numbers {an} and {bn}. Show that
C ≥ π.

If we plug any pair of sequences {an} and {bn} into the inequality
(10.10), we will get some lower bound on c, but we will not get too
far with this process unless we find some systematic way to guide our
choices. What we would really like is a parametric family of pairs {an(ε)}
and {bn(ε)} that provide us with a sequence of lower bounds on C that
approach π as ε → 0. This surely sounds good, but how do we find
appropriate candidates for {an(ε)} and {bn(ε)}?
Stress Testing an Inequality

Two basic ideas can help us narrow our search. First, we need to be
able to calculate (or estimate) the sums that appear in the inequality
(10.10). We cannot do many sums, so this definitely limits our search.
The second idea is more subtle; we need to put the inequality under
stress. This general notion has many possible interpretations, but here it
at least suggests that we should look for sequences {an(ε)} and {bn(ε)}
such that all the quantities in the inequality (10.10) tend to infinity
as ε → 0. This particular strategy for stressing the inequality (10.10)
may not seem too compelling when one faces it for the first time, but
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experience with even a few examples is enough to convince most people
that the principle contains more than a drop of wisdom.

Without a doubt, the most natural candidates for {an(ε)} and {bn(ε)}
are given by the identical twins

an(ε) = bn(ε) = n− 1
2−ε.

For this choice, one may easily work out the estimates that are needed
to understand the right-hand side of Hilbert’s inequality. Specifically,
we see that as ε → 0 we have( ∞∑

m=1

a2
m(ε)

) 1
2
( ∞∑

n=1

b2
n(ε)

) 1
2

=
∞∑

n=1

1
n1+2ε

∼
∫ ∞

1

dx

x1+2ε
=

1
2ε

. (10.11)

Closing the Loop

To complete the solution of Problem 10.2, we only need to show
that the corresponding sum for the left-hand side of Hilbert’s inequality
(10.10) is asymptotic to π/2ε as ε → 0. This is indeed the case, and the
computation is instructive. We layout the result as a lemma.

Lemma.
∞∑

m=1

∞∑
n=1

1
n

1
2+ε

1
m

1
2+ε

1
m + n

∼ π

2ε
as ε → 0.

For the proof, we first note that integral comparisons tell us that it
suffices to show

I(ε) =
∫ ∞

1

∫ ∞

1

1
x

1
2+ε

1
y

1
2+ε

1
x + y

dxdy ∼ π

2ε
as ε → 0,

and the change of variables u = y/x also tells us that

I(ε) =
∫ ∞

1

x−1−2ε

[ ∫ ∞

1/x

u− 1
2−ε du

1 + u

]
dx. (10.12)

This integral would be easy to calculate if we could replace the lower
limit 1/x of the inside integral by 0, and, to estimate how much damage
such a change would cause, we first note that

0 <

∫ 1/x

0

u− 1
2−ε du

1 + u
<

∫ 1/x

0

u− 1
2−ε du =

x− 1
2+ε

1
2 − ε

.

When we use this bound in equation (10.12) and write the result using
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big O notation of Landau (say, as defined on page 120), then we find

I(ε) =
∫ ∞

1

x−1−2ε

{∫ ∞

0

u− 1
2−ε du

1 + u

}
dx + O

(∫ ∞

1

x− 3
2−ε dx

)

=
1
2ε

∫ ∞

0

u− 1
2−ε du

1 + u
+ O(1).

Finally, for ε → 0, we we see from our earlier experience with the integral
(10.9) that we have∫ ∞

0

u− 1
2−ε du

1 + u
→
∫ ∞

0

u− 1
2

du

1 + u
= π,

so the proof of the lemma is complete.

Finding the Circle in Hilbert’s Inequality

Any time π appears in a problem that has no circle in sight, there
is a certain sense of mystery. Sometimes this mystery remains without
a satisfying resolution, but, in the case of Hilbert’s inequality, a lovely
geometric explanation for the appearance of π was found in 1993 by
Krysztof Oleszkiewicz. This discovery is a bit off of our central theme,
but it does build on the calculations we have just completed, and it is
too lovely to miss. The proof of the following lemma shows us how to
find the circle that puts the π in Hilbert’s inequality.

Quarter Circle Lemma.

For all m ≥ 1, we have

∞∑
n=1

1
m + n

(
m

n

) 1
2

< π. (10.13)

For the proof, we first note that the shaded triangle of Figure 10 is sim-
ilar to the triangle T determined by (0, 0), (

√
m,

√
n − 1) and (

√
m,

√
n),

and the area of T is simply 1
2

√
m(

√
n −√

n − 1). Thus, one finds by
scaling that the area An of the shaded triangle is given by

An =
( √

m√
n + m

)2 1
2
√

m(
√

n −√
n − 1). (10.14)

Since 1/
√

x is decreasing on [0,∞), we have

√
n −√

n − 1 =
1
2

∫ n

n−1

dx√
x

>
1

2
√

n
,
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(
√

m,
√

n )

(
√

m,
√

n − 1 )

(0, 0) (
√

m, 0)

The shaded triangles
Tn, n = 1, 2, ...
explain the π

in Hilbert’s inequality.

Fig. 10.1. The shaded triangle is similar to the triangle determined by the
three points (0, 0), (

√
m,

√
n − 1) and (

√
m,

√
n) so we can determine its area

by geometry. Also, the triangles Tn have disjoint interiors so the sum of their
areas cannot exceed π/4. These facts give us the proof of the Quarter Circle
Lemma.

so, in the end, we find

An >
1
4

m

m + n

√
m√
n

. (10.15)

Finally, what makes this geometric bound most interesting is that all
of the shaded triangles are contained in the quarter circle. They have
disjoint interiors, so we find that the sum of their areas is bounded by
πm/4, the area of the quarter circle with radius

√
m that contains them.

Exercises

Early Reader Note: The usual pep talk will be added here.

Exercise 10.1 (Guaranteed Positivity)
Show that for any real numbers a1, a2, ..., an one has

n∑
j,k=1

ajak

j + k
≥ 0,
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and, more generally, for positive λ1, λ2, ..., λn one has

n∑
j,k=1

ajak

λj + λk
≥ 0.

Obviously the second inequality implies the first, but it is perhaps more
instructive to consider the results individually. As a hint for both parts,
it may help to consider the possibility of representing the summands as
integrals.

Exercise 10.2 (Max Version of Hilbert’s Inequality)
Show that for every pair of sequences of real numbers {an} and {bn}

one has

∞∑
m=1

∞∑
n=1

ambn

max (m,n)
< 4

( ∞∑
m=1

a2
m

) 1
2
( ∞∑

n=1

b2
n

) 1
2

, (10.16)

and show that 4 may not be replaced by a smaller constant.

Exercise 10.3 (Integral Version)
Prove the integral form of Hilbert’s inequality. That is, show that for

any f, g : [0,∞) → R, one has

∫ ∞

0

∫ ∞

0

f(x)g(y)
x + y

dxdy < π

(∫ ∞

0

|f(x)|2 dx

) 1
2
(∫ ∞

0

|g(y)|2 dy

) 1
2

.

Here we should note that the discrete Hilbert inequality (10.1) can
be used to prove a continuous version, but the strict inequality will be
lost the limiting process. The preferred approach is simply to mimic the
argument that we used in the discrete case, rather than to apply the
discrete inequality and take a appropriate limit. The problem with the
later approach is that the strict inequality in the discrete case can be
lost when one takes limits.

Exercise 10.4 (Homogeneous Kernel Version)
If the function K : [0,∞) × [0,∞) → [0,∞) has the homogeneity

property K(λx, λy) = λ−1K(x, y) for all λ > 0, then for any pair of
functions f, g : [0,∞) → R, one has

∫ ∞

0

∫ ∞

0

K(x, y)f(x)g(y) dxdy < C

(∫ ∞

0

|f(x)|2 dx

) 1
2
(∫ ∞

0

|g(y)|2 dy

) 1
2

,
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where the constant C is given by common value of the integrals∫ ∞

0

K(1, y)
1√
y

dy =
∫ ∞

0

K(y, 1)
1√
y

dy =
∫ ∞

1

K(1, y) + K(y, 1)√
y

dy.

Exercise 10.5 (The Method of “Parametrized Parameters”)
For any positive weights wk, k = 1, 2, ..., n, Cauchy’s inequality can

be restated as a bound on the square of a general sum,

(a1 + a2 + · · · + an)2 ≤
{ n∑

k=1

1
wk

}{ n∑
k=1

a2
kwk

}
, (10.17)

and given such a bound it is sometimes useful to note the values wk, k =
1, 2, ..., n, can be regarded as free parameters. The natural question then
becomes, “What can be done with this freedom?” Oddly enough, one
may then benefit from introducing yet another real parameter t so that
we can write each weight wk as wk(t). This purely psychological step
hopes to simplify our search for a wise choice of the wk by refocusing our
attention on desirable properties of the functions wk(t), k = 1, 2, ..., n,

Here we want to squeeze information out of the bound (10.17), and
one concrete idea is to look for choices where (1) the first factor of
the product (10.17) is bounded uniformly in t and where (2) one can
calculate the minimum value over all t of the second factor. These may
seem like tall orders, but they can be filled and the next three steps show
how this plan leads to some marvellous inferences.

(a) Show that if one takes wk(t) = t + k2/t for k = 1, 2, ..., n then the
first factor of the inequality (10.17) is bounded by π/2 for all t ≥ 0 and
all n = 1, 2, ....

(b) Show that for this choice we also have the identity

min
t:t≥0

{ n∑
k=1

a2
kwk(t)

}
= 2

{ n∑
k=1

a2
k

} 1
2
{ n∑

k=1

k2a2
k

} 1
2

.

(c) Combine the preceding observations to conclude that{ n∑
k=1

ak

}4

≤ π2

{ n∑
k=1

a2
k

}{ n∑
k=1

k2a2
k

}
. (10.18)

This curious bound is known as Carlson’s inequality, and it has been
known since 1934. Despite the arbitrariness implicit in path leading to
the bound (10.18), the value π2 cannot be replaced by a smaller one,
though this time simple stress testing (page 157) does not work as easily
as before.
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Early Reader Note: Check the statement concerning ‘‘best possible."

Exercise 10.6 (Hilbert’s Inequality via the Toeplitz Method)
Show that the elementary integral

1
2π

∫ 2π

0

(t − π)eintdt =
1
i n

for n �= 0 implies that for real ak, bk, 1 ≤ k ≤ N one has the integral
representation

I =
1
2π

∫ 2π

0

(t − π)
N∑

k=1

ak eikt
N∑

k=1

bk eiktdt =
N∑

m=1

N∑
n=1

am bn

m + n
,

then show that this representation and Schwarz’s inequality yield a quick
and easy proof of Hilbert’s inequality.

Exercise 10.7 (Functional Equation for the Gamma Function)
Recall that the gamma function is defined by the integral

Γ(λ) =
∫ ∞

0

xλ−1e−x dx,

and use a change of variables to show that∫ ∞

0

1
(1 + y)

1
y2λ

dy = Γ(2λ)Γ(1 − 2λ) for 0 < λ < 1/2. (10.19)

As a consequence, on finds that the evaluation of the integral (10.8)
yields the establishes the famous functional equation for the Gamma
function,

Γ(2λ)Γ(1 − 2λ) =
π

sin 2πλ
.
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