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Consequences of Order

One of the natural questions that accompanies any inequality is the
possibility that it admits a converse of one sort or another. When we
pose this question for Cauchy’s inequality, we find a challenge problem
that is definitely worth our attention. It not only leads to results that
are useful in their own right, but it also puts us on the path of one of the
most fundamental notions in the theory of inequalities — the systematic
exploitation of order relationships.

Problem 5.1 (The Hunt for a Cauchy Converse)
Determine the circumstance which suffice for nonnegative real num-

bers ak, bk, k = 1, 2, ..., n to satisfy an inequality of the type( n∑
k=1

a2
k

) 1
2
( n∑

k=1

b2
k

) 1
2

≤ ρ

n∑
k=1

akbk (5.1)

for a given constant ρ.

Orientation

Part of the challenge here is that the problem is not fully framed —
there are circumstances and conditions that remain to be determined.
Nevertheless, uncertainty is an inevitable part of research, and practice
with modestly ambiguous problems can be particularly valuable.

In such situations, one almost always begins with some experimenta-
tion, and, since the case n = 1 is trivial, the simplest case worth study
is given by taking the vectors (1, a) and (1, b) with a > 0 and b > 0. In
this case, the two sides of the conjectured Cauchy converse (5.1) relate
the quantities

(1 + a2)
1
2 (1 + b2)

1
2 and 1 + ab,
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and this calculation already suggests a useful inference. If a and b are
chosen so that the product ab is held constant while a → ∞, then
one finds that the right-hand expression is bounded, but the left-hand
expression is unbounded. This observation shows in essence that for a
given fixed value of ρ ≥ 1 the conjecture (5.1) cannot hold unless the
ratios ak/bk are required to be bounded from above and below.

Thus, we come to a more refined point of view, and we see that it is
natural to conjecture that a bound of the type (5.1) will hold provided
that the summands satisfy the ratio constraint

m ≤ ak

bk
≤ M for all k = 1, 2, ...n, (5.2)

for some constants 0 < m ≤ M < ∞. In this new interpretation of the
conjecture (5.1), one naturally permits ρ to depend on the values of m

and M , though we would hope to show that ρ can be chosen so that
it does not have any further dependence on the individual summands
ak and bk. Now, the puzzle is to find a way to exploit the betweenness
bounds (5.2).

Exploitation of Betweeness

When we look at our unknown (the conjectured inequality) and then
look at the given (the betweenness bounds), we may have the lucky
idea of hunting for clues in our earlier proofs of Cauchy’s inequality. In
particular, if we recall the proof that took (a − b)2 ≥ 0 as its depar-
ture point, we might start to suspect that an analogous idea could help
here. Is there some way to obtain a useful quadratic bound from the
betweenness relation (5.2)?

Once the question is put so bluntly, one does not need long to notice
that the two-sided bound (5.2) gives us a cheap quadratic bound(

M − ak

bk

)(
ak

bk
− m

)
≥ 0. (5.3)

Although one cannot tell immediately if this observation will help, the
analogy with the earlier success of the trivial bound (a−b)2 ≥ 0 provides
ground for optimism.

At a minimum, we should have the confidence needed to unwrap the
bound (5.3) to find the equivalent inequality

a2
k + (mM) b2

k ≤ (m + M) akbk for all k = 1, 2, ..., n. (5.4)

Now we seem to be in luck; we have found a bound on a sum of squares
by a product, and this is precisely what a converse to Cauchy’s inequality
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requires. The eventual role to be played by M and m is still unclear,
but, the scent of progress is in the air.

The bounds (5.4) call out to be summed over 1 ≤ k ≤ n, and, upon
summing, the factors mM and m + M come out neatly to give us

n∑
k=1

a2
k + (mM)

n∑
k=1

b2
k ≤ (m + M)

n∑
k=1

akbk, (5.5)

which is a fine additive bound. Thus, we face a problem of a kind we
have met before — we need to convert an additive bound to one that is
multiplicative.

Passage to a Product

If we cling to our earlier pattern, we might now be tempted to intro-
duce normalized variables âk and b̂k, but this time normalization runs
into trouble. The problem is that the inequality (5.5) may be applied
to âk and b̂k only if they satisfy the ratio bound m ≤ âk/b̂k ≤ M, and
these constraints rule out the natural candidates for the normalizations
âk and b̂k. We need a new idea for passing to a product.

Conceivably, one might get stuck here, but help is close at hand pro-
vided that we pause to ask clearly what is needed — which is just a
lower bound for a sum of two expressions by a product of their square
roots. Once this is said, one can hardly fail to think of using the AM-
GM inequality, and, when it is applied to the additive bound (5.5), one
finds ( n∑

k=1

a2
k

) 1
2
(

mM

n∑
k=1

b2
k

) 1
2

≤ 1
2

{ n∑
k=1

a2
k + (mM)

n∑
k=1

b2
k

}

≤ 1
2

{
(m + M)

n∑
k=1

akbk

}
.

Now, with just a little rearranging, we come to the inequality that com-
pletes our quest. Thus, if we set

A = (m + M)/2 and G =
√

mM,

then, for all nonnegative ak, bk, k = 1, 2, ..., n with

0 < m ≤ ak/bk ≤ M < ∞,

we find the we have established the bound( n∑
k=1

a2
k

) 1
2
( n∑

k=1

b2
k

) 1
2

≤ A

G

n∑
k=1

akbk; (5.6)
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thus, in the end, one sees that there is indeed a natural converse to
Cauchy’s inequality.

On the Conversion of Information

When one looks back on the proof of the converse Cauchy inequality
(5.6), one may be struck by how quickly progress followed once the two
order relationships, m ≤ ak/bk and ak/bk ≤ M , were put together to
build the simple quadratic inequality (M − ak/bk)(ak/bk − m) ≥ 0. In
the context of a single example, this could just be a lucky accident, but
something deeper is afoot.

In fact, the device of order-to-quadratic conversion is remarkably ver-
satile tool with a wide range of applications. The next few challenge
problems illustrate some of these that are of independent interest.

Monotonicity and Chebyshev’s “Order Inequality”

One way to put a large collection of order relationships at your finger
tips is to focus your attention on monotone sequences and monotone
functions. This suggestion is so natural that it might not stir hight
hopes, but in fact it does lead to an important result with many natural
applications, especially in probability and statistics.

The result is due to Pafnuty Lvovich Chebyshev (1821–1894), who,
incidentally, had his first exposure to probability theory from our earlier
acquaintance Victor Vacovlevich Bunyakovsky. Probability theory was
one of those hot new mathematical topics which Bunyakovsky brought
back to St. Petersburg when he returned from his student days studying
with Cauchy in Paris. Another topic was the theory of complex variables
which we will engage a bit later.

Problem 5.2 (Chebyshev’s Order Inequality)
Suppose that f : R → R and g : R → R are nondecreasing and

suppose pj ≥ 0, j = 1, 2, ..., n, satisfy p1 + p2 + · · · + pn = 1. Show
that for any nondecreasing sequence x1 ≤ x2 ≤ · · · ≤ xn one has the
inequality { n∑

k=1

f(xk)pk

}{ n∑
k=1

g(xk)pk

}
≤

n∑
k=1

f(xk)g(xk)pk. (5.7)

Connections to Probability and Statistics

The inequality (5.7) is easily understood without relying on it connec-
tion to probability theory, and it has many applications in other areas of
mathematics. Nevertheless, the probabilistic interpretation of the bound
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(5.7) is particularly compelling. In the language of probability, it says
that if X is a random variable for which one has P (X = xk) = pk for
k = 1, 2, ..., n then

E[f(X)]E[g(X)] ≤ E[f(X)g(X)], (5.8)

where, as usual, P stands for probability and E stands for the mathe-
matical expectation. In other words, if random variables Y and Z may
be written as nondecreasing functions of a single random variable X,
then Y and Z must be nonnegativity correlated. Without Chebyshev’s
inequality, the intuition that is commonly attached to the statistical
notion of correlation would stand on shaky ground.

Incidentally, there is another inequality due to Chebyshev that is even
more important in probability theory; it tells us that for any random
variable X with a finite mean µ = E(X) one has the bound

P (|X − µ| ≥ λ) ≤ 1
λ2

E
(|X − µ|2). (5.9)

The proof of this bound is almost trivial, especially with the hint offered
in Exercise 5.9, but it is such a day-to-day workhorse in probability
theory that Chebyshev’s order (5.8) inequality is often jokingly called
Chebyshev’s other inequality.

A Proof from Our Pocket

Chebyshev’s inequality (5.7) is quadratic, and the hypotheses provide
order information, so, even if one were to meet Chebyshev’s inequality
(5.7) in a dark alley, the order-to-quadratic conversion is likely to come
to mind. Here the monotonicity of f and g give us the quadratic bound,

0 ≤ {f(xk) − f(xj)
}{

g(xk) − g(xj)
}
,

and this may be expanded in turn to give

f(xk)g(xj) + f(xj)g(xk) ≤ f(xj)g(xj) + f(xk)g(xk). (5.10)

From this point, we only need to bring the pj ’s into the picture and
meekly agree to take whatever arithmetic gives us.

Thus, when we multiply the bound (5.10) by pjpk and sum over 1 ≤
j ≤ n and 1 ≤ k ≤ n, we find that the left-hand sum gives us

n∑
j,k=1

{
f(xk)g(xj) + f(xj)g(xk)

}
pjpk = 2

{ n∑
k=1

f(xk)pk

}{ n∑
k=1

g(xk)pk

}
,
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while the right-hand sum gives us
n∑

j,k=1

{
f(xj)g(xj) + f(xk)g(xk)

}
pjpk = 2

{ n∑
k=1

f(xk)g(xk)pk

}
.

Thus, the bound between the summands (5.10) does indeed yield the
proof of Chebyshev’s inequality.

Order, Facility, and Subtlety

The proof of Chebyshev’s inequality leads us to a couple of observa-
tions. First, there are occasions when the application of the order-to-
quadratic conversion is an automatic, straightforward affair. Even so,
the conversion has led to some remarkable results, including the versa-
tile rearrangement inequality which is developed in our next challenge
problem. The rearrangement inequality is not much harder to prove
than Chebyshev’s inequality, but some of its consequences are simply
stunning. Here, and subsequently, we let [n] denote the set {1, 2, ..., n},
and we recall that a permutation of [n] is just a one-to-one mapping
from [n] into [n].

Problem 5.3 (The Rearrangement Inequality)
Show that for each pair of ordered real sequences

−∞ < a1 ≤ a2 ≤ · · · ≤ an < ∞ and −∞ < b1 ≤ b2 ≤ · · · ≤ bn < ∞
and for each permutation σ : [n] → [n], one has

n∑
k=1

akbn−k+1 ≤
n∑

k=1

akbσ(k) ≤
n∑

k=1

akbk. (5.11)

Automatic — But Still Effective

This problem offers us a hypothesis that provides order relations and
asks us for a conclusion that is quadratic. This familiar combination
may tempt one to just to dive in, but sometimes it pays to be patient.
After all, the statement of the rearrangement inequality is a bit involved,
and one probably does well to first consider the simplest case n = 2.

In this case, the order-to-quadratic conversion reminds us that

a1 ≤ a2 and b1 ≤ b2 imply 0 ≤ (a2 − a1)(b2 − b1),

and, when this is unwrapped, we find

a1b2 + a2b1 ≤ a1b1 + a2b2,
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which is precisely the rearrangement inequality (5.11) for n = 2. Nothing
could be easier than this warm-up case; the issue now is to see if a similar
idea can be used to deal with the more general sums

S(σ) =
n∑

k=1

akbσ(k).

Inversions and Their Removal

If σ is not the identity permutation, then there must exist some pair
j < k such that σ(k) < σ(j). Such a pair is called an inversion, and
the observation that one draws from the case n = 2 is that if we switch
the values of σ(k) and σ(j), then the value of the associated sum will
increase — or, at least not decrease. To make this idea formal, we first
introduce a new permutation τ by the recipe

τ(i) =




σ(i) if i �= j and i �= k

σ(j) if i = k,

σ(k) if i = j.

(5.12)

By the definition of τ and by factorization, we then find

S(τ) − S(σ) = ajbτ(j) + akbτ(k) − ajbσ(j) − akbσ(k)

= ajbτ(j) + akbτ(k) − ajbτ(k) − akbτ(j)

= (ak − aj)(bτ(k) − bτ(j)) ≥ 0.

Thus, the transformation σ �→ τ achieves two goals; first, it increases S,
so, S(σ) ≤ S(τ), and, second, the number of inversions of τ is forced to
be strictly few than the number of inversions of the permutation σ.

Repeating the Process — Closing the Loop

A permutation has at most n(n − 1)/2 inversions and only the iden-
tity permutation has no inversions, so there exists a finite sequence of
inversion removing transformations that move in sequence from σ to the
identity. If we denote these by σ = σ0, σ1, ..., σm where σm is the iden-
tity and m ≤ n(n− 1)/2, then, by applying the bound S(σj−1) ≤ S(σj)
for j = 1, 2, ...,m, we find

S(σ) ≤
n∑

k=1

akbk.

This completes the proof of the upper half of the rearrangement inequal-
ity (5.11).
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bτ(1)

bσ(1)

a1

bτ(2)

bσ(2)

a2

bτ(j)

bσ(j)

aj

bτ(k)

bσ(k)

ak

bτ(n−1)

bσ(n−1)

an−1ak

bτ(n)

bσ(n)

an

· · · · · · · · ·

· · · · · · · · ·
Fig. 5.1. An interchange operation converts the permutation σ to a permu-
tation τ . By design, the new permutation τ has fewer inversions than σ; by
calculation, one also finds that S(σ) ≤ S(τ).

The easy way to get the lower half is then to notice that it is an
immediate consequence of the upper half. Thus, if we consider b′1 =
−bn, b′2 = −bn−1, ..., b

′
n = −b1 we see that

b′1 ≤ b′2 ≤ · · · ≤ b′n,

and, by the upper half of the rearrangement inequality (5.11) applied to
the sequence b′1, b

′
2, ..., b

′
n we get the lower half of the inequality (5.11)

for the sequence b1, b2, ..., bn.

Looking Back — Testing New Probes

The statement of the rearrangement inequality is exceptionally natu-
ral, and it does not provide us with any obvious loose ends. We might
look back on it many times and never think of any useful variations
of either its statement or its proof. Nevertheless, such variations can
always be found; one just needs to use the right probes.

Obviously, no single probe, or even any set of probes, can lead with
certainty to a useful variation of a given result, but there are a few
generic questions that are almost always worth our time. One of the
best of these asks: “Is there a non-linear version of this result?”

Here, to make sense of this question, we first need to notice that the
rearrangement inequality is a statement about sums of linear functions
of the ordered n-tuples

{bn−k+1}1≤k≤n, {bσ(k)}1≤k≤n and {bk}1≤k≤n,

where the “linear functions” are simply the n mappings given by

x �→ akx k = 1, 2, ..., n.

Such simple linear maps are usually not worth naming, but here we have
a higher purpose in mind. In particular, with this identification behind
us, we may not need long to think of some ways that the monotonicity
condition ak ≤ ak+1 might be re-expressed.
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Several variations of the rearrangement inequality may come to mind,
and our next challenge problems explores one of the simplest of these.
It was first studied by A. Vince, and it has several informative conse-
quences.

Problem 5.4 (An Nonlinear Rearrangement Inequality)
Let f1, f2, ..., fn be functions from the interval I into R such that

fk+1(x) − fk(x) is nondecreasing for all 1 ≤ k ≤ n. (5.13)

Let b1 ≤ b2 ≤ · · · ≤ bn be an ordered sequence of elements of I, and
show that for each permutation σ : [n] → [n], one has the bound

n∑
k=1

fk(bn−k+1) ≤
n∑

k=1

fk(bσ(k)) ≤
n∑

k=1

fk(bk). (5.14)

Testing the Waters

This problem is intended to generalize the rearrangement inequality,
and, we see immediately that it does when we identify fk(x) with the
map x �→ akx. To be sure, there are far more interesting non-linear
examples which one can find after even a little experimentation.

For instance, one might take a1 ≤ a2 ≤ · · · ≤ an and consider the
functions x �→ log(ak + x). Here one finds

log(ak+1 + x) − log(ak + x) = log
(

(ak+1 + x)
(ak + x)

)
,

and, if we set r(x) = (ak+1 + x)/(ak + x), then direct calculation gives

r′(x) =
ak − ak+1

(ak + x)2
≤ 0,

so, if we take

fk(x) = − log(ak + x) for k = 1, 2, ..., n,

then condition (5.13) is satisfied. Thus, by Vince’s inequality and expo-
nentiation one finds that for each permutation σ : [n] → [n] that

n∏
k=1

(ak + bk) ≤
n∏

k=1

(ak + bσ(k)) ≤
n∏

k=1

(ak + bn−k+1). (5.15)

This interesting product bound (5.15) shows that there is power in
Vince’s inequality, though in this particular case the bound was known
earlier. Still, we see that a proof of Vince’s inequality will be worth our
time — even if only because of the corollary (5.15).
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Recycling an Algorithmic Proof

If we generalize our earlier sums and write

S(σ) =
n∑

k=1

fk(bσ(k)),

then we already know from the definition (5.12) and discussion of the
inversion decreasing transformation σ �→ τ that we only need to show

S(σ) ≤ S(τ).

Now, almost as before, we calculate the difference

S(τ) − S(σ) = fj(bτ(j)) + fk(bτ(k)) − fj(bσ(j)) − fk(bσ(k))

= fj(bτ(j)) + fk(bτ(k)) − fj(bτ(k)) − fk(bτ(j))

= {fk(bτ(k)) − fj(bτ(k))} − {fk(bτ(j)) − fj(bτ(j))} ≥ 0,

and this time the last inequality comes from bτ(j) ≤ bτ(k) and our hy-
pothesis that fk(x) − fj(x) is a nondecreasing function of x ∈ I. From
this relation, one then sees that no further change is needed in our earlier
arguments, and the proof of the non-linear version of the rearrangement
inequality is complete.

Early Reader Note: Later, I plan to add a brief discussion

here that puts a ribbon around both the "order-to-quadratic conversion"

and the notion of a nonlinear generalization.

Exercises

Exercise 5.1 (Baseball and Cauchy’s Third Inequality)
In the remarkable Note II of 1821 where Cauchy proved both his

namesake inequality and the fundamental AM-GM bound, one finds a
third inequality which is not as notable or as deep but which is still
handy from time to time. The inequality asserts that for any positive
real numbers h1, h2, ..., hn and b1, b2, ..., bn one has the ratio bounds

m = min
1≤j≤n

hj

bj
≤ h1 + h2 + · · · + hn

b1 + b2 + · · · + bn
≤ max

1≤j≤n

hj

bj
= M. (5.16)

Sports enthusiasts may imagine, as Cauchy never would, that bj denotes
the number of times a baseball player j goes to bat, and hj denotes the
number of times he gets a hit. The inequality confirms the intuitive fact
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that the batting average of a team is never worse that of its worst hitter
and never better than that of its best hitter.

Prove the inequality (5.16) and put it to honest mathematical use by
proving that for any polynomial P (x) = a0 + a1x + a2x

2 + · · · + anxn

with positive coefficients one has the monotonicity relation

0 < x ≤ y =⇒ x

y
≤ P (x)

P (y)
≤ 1.

Exercise 5.2 (Betweeness and an Inductive Proof of AM-GM)
One can build an inductive proof of the basic AM-GM inequality

(2.3) by exploiting the conversion of an order relation to a quadratic
bound. To get started, first consider 0 < a1 ≤ a2 ≤ · · · ≤ an, set
A = (a1 + a2 + · · · + an)/n, and then show that one has

a1an/A ≤ a1 + an − A.

Now, complete the induction step of the AM-GM proof by considering
the n − 1 element set S = {a2, a3, ..., an−1} ∪ {a1 + an − A}.

Exercise 5.3 (Cauchy-Schwarz and the Cross-Term Defect)
If u and v are elements of the real inner product space V for which

on has the upper bounds

〈u,u〉 ≤ A2 and 〈v,v〉 ≤ B2,

then Cauchy’s inequality tells us 〈u,v〉 ≤ AB. Show that one then also
has a lower bound on the cross-term difference AB − 〈u,v〉, namely,

{
A2 − 〈u,u〉

} 1
2
{

B2 − 〈v,v〉
} 1

2

≤ AB − 〈u,v〉. (5.17)

Exercise 5.4 (A Remarkable Inequality of I. Schur)
Show that for all values of x, y, z ≥ 0, one has for all α ≥ 0 that

xα(x − y)(x − z) + yα(y − x)(y − z) + zα(z − x)(x − y) ≥ 0. (5.18)

Moreover, show that one has equality here if and only if one has either
x = y = x or two of the variables are equal and the third is zero.

Schur’s inequality can sometimes saves the day in problems where the
AM-GM inequality looks like the natural tool, yet it comes up short.
Sometimes the two-pronged condition for equality also provides a clue
that Schur’s inequality may be of help.
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Early Reader Note: The mod 3 sum problem by Jim Pitman looked

like it was going to provide a nice illustration of this possibility,

but Jim’s problem has was "cooked" by Jim’s own solution which

is simple and Schur-free. I need to look again at Kedlaya’s

nice examples to see if one of his can serve here, though I am

hesitant to poach.

Exercise 5.5 (The Pólya-Szegö Converse Restructured)
The converse Cauchy inequality (5.6) is expressed with the aid of

bounds on the ratios ak/bk, but for many applications it is useful to know
that one also has a natural converse under the more straightforward
hypothesis that

0 < a ≤ ak ≤ A and 0 < b ≤ bk ≤ B for all k = 1, 2, ..., n.

Use the Cauchy converse (5.6) to prove that in this case one has{ n∑
k=1

a2
k

n∑
k=1

b2
k

}/{ n∑
k=1

akbk

}2

≤ 1
4

{√
AB

ab
+

√
ab

AB

}
.

Exercise 5.6 (A Competition Perennial)
Show that if a > 0, b > 0, and c > 0 then one has the elegant

symmetric bound

3
2
≤ a

b + c
+

b

a + c
+

c

a + b
. (5.19)

This is known as Nesbitt’s inequality, and, in suitable variations and
amplifications, it has served in numerous mathematical competitions,
from Moscow 1962 to the Canadian Maritimes 2002.

Exercise 5.7 (Rearrangement, Cyclic Shifts, and the AM-GM)
Skillful use of the rearrangement inequality often calls for one to ex-

ploit symmetry and to look for clever specializations of the resulting
bounds. This problem outlines a proof of the AM-GM inequality that
nicely illustrates these steps.

(a) Show that for positive ak, k = 1, 2, ..., n one has

n ≤ a1

an
+

a2

a1
+

a3

a2
+ · · · + an

an−1
.

(b) Specialize the result of part (a) to show that one also has for all
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� �

� �

m

x x−1

M = m−11

2

y = x + x−1

The mapf(x) = x + x−1

decreases on (0,1] and
increases on [1,∞)

Fig. 5.2. One key to the proof of Kantorovich’s inequality is the geometry
of the map x � x + x−1; another key is that a multiplicative inequality is
sometimes proved most easily by first establishing an appropriate additive
inequality. To say much more would risk giving away the game.

positive xk, k = 1, 2, ..., n, that

n ≤ x1

x1x2 · · ·xn
+ x2 + x3 + · · · + xn.

(c) Specialize a third time to show that for ρ > 0 one also has

n ≤ ρx1

ρnx1x2 · · ·xn
+ ρx2 + ρx3 + · · · + ρxn,

and finally indicate how the right choice of ρ now yields the AM-GM
inequality (2.3).

Exercise 5.8 (Kantorovich’s Inequality for Reciprocals)
Show that if 0 < m = x1 ≤ x2 ≤ · · · ≤ xn = M < ∞ then for

nonnegative weights with p1 + p2 + · · · + pn = 1 one has{ n∑
j=1

pjxj

}{ n∑
j=1

pj
1
xj

}
≤ µ2

γ2
(5.20)

where µ = (m + M)/2 and γ =
√

mM . This bound provides a natural
complement to the elementary inequality of Exercise 1.2, page 13, but it
also has important applications in numerical analysis, where, for exam-
ple, it has been used to estimated the rate of convergence of the method
of steepest ascent. To get started with the proof, one might note that by
homogeneity it suffices to consider the case when γ = 1; the geometry
of Figure 5.2 then tells a powerful tale.

Exercise 5.9 (Chebyshev’s Inequality for Tail Probabilities)
One of the most basic properties of the mathematical expectation E(·)
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that one meets in probability theory is that for any random variables
X and Y with finite expectations the relationship X ≤ Y implies that
E(X) ≤ E(Y ). Use this fact to show that for any random variable Z

with finite mean µ = E(Z) one has the inequality

P
(|Z − µ| ≥ λ

) ≤ 1
λ2

E
( |Z − µ|2). (5.21)

This bound provides one concrete expression of the notion that a random
variable is not likely to be too far away from its mean, and it is surely
the most used of the several inequalities that carry Chebyshev’s name.




