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Starting with Cauchy

Cauchy’s inequality for real numbers tells us that

a1b1 + a2b2 + · · · + anbn ≤
√

a2
1 + a2

2 + · · · + a2
n

√
b2
1 + b2

2 + · · · + b2
n ,

and there is no doubt that this is one of the most widely used and most
important inequalities in all of mathematics. A central aim of this course
— or master class — is to suggest a path to mastery of this inequality,
its many extensions, and its many applications — from the most basic
to the most sublime.

The Typical Plan

The typical chapter in this course is built around the solution of a
small set of challenge problems. Sometimes a challenge problem is drawn
from one of the world’s famous mathematical competitions, but more
often problems are selected to illustrate mathematical techniques of wide
applicability.

Ironically, our first challenge problem is an exception. To be sure, the
problem hopes to offer honest coaching in techniques of importance, but
it is unusual in that it asks you to solve a problem that you are likely
to have to seen before. Nevertheless, the challenge is sincere; almost
everyone finds some difficulty directing fresh thoughts toward a familiar
problem — though practice and good examples go a long way to showing
how one may more easily meet the challenge.

Problem 1.1 Prove Cauchy’s inequality. Moreover, if you already know
a proof of Cauchy’s inequality, find another one!

Coaching for a Place to Start

How does one solve a problem in a fresh way? Obviously there cannot
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2 Starting with Cauchy

be any universal method, but there are some hints that almost always
help. One of the best of these is to try to solve the problem by means
of a specific principle or specific technique.

Here, for example, one might insist on proving Cauchy’s inequality
just by algebra — or just by geometry, by trigonometry, or by calculus.
Miraculously enough, Cauchy’s inequality is wonderfully provable, and
each of these approaches can be brought to a successful conclusion.

A Principled Beginning

If one takes a dispassionate look at Cauchy’s inequality, there is an-
other principle that suggests itself. Anytime one faces a valid proposition
that depends on an integer n, there is a reasonable chance that mathe-
matical induction will lead to a proof. Since none of the standard texts
in algebra or analysis give such a proof of Cauchy’s inequality, this prin-
ciple also has the benefit of offering us a path to an “original” proof —
provided, of course, that we find any proof at all.

When we look at Cauchy’s inequality for n = 1, we see that the
inequality is trivially true. This is all we need to start our induction,
but it does not offer us any insight. If we hope to find a serious idea,
we need to consider n = 2, and, in this second case, Cauchy’s inequality
just says

(a1b1 + a2b2)2 ≤ (a2
1 + a2

2)(b
2
1 + b2

2). (1.1)

This is a simple assertion, and you may see at a glance why it is true.
Still, for the sake of argument, let us suppose that this inequality is not
so obvious. How then might one search systematically for a proof?

Plainly, there is nothing more systematic than simply expanding both
sides to find the equivalent inequality

a2
1b

2
1 + 2a1b1a2b2 + a2

2b
2
2 ≤ a2

1b
2
1 + a2

1b
2
2 + a2

2b
2
1 + a2

2b
2
2,

then, after we make the natural cancellations and collect terms to one
side, we see that inequality (1.1) is also equivalent to the assertion that

0 ≤ (a1b2)2 − 2(a1b2)(a2b1) + (a2b1)2. (1.2)

This equivalent inequality actually puts the solution of our problem
within reach. From the well-known factorization x2−2xy+y2 = (x−y)2

one finds

(a1b2)2 − 2(a1b2)(a2b1) + (a2b1)2 = (a1b2 − a2b1)2, (1.3)

and the nonnegativity of this term confirms the truth of inequality (1.2).
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By our chain of equivalences, we find that inequality (1.1) is also true,
and thus we have proved Cauchy’s inequality for n = 2.

The Induction Step

Now that we have proved a nontrivial case of Cauchy’s inequality, we
are ready to look at the induction step. If we let H(n) stand for the
hypothesis that Cauchy’s inequality is valid for n, we need to show that
H(2) and H(n) imply H(n+1). With this plan in mind, we do not need
long to think of first applying the hypothesis H(n) and then using H(2)
to stitch together the two remaining pieces. Specifically, we have

a1b1+a2b2 + · · · + anbn + an+1bn+1

= (a1b1 + a2b2 + · · · + anbn) + an+1bn+1

≤ (a2
1 + a2

2 + · · · + a2
n)

1
2 (b2

1 + b2
2 + · · · + b2

n)
1
2 + an+1bn+1

≤ (a2
1 + a2

2 + · · · + a2
n + a2

n+1)
1
2 (b2

1 + b2
2 + · · · + b2

n + b2
n+1)

1
2 ,

where in the first inequality we used the induction hypothesis H(n), and
in the second inequality we used H(2) in the form

αβ + an+1bn+1 ≤ (α2 + a2
n+1)

1
2 (β2 + b2

n+1)
1
2

with the new variables

α = (a2
1 + a2

2 + · · · + a2
n)

1
2 and β = (b2

1 + b2
2 + · · · + b2

n)
1
2 .

The only difficulty one might have finding this proof comes in the
last step where we needed to see how to use H(2). In this case the
difficulty was quite modest, yet it anticipates the nature of the challenge
one finds in more sophisticated problems. The actual application of
Cauchy’s inequality is never difficult; the challenge always comes from
seeing where Cauchy’s inequality should be applied and what one gains
from the application.

The Principle of Qualitative Inferences

Mathematical progress depends on the existence of a continuous stream
of new problems, yet the processes that generate such problems may
seem mysterious. To be sure, there is genuine mystery in any deeply
original problem, but most new problems evolve quite simply from well
established principles. One of the most productive of these principles
calls on us to expand our understanding of a quantitative result by first
focusing on its qualitative inferences.

Almost any significant quantitative result will have some immediate
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qualitative corollaries, and, in many cases, these corollaries can be de-
rived independently, without recourse to the result that first brought
them to light. The alternative derivations we obtain this way often help
us to see the fundamental nature of our problem more clearly. Also,
much more often than one might guess, the qualitative approach even
yields new quantitative results. The next challenge problem illustrates
how these vague principles can work in practice.

Problem 1.2 One of the most immediate qualitative inferences from
Cauchy’s inequality is the simple fact that

∞∑
k=1

a2
k < ∞ and

∞∑
k=1

b2
k < ∞ imply that

∞∑
k=1

|akbk| < ∞. (1.4)

Give a proof of this assertion that does not call on Cauchy’s inequality.

When we consider this challenge, we are quickly drawn to the realiza-
tion that we need to show that the product akbk is small when a2

k and
b2
k are small. We could be sure of this inference if we could prove the

existence of a constant C such that

xy ≤ C(x2 + y2) for all real x, y.

Fortunately, as soon as one writes down this inequality, there is a good
chance of recognizing why it is true. In particular, one might draw the
link to the familiar factorization

0 ≤ (x − y)2 = x2 − 2xy + y2,

and this observation is all one needs to obtain the bound

xy ≤ 1
2
x2 +

1
2
y2 for all real x, y. (1.5)

Now, when we apply this inequality to x = |ak| and y = |bk| and then
sum over all k, we find the interesting additive inequality

∞∑
k=1

|akbk| ≤ 1
2

∞∑
k=1

a2
k +

1
2

∞∑
k=1

b2
k. (1.6)

This bound gives us another way to see the truth of the qualitative
assertion (1.4), and, thus, it passes one important test. Still, there are
other test to come.

A Test of Strength

Anytime one meets a new inequality, one is almost duty bound to
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test the strength of that inequality. Here that obligation boils down
to asking how close the new additive inequality comes to matching the
quantitative estimates that one finds from Cauchy’s inequality.

The additive bound (1.6) has two terms on the right-hand side, and
Cauchy’s inequality has just one. Thus, as a first step, we might look
for a way to combine the two terms of the additive bound (1.6), and a
natural way to implement this idea is to normalize the sequences {ak}
and {bk} so that each of the right-hand sums are equal to one.

Thus, if neither of the sequences is made up of all zeros, we can intro-
duce

âk = ak/
(∑

j

a2
j

) 1
2 and b̂k = bk/

(∑
j

b2
j

) 1
2 ,

so that {âk} and {b̂k} are normalized in the sense that

∞∑
k=1

â2
k =

∞∑
k=1

a2
k/(
∑

j

a2
j ) = 1 and

∞∑
k=1

b̂2
k =

∞∑
k=1

b2
k/(
∑

j

b2
j ) = 1.

Now, when we apply inequality (1.6) to the sequences {âk} and {b̂k},
we obtain the simple looking bound

∞∑
k=1

âk b̂k ≤ 1
2

∞∑
k=1

â2
k +

1
2

∞∑
k=1

b̂2
k = 1,

and, in terms of the original sequences {ak} and {bk}, we have

∞∑
k=1

{
ak/

(∑
j

a2
j

) 1
2
}{

bk/

(∑
j

b2
j

) 1
2
}

≤ 1.

Finally, when we clear the denominators, what we find is nothing more
or less than our old friend, Cauchy’s inequality — though this time it
also covers the case of possibly infinite sequences:

∞∑
k=1

akbk ≤
( ∞∑

j=1

a2
j

) 1
2
( ∞∑

j=1

b2
j

) 1
2

. (1.7)

The bottom line here is that the additive inequality (1.6) that emerged
from our purely qualitative question has given us a second proof of
Cauchy’s inequality. This second proof has been quick, easy, and mod-
estly entertaining — but it also carries the hint of something more seri-
ous. Specifically, it suggests that normalization may provide a system-
atic way to pass from an additive inequality to a multiplicative inequal-
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ity. In due course, we will also find that this is a trip one often needs to
make.

Next item in the Dock: The Case of Equality

One of the enduring principles that emerges from an examination
of the ways that inequalities are developed and applied is that many
benefits flow from understanding when an inequality is sharp, or nearly
sharp. In most cases, this understanding pivots on the discovery of the
circumstances where equality can hold.

For Cauchy’s inequality for series this principle suggests that we should
find out what relationship must exist between the sequences {ak} and
{bk} in order for us to have

∞∑
k=1

akbk =

( ∞∑
k=1

a2
k

) 1
2
( ∞∑

k=1

b2
k

) 1
2

. (1.8)

If we focus our attention on the nontrivial case where neither of the
sequences is identically zero and where both of the sums on the right-
hand side of the identity (1.8) are finite, then we see that each of the
steps we used in the derivation of the bound (1.7) can be reversed. Thus
one finds that the identity (1.8) implies the identity

∞∑
k=1

âk b̂k =
1
2

∞∑
k=1

â2
k +

1
2

∞∑
k=1

b̂2
k = 1. (1.9)

By the two-term bound xy ≤ (x2 + y2)/2 , we also know that

âk b̂k ≤ 1
2
â2

k +
1
2
b̂2
k for all k = 1, 2, ..., (1.10)

and from these we see that if strict inequality were to hold for even one
value of k then we could not have the equality (1.9). This observation
tells us in turn that the case of equality (1.8) can hold for nonzero series
only when we have âk = b̂k for all k = 1, 2, .... By the definition of these
normalized values, we then see that

ak = λbk for all k = 1, 2, ...n, (1.11)

where the constant λ is given by the ratio

λ =
( ∞∑

j=1

a2
j

) 1
2

/

( ∞∑
j=1

b2
j

) 1
2

.

Here one should note that our argument was brutally straightforward,
and, thus, our problem was not much of a challenge. Nevertheless, the
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result still expresses a minor miracle; the one identity (1.8) has the
strength to imply an infinite number of identities, one for each value of
k = 1, 2, ... in equation (1.11).

Benefits of Good Notation

Sums such as those appearing in Cauchy’s inequality are just barely
manageable typographically, and, as one starts to add further features,
they can become unwieldy. Thus, we often benefit from the introduction
of shorthand notation such as

〈a,b〉 =
n∑

j=1

ajbj (1.12)

where a = (a1, a2, ..., an) and b = (b1, b2, ..., bn). This shorthand now
permits us to write Cauchy’s inequality quite succinctly as

〈a,b〉 ≤ 〈a,a〉 1
2 〈b,b〉 1

2 . (1.13)

Parsimony is fine, but there are even deeper benefits to this notation
if one provides it with a more abstract interpretation. Specifically, if
V is a real vector space (such as R

d), then we say that a function on
V × V defined by the mapping (a,b) �→ 〈a,b〉 is an inner product and
we say that (V, 〈·, ·〉) is a real inner product space provided that the pair
(V, 〈·, ·〉) has the following five properties:

(i) 〈v,v〉 ≥ 0 for all v ∈ V,

(ii) 〈v,v〉 = 0 if and only if v = 0
(iii) 〈αv,w〉 = α〈v,w〉 for all α ∈ R and all v and w ∈ V,

(iv) 〈u,v+w〉 = 〈u,v〉+〈u,w〉 and all u,v and w ∈ V , and, finally,
(v) 〈v,w〉 = 〈w,v〉 and all v and w ∈ V.

One can easily check that the shorthand introduced by the sum (1.12)
has each of these properties, but there are many further examples of use-
ful inner products. For example, if we fix a set of positive real numbers
{wj : j = 1, 2, ..., n} then we can just as easily define an inner product
on R

n with the weighted sums

〈a,b〉 =
n∑

j=1

ajbjwj , (1.14)

and, with this definition, one can check just as before that 〈a,b〉 satisfies
all of the properties that one requires of an inner product. Moreover, this
example only reveals the tip of an iceberg; there are many useful inner
products, and they occur in a great variety of mathematical contexts.
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An especially useful example of an inner product can be given by
considering the set V = C[a, b] of real valued continuous functions on
the bounded interval [a, b] and by defining 〈·, ·〉 on V by setting

〈f, g〉 =
∫ b

a

f(x)g(x) dx, (1.15)

or, more generally, if w : [a, b] → R is a continuous function such that
w(x) > 0 for all x ∈ [a, b], then one can define an inner product on
C[a, b] by setting

〈f, g〉 =
∫ b

a

f(x)g(x)w(x) dx.

We will return to these examples shortly, but first there is an opportunity
that must be seized.

An Opportunistic Challenge

We now face one of those pleasing moments when good notation sug-
gests a good theorem. We introduced the idea of an inner product in
order to state the basic form (1.7) of Cauchy’s inequality in a simple
way, and now we find that our notation pulls us toward an interesting
conjecture: Can it be true that in every inner product space one has the
inequality 〈v,w〉 ≤ 〈v,v〉 1

2 〈w,w〉 1
2 ? This conjecture is indeed true, and,

when framed more precisely, it provides our next challenge problem.

Problem 1.3 For any real inner product space (V, 〈·, ·〉), one has for all
v and w in V that

〈v,w〉 ≤ 〈v,v〉 1
2 〈w,w〉 1

2 ; (1.16)

moreover, for nonzero vectors v and w, one has

〈v,w〉 = 〈v,v〉 1
2 〈w,w〉 1

2 if and only if v = λw

for a nonzero constant λ.

As before, one may be tempted to respond to this challenge by just
rattling off a previously mastered textbook proof, but that temptation
should still be resisted. The challenge offered by Problem 1.3 is impor-
tant, and it deserves a fresh response — or, at least, a relatively fresh
response.

For example, it seems appropriate to ask if one might be able to use
some variation on the additive method which helped us prove the plain
vanilla version of Cauchy’s inequality. The argument began with the
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observation that (x − y)2 ≥ 0 implies xy ≤ x2/2 + y2/2, and one might
guess that an analogous idea could work again in the abstract case.

Here, of course, we need to use the defining properties of the inner
product, and, as we go down the list looking for an analog to (x−y)2 ≥ 0
we are quite likely to hit on the idea of using property (1) in the form

〈v − w,v − w〉 ≥ 0.

Now, when we expand this inequality with the help of the other proper-
ties of the inner product 〈·, ·〉, we find that

〈v,w〉 ≤ 1
2
〈v,v〉 +

1
2
〈w,w〉. (1.17)

This is a perfect analog of the additive inequality that gave us our second
proof of the basic Cauchy inequality, and we face a classic situation where
all that remains is a “matter of technique.”

A Retraced Passage — Conversion of an Additive Bound

Here we are oddly lucky since we have developed only one technique
that is even remotely relevant — the normalization method for convert-
ing an additive inequality into one that is multiplicative. Normalization
means different things in different places, but, if we take our earlier anal-
ysis as our guide, what we want here is to replace v and w with related
terms that reduce the righthand side of the bound (1.17) to 1.

Since the inequality (1.16) holds trivially if either v or w is equal to
zero, we may assume without loss of generality that 〈v,v〉 and 〈w,w〉
are both nonzero, so the normalized variables

v̂ = v/〈v,v〉 1
2 and ŵ = w/〈w,w〉 1

2 (1.18)

are well defined. When we substitute these values for v and w in the
bound (1.17), we then find 〈v̂, ŵ〉 ≤ 1. In terms of the original variables
v and w, this tells us 〈v,w〉 ≤ 〈v,v〉 1

2 〈w,w〉 1
2 , just as we wanted to

show.
Finally, to resolve the condition for equality, we only need to exam-

ine our reasoning in reverse. If equality holds in the abstract Cauchy
inequality (1.16) for nonzero vectors v and w, then the normalized vari-
ables v̂ and ŵ are well defined. In terms of the normalized variables,
the equality of 〈v,w〉 and 〈v,v〉 1

2 〈w,w〉 1
2 tells us that 〈v̂, ŵ〉 = 1, and

this tells us in turn that 〈v̂− ŵ, v̂− ŵ〉 = 0 simply by expansion of the
inner product. From this we deduce that v̂− ŵ = 0; or, in other words,
v = λw where we set λ = 〈v,v〉 1

2 /〈w,w〉 1
2 .
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The Pace of Science — The Development of Extensions

Augustin-Louis Cauchy (1789–1857) published his famous inequality
in 1821 in the second of two notes on the theory of inequalities that
formed the final part of his book Cours d’Analyse Algébrique, a vol-
ume which was perhaps the world’s first rigorous calculus text. Oddly
enough, Cauchy did not use his inequality in his text, except in some
illustrative exercises. The first time Cauchy’s inequality was applied
in earnest by anyone was in 1829, when Cauchy used his inequality in
an investigation of Newton’s method for the calculation of the roots of
algebraic and transcendental equations. This eight-year gap provides
an interesting gauge of the pace of science; now, each month, there are
hundreds — perhaps thousands — of new scientific publications where
Cauchy’s inequality is applied in one way or another.

A great many of those applications depend on a natural analog of
Cauchy’s inequality where sums are replaced by integrals,

∫ b

a

f(x)g(x) dx ≤
(∫ b

a

f2(x) dx

) 1
2
(∫ b

a

g2(x) dx

) 1
2

. (1.19)

This bound first appeared in print in a Mémoire by Victor Vacovlevich
Bunyakovsky which was published by the Imperial Academy of Sciences
of St. Petersburg in 1859. Bunyakovsky (1804–1889) had studied in
Paris with Cauchy, and he was quite familiar with Cauchy’s work on
inequalities; so much so that by the time he came to write his Mémoire,
Bunyakovsky was content to refer to the classical form of Cauchy’s in-
equality for finite sums simply as well-known. Moreover, Bunyakovsky
did not dawdle over the limiting process; he took only a single line to
pass from Cauchy’s inequality for finite sums to his continuous analog
(1.19). By ironic coincidence, one finds that this analog is labeled in
Bunyakovsky’s Mémoire as inequality (C).

Bunyakovsky’s Mémoire was written in French, but it does not seem
to have circulated widely in Western Europe. In particular, it does
not seem to have been known in Göttingen in 1885 when Karl Herman
Amandus Schwarz (1843–1921) was engaged in his fundamental work on
the theory of minimal surfaces.

In the course of this work, Schwarz had the need for a two-dimensional
integral analog of Cauchy’s inequality. In particular, he needed to show
that if S ⊂ R

2 and f : S → R and g : S → R, then the double integrals

A =
∫∫

S

f2 dxdy, B =
∫∫

S

fg dxdy, C =
∫∫

S

g2 dxdy
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must satisfy the inequality

|B| ≤
√

A ·
√

C, (1.20)

and Schwarz also needed to know that the inequality is strict unless the
functions f and g are proportional.

An approach to this result via Cauchy’s inequality would have been
problematical for several reasons, including the fact that the strictness
of a discrete inequality can be lost in the limiting passage to integrals.
Thus, Schwarz had to look for an alternative path, and, faced with
necessity, he discovered a proof whose charm has stood the test of time.

Schwarz based his proof on one striking observation. Specifically, he
noted that the real polynomial

p(t) =
∫∫

S

(tf(x, y) + g(x, y))2 dxdy = At2 + 2Bt + C

is always nonnegative, and, moreover, p(t) is strictly positive unless f

and g are proportional. The binomial formula then tells us that the
coefficients must satisfy B2 ≤ AC, and, unless f and g are proportional,
one actually has the strict inequality B2 < AC. Thus, from a single
algebraic insight, Schwarz found everything that he needed to know.

Schwarz’s proof requires the wisdom to consider the polynomial p(t),
but, granted that step, the proof is lightening quick. Moreover, as one
finds from Exercise 1.11, Schwarz’s argument can be used almost without
change to prove the inner product form (1.16) of Cauchy’s inequality,
and even there Schwarz’s argument provides one with a quick under-
standing of the case of equality. Thus, there is little reason to wonder
why Schwarz’s argument has become a textbook favorite, even though
it does require one to pull a rabbit — or at least a polynomial — out of
a hat.

The Naming of Things — Especially Inequalities

In light of the clear historical precedence of Bunyakovsky’s work over
that of Schwarz, the common practice of referring to the bound (1.19) as
Schwarz’s inequality may seem unjust. Nevertheless, by modern stan-
dards, both Bunyakovsky and Schwarz might count themselves lucky to
have their names so closely associated with such a fundamental tool of
mathematical analysis. Except in unusual circumstances, one garners
little credit nowadays for crafting a continuous analog to a discrete in-
equality, or vice versa. In fact, many problem solvers favor a method
of investigation where one rocks back and forth between discrete and
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continuous analogs in search of the easiest approach to the phenomenon
of interest.

Ultimately, one sees that inequalities get their names in a great variety
of ways. Sometimes the name is purely descriptive, say as one finds with
the triangle inequality which we will meet shortly. Perhaps more often,
an inequality is associated with the name of a mathematician, but even
then there is no hard-and-fast rule to govern that association. Sometimes
the inequality is named after the first finder, but other principles may
apply — such as the framer of the final form, or the provider of the best
known application.

If one were to insist on the consistent use of the rule of first finder, then
Hölder’s inequality would become Roger’s inequality, Jensen’s inequal-
ity would become Hölder’s inequality, and only riotous confusion would
result. The only practical rule — and the one used here — is simply to
use the traditional names. Nevertheless, from time to time, it may be
scientifically informative to examine the roots of those traditions.

Exercises

The exercises for this chapter are more numerous than those of most
chapters, and some of them are also be a bit easier. Nevertheless, these
problems form an essential part of the course. The first three develop
some of the basic “tricks” that are essential to the effective day-to-day
use of Cauchy’s inequality.

The solution of many of many of the exercises are given in Part Two
of the text, and as often as not, the text’s solutions go on to provide
additional coaching, to underline an important principle, or to point to
further results.

Early Reader Note: In each chapter the problem sections will

be prefaced with a brief orientation that is intended to motivate

the reader and to help direct attention to the most important

issues presented. Since the problems keep shifting around, these

orientations tend to drift out of date and they will all need

to be reviewed (and rewritten) as the book nears completion.

Exercise 1.1 (Two Tricks in Their Simplest Form)
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Show that for each real sequence a1, a2, ..., an one has

a1 + a2 + · · · + an ≤ √
n(a2

1 + a2
2 + · · · + a2

n)
1
2 (a)

and show that one also has

n∑
k=1

ak ≤
(

n∑
k=1

|ak|2/3

) 1
2
(

n∑
k=1

|ak|4/3

) 1
2

. (b)

Exercise 1.2 (Products of Averages and Averages of Products)
Suppose that pj ≥ 0 for all j = 1, 2, ..., n and p1 + p2 + · · · + pn = 1.

Show that if aj and bj are nonnegative real numbers that satisfy the
termwise bound 1 ≤ ajbj for all j = 1, 2, ..., n, then one also has the
aggregate bound for the averages,

1 ≤
{ n∑

j=1

pjaj

}{ n∑
j=1

pjbj

}
. (1.21)

This graceful bound is often applied with bj = 1/aj . It also has a subtle
complement which is developed much later in Exercise 5.8.

Exercise 1.3 (Doing the Sums)
The effective use of Cauchy’s inequality often depends on knowing

a convenient estimate for one of the bounding sums. Verify the four
following classic bounds for real sequences:

n∑
k=0

(
n

k

)
ak ≤ 2n

(
n∑

k=0

a2
k

) 1
2

, (a)

∞∑
k=0

akxk ≤ 1√
1 − x2

( ∞∑
k=0

a2
k

) 1
2

for 0 ≤ x < 1, (b)

n∑
k=1

ak

k
<

√
2

(
n∑

k=1

a2
k

) 1
2

, and (c)

n∑
k=1

ak√
n + k

< (log 2)
1
2

(
n∑

k=1

a2
k

) 1
2

. (d)
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Exercise 1.4 (Beating the Obvious Bounds)

Many problems of mathematical analysis depend on the development
of bounds that are just a little bit better than those one obtains by
the direct application of Cauchy’s inequality. As a simple illustration of
the kind of opportunity one might easily miss, show that for any real
numbers aj , j = 1, 2..., n, one has the bound

∣∣ n∑
j=1

aj

∣∣2 +
∣∣ n∑
j=1

(−1)jaj

∣∣2 ≤ (n + 2)
n∑

j=1

a2
j .

Here the naive application of Cauchy’s inequality would have given us
a bound with 2n instead of the value n + 2 obtained above. Thus, for
large n one can beat the simple-minded termwise application of Cauchy’s
inequality by a factor that is close to two.

Exercise 1.5 (Why Not Three or More?)

Cauchy’s inequality provides an upper bound for a sum of pairwise
products, and a natural sense of confidence is all one needs to guess
that there are also upper bounds for the sums of products of three or
more terms. In this exercise you are invited to justify two prototypical
extensions. The first of these is definitely easy, and the second is not
much harder, provided that you do not give it more respect than it
deserves.

(
n∑

k=1

akbkck

)4

≤
(

n∑
k=1

a2
k

)2 n∑
k=1

b4
k

n∑
k=1

c4
k (a)

( n∑
k=1

akbkck

)2

≤
n∑

k=1

a2
k

n∑
k=1

b2
k

n∑
k=1

c2
k (b)

Exercise 1.6 (With Some Help From Symmetry)

There are many situations where Cauchy’s inequality conspires with
symmetry to provide results that are visually stunning. Here are two
examples from a multitude of graceful possibilities.

(a) Show that for all positive x, y, z one has

S =
(

x + y

x + y + z

)1/2

+
(

x + z

x + y + z

)1/2

+
(

y + z

x + y + z

)1/2

≤ 61/2.
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(b) Show that for all positive x, y, z one has

x + y + z ≤ 2
{

x2

y + z
+

y2

x + z
+

z2

x + y

}
.

Exercise 1.7 (An Crystallographic Inequality with a Message)
Recall that f(x) = cos(βx) satisfies the identity f2(x) = 1

2 (1+f(2x)),
and show that if pk ≥ 0 for 1 ≤ k ≤ n and p1 + p2 + · · · + pn = 1 then

g(x) =
n∑

k=1

pk cos(βkx) satisfies g2(x) ≤ 1
2
{
1 + g(2x)

}
.

This is known as the Harker-Kasper inequality, and it has far reaching
consequences in crystallography. For the theory of inequalities, there is
an additional message of importance; given any functional identity one
should at least consider the possibility of an analogous inequality for a
more extensive class of related functions, such as the class of mixtures
used here.

Exercise 1.8 (A Sum of Inversion Preserving Summands)
Suppose that pk > 0 for 1 ≤ k ≤ n and p1 + p2 + · · · + pn = 1. Show

that one has the bound
n∑

k=1

(
pk +

1
pk

)2

≥ n3 + 2n + 1/n,

and determine necessary and sufficient conditions for equality to hold
here. Incidentally, we will see later in Exercise 14.5, page 202 that
similar results hold for some powers other than 2.

Exercise 1.9 (Flexibility of Form)
Prove that for all real x, y, α and β one has

(5αx + αy+βx + 3βy)2

≤ (5α2 + 2αβ + 3β2)(5x2 + 2xy + 3y2). (1.22)

More precisely, show that the bound (1.22) is an immediate corollary
of the Cauchy-Schwarz (1.16) provided that one designs a special inner
product 〈·, ·〉 for the job.

Exercise 1.10 (The Centered Version of Schwarz’s Inequality)
If w(x) ≥ 0 for all x ∈ R and if the integral w over R is equal to 1,
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then the weighted average of a (suitably integrable) function f : R → R

is defined by the formula

A(f) =
∫ ∞

−∞
f(x)w(x) dx.

Show that for functions f and g, one has the following bound on the
average of their product,

{A(fg) − A(f)A(g)}2 ≤ {A(f2) − A2(f)
}{

A(g2) − A2(g)
}

,

provided that all of the indicated integrals are well-defined.
This inequality, like other variations of the Cauchy and Schwarz in-

equalities, owes its usefulness to its ability to help us convert information
on two individual functions to information about their product. Here
we see that the average of the product, A(fg), cannot differ too greatly
from the product of the averages, A(f)A(g), provided that the variance
terms, A(f2) − A2(f) and A(g2) − A2(g), are not too large.

Exercise 1.11 (Schwarz’s Argument in an Inner Product Space)
Let v and w be elements of the inner product space (V, 〈·, ·〉) and

consider the quadratic polynomial defined for t ∈ R by

p(t) = 〈v + tw,v + tw〉.
Observe that this polynomial is nonnegative and use what you know
about the solution of the quadratic equation to prove the inner product
version (1.16) of Cauchy’s inequality. Also, examine the steps of your
proof to establish the conditions under which the case of equality can
apply. Thus, confirm that Schwarz’s argument (page 11) applies almost
without change to prove Cauchy’s inequality for a general inner product.

Exercise 1.12 (Example of a Self-generalization)
Let 〈·, ·〉 denote an inner product on the vector space V and suppose

that x1,x2, ...,xn and y1,y2, ...,yn are sequences of elements of V . Prove
that one has the following vector analog of Cauchy’s inequality:

n∑
j=1

〈xj ,yj〉 ≤
( n∑

j=1

〈xj ,xj〉
) 1

2
( n∑

j=1

〈yj ,yj〉
) 1

2

. (1.23)

Note that if one takes n = 1, then this bound simply recaptures the
Cauchy-Schwarz inequality for a inner product space, while, if one keeps
n general but specializes the vector space V to be R with the trivial
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inner product 〈x,y〉 = xy, then the bound (1.23) simply recaptures the
plain vanilla Cauchy inequality.

Exercise 1.13 (Application of Cauchy’s Inequality to an Array)
Show that if {ajk : 1 ≤ j ≤ m, 1 ≤ k ≤ n} is an array of real numbers

then one has

m

m∑
j=1

(
n∑

k=1

ajk

)2

+n

n∑
k=1


 m∑

j=1

ajk




2

≤

 m∑

j=1

n∑
k=1

ajk




2

+mn

m∑
j=1

n∑
k=1

a2
jk.

Moreover, show that equality holds here if and only if there exits αj and
βk such that ajk = αj + βk for all 1 ≤ j ≤ m and 1 ≤ k ≤ n.

Exercise 1.14 (A Cauchy Triple and Loomis-Whitney)
Here is a generalization of Cauchy’s inequality that has as a corollary a

discrete version of the Loomis-Whitney inequality, a result which in the
continuous case provides a bound on the volume of a set in terms of the
volumes of the projections of that set onto lower dimensional subspaces.
The discrete Loomis-Whitney inequality (1.25) was only recently devel-
oped, and it has applications in information theory and the theory of
algorithms.

(a) Show that for any nonnegative aij , bjk, cki with 1 ≤ i, j, k ≤ n one
has the triple product inequality

n∑
i,j,k=1

a
1
2
ij b

1
2
jk c

1
2
ki ≤

{ n∑
i,j=1

aij

} 1
2
{ n∑

j,k=1

bjk

} 1
2
{ n∑

k,i=1

cki

} 1
2

(1.24)

(b) Let A denote a finite set of points in Z
3 and let Ax, Ay, Az denote

the projections of A onto the corresponding coordinate planes that are
orthogonal to the x, y, or z-axes. Let |B| denote the cardinality of a
set B ⊂ Z

3 and show that the projections provide a lower bound on the
cardinality of A:

|A| ≤ |Ax| 12 |Ay| 12 |Az| 12 (1.25)
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Here we have a set A

with cardinality |A| = 27

with projections that satisfy

|Ax| = |Ay| = |Az| = 9.

Fig. 1.1. The discrete Loomis-Whitney inequality tells that for any collection

A of points in R
3 one has |A| ≤ |Ax| 12 |Ay| 12 |Az| 12 . The cubic arrangement

indicated here suggests the canonical situation where one finds the case of
equality in the bound.




