APPLICATIONS OF MATHEMATICA TO THE STOCHASTIC CALCULUS

J. Michael Steele' & Robert A. Stine’
Robert A. Stine, Dept. of Statistics,The Wharton School, University of Pa, Phila, PA 19104-6302

Key Words: Black-Scholes, diffusion,
symbolic computing.
Introduction

Symbolic computing has established its
value in dealing with many of the more te-
dious aspects of differentiation and integra-
tion. Our goal here is to show that symbolic
computing is also a powerful tool for the study
of the stochastic calculus.

As an illustration of the power of this ap-
proach, we consider the classic option pricing
problem of mathematical finance and use
symbolic computations to obtain the Black-
Scholes formula. Our objective is to derive
this formula for pricing an option rather than
manipulate the well-known final result.

After a brief review of diffusions, we de-
scribe a symbolic representation for a diffu-
sion and illustrate how this representation is
sufficient for simulating and plotting real-
izations of diffusions. We then consider
transformations of diffusions via the It8
formula. The It§ formula is the basis of our
symbolic algorithm that determines the dif-
fusion defined by a transformation of an-
other.

While this paper uses Mathematica, these
same ideas could also be implemented in
other symbolic environments, such as
Macsyma. Our choice of Mathematica was
based on its graphics, programmability, and
large user base. If one has access to this sys-
tem, the commands shown here can be repli-
cated after installing the definitions of the
functions.

A catalog of the details about the use of
Mathematica appear in Wolfram (1991); the
more gentle tutorial of Gray and Glynn
(1991) provides a good introduction. Other ap-
plications of symbolic computing in statistics
appear in Steele (1985) and Stine (1990).

Diffusions

A diffusion X; is identified by two func-
tions u and o and its initial value Xp.

Assume that the functions 4, : (R xR*¥) - R
are members of L2 and let W; denote the stan-
dard Weiner process. A fundamental result
of It8's theory of stochastic integrals is that
there exists a well-defined process X; that can
be written suggestively as
t 4

X =Xp + Jy(Xs,s) dt + o[o(xs,s) dWs. (1)

The vital intuition behind X; and this repre-
sentation is that the function u determines the
drift of X; whereas o controls its variability.
For example, if X; represents the price of a :
stock, then 4 and o could be interpreted as the
associated rate of return and risk.
Generally (1) is expressed in differential
form as

dX = w(Xgt) dt + oXy,t) dWy. (2)
Note that the process W; is not of bounded
variation so that the integral in (1) can not be
interpreted naively. The interested reader
can consult, for example, the book of Arnold
(1974) or Duffie (1988) for further motivation
and details.

Léz\.s_Eo_mula' r

Ito's formula is the key ingredient that under-
lies many of our symbolic manipulations of dif-
fusions. Assume for the function f mapping
(R,R*) = R that the derivatives

Fx=0f(,0)] 3%, frx = Pf(x,t)]3x2,
and
Jr=0f(x,t)/dt
exist. If Yy = f(X,t), then Ito's Formula shows
that Y} is also a diffusion,
dYs =

2
(fiXet) + pXp,t) f(Xt,t) + fxxo Xpt)/2) dt
+{ fx(Xg ,t) oXp)] dWy (3)

This expression is not, however, in the
canonical form (2) since the drift and disper-
sion are functions of X; rather than Y;. If we

assume that f has an inverse g so that
y=fx) <> x=gy),

we obtain the desired form by substituting

8(Yy) for X; in (3), obtaining

dYs = (f1@(Yp),)+ug(Yp,)f xXe,t) +
Frx P@(Yp,0)/2) dt
+{ fx(8Xp,0) oXy,t) } AWy

= L(Ygt) dt + o (Ye,t) AWy . 4)

A key task for Mathematica is to manage the
mapping { u(x,t), o(x,t) } —> { Wy,t), oly,t)).

The infinitesimal generator simplifies
the evaiuation of the It6 formula. Given a
diffusion X;, the infinitesimal generator A

measures the infinitesimal rate of change in
the expected value of f(X;,t) given that X}

starts from x,
Ey f(Xt,t x,0.
Af(x) = lim ERES: t)_f()
as t—0, where Ex denotes the expectation
conditional on Xp = x. Viewed as an operator,
the infinitesimal associated with X; is the
sum

=g+u(x,t)§'?;+1/2 o(x,t);% . (5)

This expression is useful since the drift
function in (3) is the result of applying the in-
finitesimal associated with X; to the function
f. Substituting (5) into (3), we obtain a much

more manageable expression for It's for-
mula (3),
vy = df(Xp
= Alf]dt + fx(X3,t) oXp,t) dWy .

Black-Scholes Option Pricing Model

All of these concepts are captured in the fol-
lowing simple variation of the options pricing
problem. The problem is to determine the cur-
rent market value of an option to purchase
shares of a stock at some future time 7T for a set
price P. Such options are known as European
options. Let V(Sy, t) denote the value of the op-

12

tion at time ¢ <T where S; denotes the price of
the stock at time ¢.

The key feature of the Black-Scholes formu-
lation of this problem is to introduce two diffu-
sions. Assume that the market consists of two
investments, stocks and bonds. The prices of
shares of stock and bond Sy and By are treated
as diffusions of known form,

dSt=uS; dt + cSy dWg

dBi=rBgdt .
The bond process represents a risk-free asset
with guaranteed rate of return r, whereas the
stock diffusion is & more risky asset offering
higher potential returns with some chance of
less. Here we ignore dividends and transac-
tion costs and assume that the market does not
permit arbitrage. This brief introduction is
from Duffie (1988, §22) which contains further
motivation and details.

The Black-Scholes approach duplicates the
value of the option V(S,t) with a portfolio con-
sisting of a; shares of stock and b; shares of
bond. We need to determine a; and b¢. The
portfolio representation for the value of the op-
tion implies that V(S¢,t) is itself a diffusion,
having the form

VISyt) =ay Sp + by By .
It follows that
dV(S, t) = a;dS; + by dBy (6)
= (atuSt+bsrBydt+as 6StdW; ,
so that the drift of V(Sy,t) isas uSy+ by r By
and the dispersion is a; 0Sy. On the other hand,

the It6 formula also gives expressions for the
mean and dispersion of V(Syt),
dV(St,) = AlV]dt+ Ve(Stt) 6S;dWy , (7)

where Vy denotes the derivative of V with re-
spect to its first argument. Equating the drift
and dispersion functions of (6) and (7) yields a
system of equations which determine the coef-
ficients a; and b of the matching portfolio,

at = Vx(St,t)

: Vxx(St,t) 2Ss? + V(St,t)

bt = ’

rB;
where Vxx denotes the second derivative of V
with respect to its first argument, and V; is the
first derivative with respect to its second argu-
ment. Substituting these solutions into the port-
folio representation (6) gives a partial differ-
ential equation for V,
- rV(x,t) + Vi(x,t) + raVy(x,t)
+ % Ver(x,0) /2 = 0.

This PDE can be solved by various methods,
including the Feynman-Kac theorem.

If A is the infinitesimal of diffusion X}, the
Feynman-Kac theorem states that the solu-
tion of the partial differential equation

AV(xt)]-rVixt)=0 (0<t<T) (8)
with boundary conditionV(x,T) = g(x,T) is
-p(T-t)
Viz,t)= e - E[gXT,T) | Xt =x]. 9

For the Black-Scholes problem, the payoff

function for the option determines the bound-
" ary condition. For example, the payoff func-

tion for a European option is the segmented

function

gx)=(x-P)3 ,

where P is the exercise price of the option.

Although (9) looks rather impressive, we

later show how it simplifies in the case to a

log-normal integration which is solved by

standard methods.

\ Data S cor Diffusi

In order to use Mathematica when work-
ing on problems like deriving the Black-
Scholes formula, we first need the ability to
create and manipulate diffusions. Our
choice here is simple, yet contains all of the
needed information. Basically, the data
structure is a list with four elements: the
symbol which identifies the diffusion, the
functions u and o, and finally the initial
value. The functions u and o are entered as
expressions of the identifying symbol and ¢.
Rather than just put these items together in a
list, however, we make the head of the expres-
sion the identifier diffusion. This subtle
change permits some abstraction and pro-
vides the opportunity for type-checking in
functions that operate on diffusions. In order
to insure proper initialization, each diffu-
sion is created by a call to the creator function
MakeDiffusion.

To demonstrate the use of Mathematica,
the following dialog shows boxed snapshots
from a Mathematica session. Mathematica
expressions are shown in Courier type and
are numbered in italics. The dialog contains
definitions for many of the functions that we
use. Others, including those for making and

printing diffusions, are imported from an
external file. If one has access to
Mathematica, these expressions can be en-
tered directly into the program. Note that
terminating a statement with a semi-colon
suppresses printing the results of that state-
ment.

We begin the session by importing the ex-
ternal definitions from the file Ito.m, and
then create two diffusion objects.

In[l]:=
<<Ito.m

In[2]:=
bm = MakeDiffusion[W,0,1,0];
exp= MakeDiffusion([X,r X,s X,v]

Cut[2]:=
diffusion[X,r X,s X, v]

The items bm and exp are Mathematica ob-
Jjects representing Brownian motion

dW; =0dt + 1dW;
and the diffusion

Xp=rXpdt+sX; dWy; Xp=v. (10)
Notice that the name exp identifies the diffu-
sion object, whereas the argument X in the
second input is a symbol identifying the dif-
fusion in the expressions for the drift and
dispersion functions y and o.

While it is tempting to use the symbol x as
the name of the diffusion object at line 2, we
cannot do so here. Such statements lead to in-
finite recursion.

Inf[3]:=.
X=MakeDiffusion[X,r X,s X,v]

General::recursion:
Recursion depth of 256 exceeded.

Qut[3]):=

S$Interrupted

The system repeatedly substitutes the entire
expression for each X appearing in the right-
hand side of In[3].

Automatic evaluation of arguments of
functions can cause other problems. For ex-
ample, if X had previously been assigned the
value 2, as by the expression X = 2, then
Mathematica would interpret the second line

of In[2] as
exp = MakeDiffusion[2,r 2,8 2,Vv],

and confusion would rein. To insure
against this problem, the definition of the
function MakeDiffusion begins

MakeDiffusion([s_Symbol,
mu_, disp_, init_].

The leading argument s_Symbol provides
type checking: the function is only called
when the argument s is a symbol, and not,
for example, a number.

To enhance this object-oriented approach
we use a set of "methods” for manipulating
diffusions. Although Mathematica does not
provide a full set of object-oriented pro-
gramming facilities, we can extend the ab-
straction by providing accessor methods. For
example, the functions

symbol [d_diffusion] :=d[[111;
drift[d_diffusion] :=d[[2]]);
dispersion[d_diffusion] :=d[[3]}:
initialvalue[d diffusion]:=d[[4]1];

extract the components of a diffusion by in-

dexing into the data structure. As long as all
other routines access the drift function u via
the function drift (rather than indexing di-
rectly), we can change the internal represen-

tation of a diffusion by changing these acces- -

sor functions rather than finding every place
that we extract the drift component.

To illustrate the use of the diffusion data
structure, consider how to display a diffu-
sion. While the expression

diffusion[X,r X,s X,v]
in Out[2] is indicative of the mathematical
notation in (10), it leaves a lot to be desired.
Mathematica offers, however, some limited
formatting capabilities that permit us to de-
fine the function PrintDiffusion which
yields a more familiar rendering,

The data structure also contains sufficient
information for producing simulated real-
izations. A discrete approximation to X}
suggests that we can "walk" the diffusion out
from its starting point by incrementing time
by small amounts and applying the functions
u and o recursively. To do this easily in

- Mathematica, break the problem into two

parts. First, build a function that generates
the next value in the discrete approximation
given the current value:

In[5]:=
nextValue[{t_,current_}] := Block
[x1 = mu([current, t] dt;
x2 = sig[current, t]lnRand[dt]:;
{t+dt,current+x1+x2} // N 1;

In[6]:=

data=NestlList [nextValue, {0,x0},100];

Here nRand [x] produces a zero-mean
Gaussian random variable with variance x.
Like MakeDiffusion and PrintDiffusion,
nRand is defined in the external file Ito.m.
The simulated realization is generated by
applying nextValue recursively via the
built-in function NestList. NestList re-
turns the recursively defined list

{nextvalue[{0,x0}],
nextValue [nextValue[{0,x0}1],
..}.

The function Realize manages the associ-
ated variable and function initializations:

Inf[7]:=
Realize[d diffusion, n_, dt_] :=
Block[{x,mu, sigma, sym=symbol[d],x0},
mul{x ,t_] =(drift[d] / .sym->x) ;
sig[x_,t_J]=(dispersion[d]/.sym->x);
x0 = N{initialvalue[d]];

NestList [nextValue, {0,x0},n] 1:

In[4]:=
PrintDiffusion[exp]

OQut[4]:=
dX =(r X) dt + (s X)dW ;X = v
t t v t t 0

Realize creates the functions mu and sig
used in nextValue, with the symbol of the
diffusion replaced by the generic identifier
x. Had we instead attempted to define mu
with the line

mu[sym ,t_) = drift[d];
Mathematica would look for the symbol sym
in drift, rather than look for the symbol
which is the value of sym.

As an example, the following steps gener-
ate three realizations of the diffusion
dNt =N¢dt + Ny dWy (Np=10).
The mapping function (identified by /@)
avoids looping, and Show plots the three real-
izations together on the same axes.

conform to the representation (2) since u and
o are not functions of the leading symbol
SUM. In many cases it is not possible to obtain
this form. For example, consider

In[8]:=
dif = MakeDiffusion[n,n,n,10];
simDif = Realize[#,200,.005]1&
/@ Tablel[dif, {3}];
plts=ListPlot [#,PlotJoined->True] &
/@ simDif;
Show[plts]

Qut/[8]:=

354
30+
25
204
154
104

5

In[9]:=

xDiff=MakeDiffusion([X, Sqrt([X],2,0];
yDiff=MakeDiffusion(Y,Sqrt[¥Y],3,0];
zDiff = xDiff + yDiff;

Out[8]:=
diffusion[SUM, Sgrt [X]+Sart[¥],5,0]

0.2 0.4 0.6 0.8 1

Finally, we need to describe how to add,
subtract, and multiply diffusions. These in-
structions are given as rules associated with
the diffusion type. For example, the follow-
ing rule describes how to add two diffusions:

diffusion /:
diffusion([sl_,fl_,gl_,il] +
diffusion[s2_,f2 ,g2 ,i2_] =
diffusion([SUM, fl1+f2, gl+g2,
i1+i2];

The leading "/:" associates this rule for ad-
dition with diffusion objects rather than the
protected internal function "+". It is im-
plicit in this rule that both diffusions are de-
_fined in terms of the same Weiner process.
When the drift and dispersion functions do
not depend on the diffusion symbols, as with
Brownian motion, this simple rule works
fine. Notice, however, that the symbolic
name for the new diffusion, SUM, does not ap-
pear in the resulting drift and dispersion
functions. Thus, this representation does not

In this case, it is not possible to express the
drift X1/24y1/2 g5 a function of Z = X+Y
alone. Fortunately, in many cases such as
the Black-Scholes illustration below, we can
leave 1t and o in the form produced by this
simple rule. Our expanded system notes that
it cannot make this substitution and marks
the diffusion object in such a way that other
routines, such as that for finding the in-
finitesimal, are aware of the problem.

Implementating the Ito Formula

We begin with the infinitesimal genera-
tor. In keeping with the form of (5), we can
implement the infinitesimal as a function
which consists of derivative operators. The
second two derivatives of (5) are captured by
the function derivop, which is the key ele-
ment of evaluating the infinitesimal func-
tion. The #/& pairs in derivop denote ab-
breviated function definitions, similar to the
lambda functions of Lisp.

In[10]:=
derivOp[var_Symbol] :=
{D[(#,var]l&, D[#,var,varl&};

Inf1l]):=
A[d diffusion] [f_] :=
Block[
{dim,dft,disp, £d, sd, ggp, dt, Ops,
driftOp, dispOpi},
dft=drift(d];disp=dispersion[d];
ops = derivOp[symbol[d] };:
fd=ops[[1]][f]; sd=ops[[2]][f];
dft = dft fd;
disp = 1/2 disp disp sd;
dt = D[f,t];
Simplify[drift + disp + dt]
1:

The function A uses an operator notation,
with A[X] denoting the generator A for diffu-
sion X;. As an example, consider applying
this operator to an arbitrary function g(W¢)
of Brownian motion W¢ . Since the symbol
associated with the Brownian motion bm is W,
we denote this function g (w). The following
output shows that Alg] = g” /2. Within this
Mathematica session, g has not been defined
and so is treated abstractly. To obtain a more
explicit result, we use "%" to identify the re-
sult at Out[12] and substitute Log for g, giv-
ing us the infinitesimal for Log/W,] .

In(l12]:=
Albm] [g{W]]

Outfl2]:=
gl 1 [W]

In[13]:=
$ /. g->Log

Out[l13]:=
-1
2
2 W

We have also experimented with vectors
whose elements are diffusions. For example,
vBM is a diffusion in R4 whose elements
W[1l], W[2],...,W[d] areindependent
scalar Brownian motions. With d=2, we find
that the infinitesimal is the Laplacian

1 2% o
2 ax1+ax2 ’
Infl4):=
dim = 2;

vBM = MakeDiffusion[Array[W,dim],
Table[0, {i,dim}],
IdentityMatrix[dim]};

In[l15]:=
A[vBM] [g[W[1],W[2]]]
Qut([l5]:=
{0,2) (2,0)

g [W[1]1,W[2]]1+g (W[1],W([2]]

- ———— - T > T - - —— " " 4 -

-7

As the number of dimensions increase, it
becomes more and more easy to overwhelm
the system with expressions that it is unable
to simplify quickly.

With the infinitesimal in hand, the im-
plementation of the It6 formula is straight-
forward, where we again use an operator no-
tation.

In[l6]:=
ito[d_diffusion] [f_,opts___ Rule]:=
Block[{drift,disp,0ldSymbol,
invRule, ns,invert},
invert=itoInvert/.{opts}/.
Options[itol;
oldSymbol = symbol[d];
drift = A[4)[£f]:;
disp=D[f, 0ldSymbol] .dispersion[d];
Print["Prior to inversion..."];
Print["d (", £,") () =
(",drift,")dt (",disp,
") daw(t)"]:
If[Not[invert],
ns = £,
ns=itoSymbol/. {opts}/.
Options{ito];
invRules=First
[Solve[ns==f,0l1dSymboll];
Print ["Inversion rule... ",
invRules]:;
drift = Simplify(drift/.invRules];
disp = Simplify[disp/. invRules];

MakeDiffusion[ns,drift,disp] }:

Using the Ito_Formula

The intermediate printed output from this
program is useful in solving stochastic inte-
grals. For example, what is the value of

4
O[Wsdws ?
Since
t
Jxdx = 2/2,
0

we might suspect that the stochastic integral

is related to the function x2/2. If we apply the
function ito, we obtain

Inf{l7)]:=
ito[bm] [1/2 W*2,itoSymbol->y]
Prior to inversion...

2
W 1
d (-=)(t) = (=) dt + (W) aw(t)
2 2
OQutfl7]:= 1

diffusionly,-,Sgrt[2]S8grt[y], 0]
-2

In[18]:=
ito[bm] [Exp[W]]
Oout[l8]:=
: Y
diffusionlY, -, Y, 1]
2

ply the It§ formula directly to the undefined
function v [S, t]. Setting the option itoIn-
vert to False prevents the system from per-
forming the substitution X; =g(Yp) leading
from (3) to (4). As a result, the drift and dis-
persion of vOfs remain functions of the stock
symbol s rather than introducing some new
symbol. Next, at In[21], define the difference
between the two representations of V given in
(6) and (7).

The intermediate result of In[17] implies
that
4
2
t” 1
5 =5 oj WsdWs |
so that the desired stochastic integral is
t
W2 -t
stdWs = t2 .
0

The option itoSymbol->y permits the user to
specify what symbol to use for the new diffu-
sion. The default symbol, as seen in In[18],
is Y. An additional option itoInvert can be
used to suppress the substitution of g(Y) for
X, leaving the new diffusion in the interme-
diate form (3). The second example shows
that exp(Wy) is the diffusion

dY=(Y:/2)dt + Yy dWg,
which is similar to the process simulated in
the plot shown earlier.

rivi B - r

Our implementation of diffusions permits
us to derive the solution to the Black-Scholes
problem symbolically by replicating the ar-
gument outlined in the introduction. The
logic is essentially the same, only all of the
calculations are performed symbolically by
Mathematica.

Begin by defining the stock and bond dif-
fusions, stock and bond. Then solve for the
ar and b; portfolio sequences. As before, ap-

In[l18]:=
stock= MakeDiffusion[S,mu S,sig S];
bond = MakeDiffusion[B, r B, 0]:

In[20]:=
vOfs = ito[stock] [v[S,t],
itolInvert->False];

In[21]:=
diff=v0Ofs - (at stock + bt bond):;

In[22] :=
roots = Solve[{drift[diff]==0,
dispersion{diffl==0}, {at, btl}]:

The resolution of In[21] requires the rules de-
fined earlier for addition (and subtraction)
of diffusions. Again, it is not necessary to
resolve the drift and dispersion into func-
tions of, say, the symbol diff. We want to
retain the forms appearing in (6) as func-
tions of St and B;. Finally, to solve for the so-
lution in terms of a; and b, apply the built-in
function Solve to the equations based on the
drift and dispersion functions of the differ-
ence.

At this point we need to do some
Mathematica house-keeping. The result of
Solve is a list of rules identifying all solu-
tions known to the system. For example, the

roots of the equation x2-1=0 shown with
In[23] are returned as a list of lists of substitu-
tion rules. Thus, in order to use roots, we
first use roots to define a value for a; and
then extract the result from the extraneous
list. This result is achieved by the somewhat
cryptic command at line 24. For b, we also
simplify the resulting expression. The ex-
plicit simplification of the resulting expres-
sion deletes redundant terms and keeps the
system from being overwhelmed later in the
evaluation.

In[23]:=

Solve[x*2 -~ 1 == 0]
Cut [23]:=

{{x -> 1}, {x =-> -1}}

Inf[24]:=
at = First([at/.roots]
out[24]:=
(1,0)
v [s, t]

In[25]:=
bt=Simplify[First{bt/.roots]]
out[25]:= :
(0,1) 2 2 (2,0)
2 v [S, t] + S sig v [s, t]

- —— -~ - — - — " - . o W T —— N " "

With the expressions for a; and b in hand,
we can solve the resulting partial differen-
tial equation via the Feynman-Kac theorem.
In order to use the Feynman-Kac theorem, we
need to expand the infinitesimal A/V(x,t)] in
(8) and identify a diffusion X; such that (8)
holds. We first set up the PDE assuming that
the payoff function is g, and then use pattern
matching rules to apply the Feynman-Kac
theorem.

In[26]:=
pde =
Inf27]:
soln = FeynmanKac{pde, gl
OQut[27]:=

Ave[diffusion[Z,r 2,z sig,x]][~—=—-—~

Inf[28]:=

xt=MakeDiffusion[X,r-(s8"2)/2,s,start]

ito[xt]) [Exp(X]]
Out[28]:=
diffusion[Y, Y r, Y s, Exp[start]]

Expand[at S + bt B - v[S,t]];

In the result Out[27], Ave[d_diffusion]
denotes the expected value with respect to the
diffusion d. Translated into more standard
notation, the solution at Out[27] is

Vit =e TV, 8ZT-9] (11

wheredZt =rZsdt + s Zt dWy , Zp = x.

In order to compute the expectation in (11),
notice that the calculation at line 28 implies
that the diffusion Z; in (11) is

Z; =Exp[(r-02/2) dt + cdWy] .
That is, Z; is the exponential of a Gaussian
random variable with mean (~02/2) and
variance o2. That is, Z; is lognormal. If we

assume the payoff function g(x) = (x-P)*, then
a standard log-normal integration reduces
(1D to

log(x/P) + (r+02 | 2)(T-t),
V(x,t) =X ¢{ 0‘(T-t)”2 7 (12)
! log(x|P) + (r-02/2)(T-t),
—peT(T-t) @f £ AT-D1Z 7

where ®(x) is the standard cumulative nor-
mal distribution. The expression (12) for
V(x,t) is well-known and has been explored
by Miller (1990) using Mathematica.

Directi

With this machinery in place, our plans
include exploring the breadth of input diffu-
sions that can be handled in this manner.
For example, what other stock and bond dif-
fusions are amenable to these operations?
We also plan to add other methods which use
diffusions to solve partial differential equa-
tions, such as the Girsanov transformation.
At some point, we would like to integrate
these techniques into the PDE solving capa-
bilities of version 2 of Mathematica. We also
need better methods for solving expectations
with respect to diffusions as seen in (11). The
solution from the Feynman-Kac theorem is
convenient, but still requires considerable
work and insight to reach the useful expres-
sion in (12).

We gave a single example of the use of
vector diffusions. Vector models increase
the complexity of the symbol management,
and we intend to expand our functions in this
direction.

Beferences

Arnold, L.(1974). Stochastic Differential
Equations: Theory and Applications.
Wiley, New York.

Duffie, D. (1988). Security Markets.
Academic Press, New York.

Gray, T.W. and J. Glynn (1991). Exploring
Mathematics with Mathematica.
Addison-Wesley, Redwood City, CA.

Miller, R. (1990). Computer-aided financial
analysis: an implementation of the
Black-Scholes model. Mathematica
Journal, 1, 75-79.

Steele, M. (1985). MACSYMA as a tool for
statisticians. American Statistical
Association Proceedings of the Statistical
Computing Section, 1-4. American
Statistical Association, Washington.

Stine, R. A. (1990). Mathematica in time
series analysis. American Statistical
Association Proceedings of the Statistical
Computing Section. American
Statistical Association, Washington.

Wolfram, S. (1991). Mathematica: A System

for Doing Mathematics by Computer (end
Edition). Addison-Wesley, Redwood
City, CA.

1 Supported by NSF DMS-8812868, ARO
DAALO3-89-G-0092, AFOSR-89-0301 and
NSA-MDA-904-89-2034.

2 Equipment and software provided by a
grant from Merck, Sharp and Dohme.

