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Abstract. Given a sequence of independent random variables with a common
continuous distribution, we consider the online decision problem where one

seeks to minimize the expected value of the time that is needed to complete

the selection of a monotone increasing subsequence of a prespecified length n.
This problem is dual to the online decision problems that have been considered

earlier, and this dual problem has some notable advantages. In particular, the

recursions and equations of optimality lead with relative ease to asymptotic
formulas for mean and variance of the minimal selection time.
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1. Increasing Subsequences and Time Focused Selection

If X1, X2, . . . is a sequence of independent random variables with a common
continuous distribution F , then

Ln = max{k : Xi1 < Xi2 < · · · < Xik , where 1 ≤ i1 < i2 < · · · < ik ≤ n}

represents the length of the longest monotone increasing subsequence in the sample
{X1, X2, . . . , Xn}. This random variable was considered by Ulam (1961) in the early
days of the Monte Carlo method, but the probability theory of Ln was first engaged
in earnest by Hammersley (1972) who used a clever subadditive argument to show
that E[Ln] ∼ c

√
n as n → ∞ for a constant c ∈ (π/2, e). Not long afterwards,

Veršik and Kerov (1977) and Logan and Shepp (1977) proved that c = 2. Much
later, through a remarkable sequence of developments culminating with Baik, Deift
and Johansson (1999), it was found that n−1/6(Ln−2

√
n) converges in distribution

to the Tracy-Widom law, a new universal law introduced a few years earlier in Tracy
and Widom (1994). The review of Aldous and Diaconis (1999) and the monograph
of Romik (2015) draw connections between the increasing subsequence problem and
topics as diverse as card sorting, triangulation of Riemann surfaces, and the theory
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of partitions. Still more recent variations on the monotone subsequence problem
have been analyzed in Bhatnagar and Peled (2014) and Kiwi and Soto (2015).

Here we consider an online decision problem where the decision maker’s task is to
select as quickly as possible an increasing subsequence of length n. More precisely,
at time i, when the decision maker is first presented with Xi, a decision must be
made either to accept Xi a member of the selected subsequence or else to reject
Xi forever. The decision at time i is assumed to be a deterministic function of the
observations {X1, X2, . . . , Xi}, so the times 1 ≤ τ1 < τ2 < · · · < τn of affirmative
selections give us a strictly increasing sequence stopping times that are adapted to
the sequence of σ-fields Fi = σ{X1, X2, . . . , Xi}, 1 ≤ i <∞.

Here the quantity of most interest is

(1) β(n) := min
π

E[τn]

where the minimum is over all sequences π = (τ1, τ2, . . . , τn) of stopping times such
that

1 ≤ τ1 < τ2 < · · · < τn and Xτ1 < Xτ2 < · · · < Xτn .

Such a sequence π will be called a selection policy, and the set of all such selection
policies with E[τn] <∞ will be denoted by Π(n).

It is useful to note that the value of β(n) is not changed if we replace each Xi

with F−1(Xi), so we may as well assume from the beginning that the Xi’s are all
uniformly distributed on [0, 1]. Our main results concern the behavior of β(n) for
each n ≥ 1 and the structure of the policy that attains the minimum (1).

Theorem 1. The function

n 7→ β(n) = min
π∈Π(n)

E[τn]

is convex, it has initial value β(1) = 1 and for all n ≥ 2 it satisfies the bounds

(2)
1

2
n2 ≤ β(n) ≤ 1

2
n2 + n log n.

One can add some precision to this result by focusing on the subclass of threshold
policies. These are the policies π = (τ1, τ2, . . . , τn) ∈ Π(n) that are determined by
a sequence of real values {ti ∈ [0, 1] : 1 ≤ i ≤ n} and the corresponding recursion

(3) τk+1 = min{i > τk : Xi ∈ [Xτk , Xτk + tn−k(1−Xτk)] }, 0 ≤ k < n,

where the recursion begins with τ0 = 0 and X0 = 0. Here one can think of tn−k as
the “threshold parameter” that specifies the maximum fraction that one would be
willing to spend from a “residual budget” (1−Xτk) to accept a value that arrives
after the time τk when the k’th selection was made.

Theorem 2. There is a unique threshold policy π∗ = (τ∗1 , τ
∗
2 , . . . , τ

∗
n) ∈ Π(n) for

which one has

(4) β(n) = min
π∈Π(n)

E[τn] = E[τ∗n],

and for this optimal policy π∗ one has for all α > 2 that

(5) Var[τ∗n] =
1

3
n3 +O(n2 logα n) as n→∞.
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In the next section, we prove the existence and uniqueness of an optimal thresh-
old policy, and in Section 3 we complete the proof of Theorem 1 after deriving
some recursions that permit the exact computation of the optimal threshold val-
ues. Section 4 deals with the asymptotics of the variance and completes the proof
of Theorem 2. In Sections 5 and 6, we use Theorems 1 and 2 and show how they
can be used to recover some previously known results for the traditional online size-
focused increasing subsequence problem. Finally, in Section 7 we comment briefly
on both alternative methods and underscore some open problems.

2. Threshold Policies: Existence and Optimality

A beneficial feature of the time-focused monotone selection problem is that there
is a natural similarity relationship between the problems of size n and size n − 1.
This “scaled regeneration” leads one to a useful recursion for β(n).

Lemma 1 (Variational Beta Recursion). For all n = 1, 2, . . . we have

(6) β(n) = inf
τ
E
[
τ +

1

1−Xτ
β(n− 1)

]
,

where the minimum is over all stopping times τ and where we initialize the recursion
by setting β(0) = 0.

Proof. To argue by induction, we first note that β(1) = 1, so one can confirm
(6) simply by taking τ = 1. Now take n ≥ 2 and consider any selection policy
π = (τ1, τ2, . . . , τn). If we set π′ = (τ2 − τ1, τ3 − τ1, . . . , τn − τ1), then one can view
π′ as a selection policy for the sequence (X ′1, X

′
2, . . .) = (X1+τ1 , X2+τ1 , . . .) where

one can only make selections from those values that fall in the interval [Xτ1 , 1]. If
we condition on τ1 and Xτ1 , then the definition of β(n− 1) gives us the inequality

τ1 +
β(n− 1)

(1−Xτ1)
≤ τ1 + E[τn − τ1 | τ1, Xτ1 ],

so, if we take the total expectation then the definition of β(n) gives us

(7) β(n) ≤ E[τ1 +
β(n− 1)

(1−Xτ1)
] ≤ E[τn].

Now, we take the infimum in (7) over all π = (τ1, τ2, . . . , τn) ≡ (τ, τ2, . . . , τn) in
Π(n). After this, we use the definition of β(n) = minπ E[τn] one more time to get
a sandwich inequality that proves the identity (6). �

The recursion (6) has several uses. In particular, it helps one to show that there
is a unique threshold policy that achieves the minimal expectation β(n).

Lemma 2 (Existence and Uniqueness of an Optimal Threshold Policy). There are
constants 0 ≤ ti ≤ 1, 1 ≤ i ≤ n, such that the threshold policy π∗ ∈ Π(n) defined
by (3) is the unique optimal policy. That is, for π∗ = (τ∗1 , τ

∗
2 , . . . , τ

∗
n) one has

(8) β(n) = min
π∈Π(n)

E[τn] = E[τ∗n],

and π∗ is the only policy in Π(n) that achieves this minimum.

Proof. The proof again proceeds by induction. The case n = 1 is trivial since the
only optimal policy is to take any element which presented; this is the threshold
policy with t1 = 1 and β(1) = 1.
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For the moment, we consider an arbitrary policy π = (τ1, τ2, . . . , τn) ∈ Π(n).
We have 1 ≤ E[τ1] < ∞, and we introduce a parameter t by setting t = (E[τ1])−1.
Next, we define a new, threshold stopping time τ∗1 by setting

τ∗1 = min{i : Xi < t},

and we note that this construction gives us E[τ∗1 ] = E[τ1] = 1/t. For s ∈ [0, t], we
also have the trivial inequality

1(Xτ1 < s) ≤
τ1∑
i=1

1(Xi < s),

so by Wald’s equation we also have

(9) P(Xτ1 < s) ≤ E[

τ1∑
i=1

1(Xi < s)] = sE[τ1] = s/t.

The definition of τ∗1 implies that Xτ∗
1

is uniformly distributed on [0, t], so we further
have P(Xτ∗

1
< s) = min{1, s/t}, so comparison with (9) gives us the domination

relation

(10) P(Xτ1 < s) ≤ P(Xτ∗
1
< s) for all 0 ≤ s ≤ 1.

From (10) and the monotonicity of x 7→ (1− x)−1, we have by integration that

(11) E[
β(n− 1)

1−Xτ∗
1

)] ≤ E[
β(n− 1)

1−Xτ1

];

moreover, one has a strict inequality in (10) and (11) unless τ∗1 = τ1 with probability
one.

If we now add E[τ∗1 ] = E[τ1] to the corresponding sides of (11) and take the
infimum over all τ1, then the beta recursion (6) gives us

E[τ∗1 ] + E
[
β(n− 1)

1−Xτ∗
1

)

]
≤ inf

τ1

{
E[τ1] + E[

β(n− 1)

1−Xτ1

]

}
= β(n).

In other words, the first selection of an optimal policy is given by uniquely by a
threshold rule.

To see that all subsequent selections must be made by threshold rules, we just
need to note that given the time τ1 and valueXτ1 = x of the first selection, one is left
with a selection problem of size n−1 from the smaller set {Xi : i > τ1 andXi > x}.
The induction hypothesis applies to this problem of size n− 1, so we conclude that
there is a unique threshold policy (τ∗2 , τ

∗
3 , . . . , τ

∗
n) that is optimal for these selections.

Taken as a whole, we have a unique threshold policy (τ∗1 , τ
∗
2 , . . . , τ

∗
n) ∈ Π(n) for the

problem of selecting an increasing subsequence of size n in minimal time. �

Lemma 2 completes the proof of the first assertion (4) of Theorem 2. After we
develop a little more information on the behavior of the mean, we will return to
the proof of the second assertion (5) of Theorem 2.

3. Lower and Upper Bounds for the Mean

The recursion (6) for β(n) is informative, but to determine the asymptotic be-
havior of β(n), we need more concrete and more structured recursions. The key
relations are summarized in the next lemma.
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Lemma 3 (Recursions for β(n) and the Optimal Thresholds). For each x ≥ 1 and
t ∈ (0, 1) we let

(12) g(x, t) =
1

t
+
x

t
log

(
1

1− t

)
, G(x) = min

0<t<1
g(x, t), and

(13) H(x) = arg min
0<t<1

g(x, t).

We then have β(1) = 1, and we have the recursion

(14) β(n+ 1) = G(β(n)) for all n ≥ 1.

Moreover, if the deterministic sequence t1, t2, . . . is defined by the recursion

(15) t1 = 1 and tn+1 = H(β(n)) for all n ≥ 1,

then the minimum in the defining equation (1) for β(n) is uniquely achieved by the
sequence of stopping times given by the threshold recursion (3).

Proof. An optimal first selection time has the form τ1 = min{i : Xi < t}, so we can
rewrite the recursion (6) as

β(n) = min
0<t<1

{
1

t
+ E[

β(n− 1)

1−Xτ1

]

}
= min

0<t<1

{
1

t
+
β(n− 1)

t

∫ t

0

1

1− s
ds

}
= min

0<t<1
g(t, β(n− 1)) ≡ G(β(n− 1)).(16)

The selection rule for the first element is given by τ1 = min{i : Xi < tn} so by (16)
and the definitions of g and H we have tn = H(β(n− 1)). �

Lemma 3 already gives us enough to prove the first assertion of Theorem 1 which
states that the map n 7→ β(n) is convex.

Lemma 4. The map n 7→ ∆(n) := β(n+ 1)− β(n) is an increasing function.

Proof. One can give a variational characterization of ∆ that makes this evident.
First, by the defining relations (12) and the recursion (14) we have

β(n+ 1)− β(n) = G(β(n))− β(n)

= min
0<t<1

{
1

t
+ β(n)

[
1

t
log

(
1

1− t

)
− 1

]}
,

so if we set

ĝ(x, t) =
1

t
+ x

[
1

t
log

(
1

1− t

)
− 1

]
,

then we have

(17) ∆(n) = β(n+ 1)− β(n) = min
0<t<1

ĝ(β(n), t).

Now, for 0 ≤ x ≤ y and t ∈ (0, 1) we then have

ĝ(x, t)− ĝ(y, t) = (x− y)

[
1

t
log

(
1

1− t

)
− 1

]
= (x− y)

∞∑
k=2

1

k
tk−1 ≤ 0;

so from the monotonicity β(n) ≤ β(n+ 1), we get

ĝ(β(n), t) ≤ ĝ(β(n+ 1), t) for all 0 < t < 1.

When we minimize over t ∈ (0, 1), we see that (17) gives us ∆(n) ≤ ∆(n+ 1). �
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We next show that the two definitions in (12) can be used to give an a priori
lower bound on G. An induction argument using the recursion (14) can then be
used to obtain the lower half of (2).

Lemma 5 (Lower Bounding G Recursion). For the function x 7→ G(x) defined by
(12), we have

(18)
1

2
(x+ 1)2 ≤ G

(
x2

2

)
for all x ≥ 1.

Proof. To prove (18), we first note that by (12) it suffices to show that one has

(19) δ(x, t) = (x+ 1)2t− 2− x2 log

(
1

1− t

)
≤ 0

for all x ≥ 1 and t ∈ (0, 1). For x ≥ 1 the map t 7→ δ(x, t) is twice-continuous
differentiable and concave in t. Hence there is a unique value t∗ ∈ (0, 1) such that
t∗ = argmax0<t<1δ(x, t), and such that t∗ = t∗(x) satisfies the first order condition

(x+ 1)2 − (1− t∗)−1x2 = 0.

Solving this equation gives us

t∗ =
2x+ 1

(x+ 1)2
, and δ(x, t∗) = −1 + 2x− 2x2 log

(
1 +

1

x

)
,

so the familiar bound

1

x
− 1

2x2
≤ log

(
1 +

1

x

)
for x ≥ 1,

gives us

δ(x, t) ≤ δ(x, t∗) ≤ −1 + 2x− 2x2

(
1

x
− 1

2x2

)
= 0,

and this is just what we needed to complete the proof of (19). �

Now, to argue by induction, we consider the hypothesis that one has

(20)
1

2
n2 ≤ β(n).

This holds for n = 1 since β(1) = 1, and, if it holds for some n ≥ 1, then by the
monotonicity of G we have G(n2/2) ≤ G(β(n)). Now, by (18) and (14) we have

1

2
(n+ 1)2 ≤ G(n2/2) ≤ G(β(n)) = β(n+ 1),

and this completes our induction step from (20). Finally, to complete the proof of
Theorem 1, it only remains to prove the upper half of (2). The argument again
depends on an a priori bound on G. The proof is brief but delicate.

Lemma 6 (Upper Bounding G Recursion). For the function x 7→ G(x) defined by
(12) one has

G(
1

2
x2 + x log(x)) ≤ 1

2
(x+ 1)2 + (x+ 1) log(x+ 1) for all x ≥ 1.
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Proof. If we set f(x) := x2/2 + x log(x), then we need to show that

G(f(x)) ≤ f(x+ 1).

If we take t′ = 2/(x+ 2) then the defining relation (12) for G tells us that

(21) G(f(x)) ≤ g(f(x), t′) =
x+ 2

2
+
x+ 2

2
log

(
1 +

2

x

)
f(x).

Next, for any y ≥ 0 integration over (0, y) of the inequality

1

u+ 1
≤ u2 + 2u+ 2

2(u+ 1)2
implies the bound log(1 + y) ≤ y(y + 2)

2(y + 1)
.

If we now set y = 2/x and substitute this last bound in (21), we obtain

G(f(x)) ≤ x

2
+ 1 +

(
1 +

1

x

)
f(x)

= f(x+ 1) +
1

2
+ (x+ 1){log(x)− log(x+ 1)} ≤ f(x+ 1),

just as needed to complete the proof of the lemma. �

One can now use Lemma 6 and induction to prove that for all n ≥ 2 one has

(22) β(n) ≤ n2

2
+ n log(n).

Since β(2) = G(1) = min0<t<1 g(1, t) < 3.15 and 2(1 + log(2)) ≈ 3.39, one has (22)
for n = 2. Now, for n ≥ 2, the monotonicity of G gives us that

β(n) ≤ 1

2
n2 + n log(n) implies G(β(n)) ≤ G(

1

2
n2 + n log(n)).

Finally, by the recursion (14) and Lemma 6 we have

β(n+ 1) = G(β(n)) ≤ G(
1

2
n2 + n log(n))

≤ 1

2
(n+ 1)2 + (n+ 1) log(n+ 1).

This completes the induction step and establishes (22) for all n ≥ 2. This also
completes last part of the proof of Theorem 1.

4. Asymptotics for the Variance

To complete the proof of Theorem 2, we only need to prove that one has the
asymptotic formula (5) for Var[τ∗n]. This will first require an understanding of the
size of the threshold tn, and we can get this from our bounds on β(n) once we have
an asymptotic formula for H. The next lemma gives us what we need.

Lemma 7. For x 7→ G(x) and x 7→ H(x) defined by (12) and (13), we have for
x→∞ that

(23) G(x) = (x1/2 + 2−1/2)2(1 +O(1/x)) and

(24) H(x) = (2/x)1/2(1 +O(x−1/2)).
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Proof. For any fixed x ≥ 1 we have g(t, x) → ∞ when t → 0 or t → 1, so the
minimum of g(t, x) is obtained at an interior point 0 < t < 1. Computing the
t-derivative gt(t, x) gives us

gt(t, x) = − 1

t2
− x

t2
log(

1

1− t
) +

x

t(1− t)
,

so the first order condition gt(t, x) = 0 implies that at the minimum we have the
condition

1

t2
= − x

t2
log(

1

1− t
) +

x

t(1− t)
.

Writing this more informatively as

(25)
1

x
= log(1− t) +

t

1− t
=
t2

2
+

∞∑
i=3

i− 1

i
ti,

we see the right-hand side is monotone in t, so there is a unique value t∗ = t∗(x)
that solves (25) for t. The last sum on the right-hand side of (25) tells us that

1

2
t2∗ ≤

1

x
or, equivalently, t∗ ≤

√
2

x
,

and when we use these bounds in (25) we have

t2∗
2
≤ 1

x
≤ t2∗

2
+

∞∑
i=3

(
2

x
)i/2 ≤ t2∗

2
+O(x−3/2).

Solving these inequalities for t∗, we then have by the definition (13) of H that

(26) H(x) = t∗ =

√
2

x

(
1 +O(x−1/2)

)
.

Finally, to confirm the approximation (23), we substitute H(x) = t∗ into the defi-
nition (12) of G and use the asymptotic formula (26) for H(x) to compute

G(x) = g(x, t∗) =
1

t∗
+
x

t∗
log

(
1

1− t∗

)
=

1

t∗
(1 + x

∞∑
i=1

ti∗
i

)

=
1

t∗
(1 + xt∗ +

xt2∗
2

+O(xt∗
3)) =

1

t∗
(xt∗ + 1 +

xt2∗
2

) +O(1)

= x+ 2

√
x

2
+O(1) =

(
x1/2 + 2−1/2

)2(
1 +O(

1

x
)
)
,

and this completes the proof of the lemma. �

The recursion (15) tells us that tn = H(β(n)) and the upper and lower bounds
(2) of Theorem 1 tell us that β(n) = n2/2+O(n log n), so by the asymptotic formula
(24) for H we have

(27) tn =
2

n
+O(n−2log n).

To make good use of this formula we only need two more tools. First, we need to
note that random τ∗n satisfies a naturally distributional identity. This will lead in
turn to a recursion from which we can extract the required asymptotic formula for
v(n) = Var(τ∗n).

If tn is the threshold value defined by the recursion (15), we let γ(tn) denote a
geometric random variable of parameter p = tn and we let U(tn) denote a random
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variable with the uniform distribution on the interval [0, tn]. Now, if we take the
random variables γ(tn), U(tn), and τn−1 to be independent, then we have the
distributional identity,

(28) τ∗n
d
= γ(tn) +

τ∗n−1

(1− U(tn))
,

and this leads to a useful recursion for the variance of τ∗n. To set this up, we first
put

R(t) = (1− U(t))−1

where U(t) is uniformly distributed on [0, t], and we note

(29) E[R(t)] = −t−1 log(1− t) = 1 + t/2 + t2/3 +O(t3);

moreover, since E[R2(t)] = (1− t)−1 = 1 + t+ t2 +O(t3), we also have

(30) Var[R(t)] = (1− t)−1 − t−2 log2(1− t) =
t2

12
+O(t3).

Lemma 8 (Approximate Variance Recursion). For the variance v(n) := Var(τ∗n)
one has the approximate recursion

(31) v(n) =
(

1 +
2

n
+O(

log n

n2
)
)
v(n− 1) +

n2

3
+O(n log n).

Proof. By independence of the random variables on the right side of (28), we have

(32) v(n) = Var(γ(tn)) + Var[R(tn)τ∗n−1].

From (27) we have tn = 2/n+O(n−2log n), so for the first summand we have

(33) Var(γ(tn)) =
1

t2n
− 1

tn
=
n2

4
+O(n log n).

To estimate the second summand, we first use the complete variance formula and
independence to get

Var(R(tn)τ∗n−1) = E[R2(tn)]E[(τ∗n−1)2]− E[R(tn)]2(E[τ∗n−1])2

= E[R2(tn)]v(n− 1) + Var[R(tn)](E[τ∗n−1])2.(34)

Now from (27) and (30) we have

Var[R(tn)] =
1

3
n−2 +O(n−3 log n),

and from (2) we have

(E[τ∗n−1])2 = {(n− 1)2/2 +O(n log n)}2 =
1

4
n4 +O(n3 log n),

so from (32), (33) and (34) we get

v(n) = {1 +
2

n
+O(n−2 log n)}v(n− 1) +

n2

3
+O(n log n),

and this completes the proof of (31). �

To conclude the proof of Theorem 2, it only remains to show that the approxi-
mate recursion (31) implies the asymptotic formula

(35) v(n) =
1

3
n2(n+ 1) +O(n2 logα n) for α > 2.
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If we define r(n) by setting v(n) = 3−1n2(n + 1) + r(n), then substitution of v(n)
into (31) gives us a recursion for r(n),

r(n) = (1 + 2/n+O(n−2 log n))r(n− 1) +O(n log n).

We then consider the normalized values r̂(n) = r(n)/(n2 logα(n)), and we note they
satisfy the recursion

(36) r̂(n) = (1 +O(n−2))r̂(n− 1) +O(n−1 logα−1 n).

This is a recursion of the form r̂(n+ 1) = ρnr̂(n) + εn, and one finds by induction
its solution has the representation

r̂(n) = r̂(0)ρ0ρ1 · · · ρn−1 +

n−1∑
k=0

εkρk+1 · · · ρn−1.

Here, the product of the “evolution factors” ρn is convergent and the sum of the
“impulse terms” εn is finite, so the sequence r̂(n) is bounded, and, consequently,
(31) gives us (35). This completes the proof of the last part of Theorem 2.

5. Suboptimal Policies and a Blocking Inequality

Several inequalities for β(n) can be obtained through the construction of sub-
optimal policies. The next lemma illustrates this method with an inequality that
leads to an alternative proof of (20), the uniform lower bound for β(n).

Lemma 9 (Blocking Inequality). For nonnegative integers n and m one has the
inequality

(37) β(mn) ≤ min{m2β(n), n2β(m)}.

Proof. First, we fix n and we consider a policy π∗ that achieves the minimal ex-
pectation β(n). The idea is to use π∗ to build a suboptimal π′ policy for the
selection of an increasing subsequence of length mn. We take Xi, i = 1, 2, . . . to
be a sequence of independent random variables with the uniform distribution on
[0, 1], and we partition [0, 1] into the subintervals I1 = [0, 1/m), I2 = [1/m, 2/m),
..., Im = [(m− 1)/m, 1]. We define π′ by three rules:

(i) Beginning with i = 1 we say Xi is feasible value if Xi ∈ I1. If Xi is feasible, we
accept Xi if Xi would be accepted by the policy π∗ applied to the sequence
of feasible values after we rescale those values to be uniform in [0, 1]. We
continue this way until the time τ ′1 when we have selected n values.

(ii) Next, beginning with i = τ ′1, we follow the previous rule except that now we
say Xi is feasible value if Xi ∈ I2. We continue in this way until time τ ′1 + τ ′2
when n additional increasing values have been selected.

(iii) We repeat this process m− 2 more times for the successive intervals I3, I4,...,
Im.

At time τ ′1 + τ ′2 + · · · + τ ′m, the policy π′ will have selected nm increasing values.
For each 1 ≤ j ≤ m we have E[τ ′j ] = mβ(n), so by suboptimality of π′ we have

β(mn) ≤ E[τ ′1 + τ ′2 + · · ·+ τ ′m] = m2β(n).

We can interchange the roles of m and n, so the proof of the lemma is complete. �
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The blocking inequality (37) implies that even the crude asymptotic relation
β(n) = 1

2n
2 +o(n2) is strong enough to imply the uniform lower bound 1

2n
2 ≤ β(n).

Specifically, one simply notes from (37) and β(n) = 1
2n

2 + o(n2) that

β(mn)

(mn)2
≤ β(n)

n2
and lim

m→∞

β(mn)

(mn)2
=

1

2
.

This derivation of the uniform bound 1
2n

2 ≤ β(n) seems to have almost nothing in
common with the proof by induction that was used in the proof of Lemma 6. Still,
it does require the bootstrap bound β(n) = 1

2n
2 + o(n2), and this does require at

least some of the machinery of Lemma 3.

6. Duality and the Size-Focused Selection Problem

In the online size-focused selection problem one considers a set of policies Πs(n)
that depend on the size n of a sample {X1, X2, . . . , Xn}, and the goal is to make
sequential selections in order to maximize the expected size of the selected increasing
subsequence. More precisely, a policy πn ∈ Πs(n) is determined by stopping times
τi, i = 1, 2, ... such that 1 ≤ τ1 < τ2 < · · · < τk ≤ n and Xτ1 ≤ Xτ2 ≤ · · · ≤ Xτk .
The random variable of interest is

Lon(πn) = max{k : Xτ1 < Xτ2 < · · · < Xτk where(38)

1 ≤ τ1 < τ2 < · · · < τk ≤ n},

and most previous analyses have focused on the asymptotic behavior of

(39) `(n) := max
πn∈Πs(n)

E[Lon(πn)].

For example, Samuels and Steele (1981) found that `(n) ∼
√

2n, but now a number
of refinements of this are known. Our goal here is to show how some of these
refinements follow from the preceding theory.

Uniform Upper Bound for `(n) via Duality.

Perhaps the most elegant refinement of `(n) ∼
√

2n is the following uniform
upper bound that follows from the related analysis of Bruss and Robertson (1991)
and Gnedin (1999).

Proposition 1 (Uniform Upper Bound). For all n ≥ 1, one has

(40) `(n) ≤
√

2n.

This proposition is now well understood, but it is instructive to see how it can
be derived from β(n) = (1/2)n2 + O(n log n). The basic idea is to exploit duality
with a suboptimality argument like the one used in Section 5, but here a bit more
work is required.

We fix n, and, for a much larger integer k, we set

(41) Nk = b(k − 2k2/3)`(n)c and rk = bk − k2/3c.

The idea of the proof is to give an algorithm that is guaranteed to select from
{X1, X2, . . .} an increasing subsequence of length Nk. If Tk is the number of the
elements that the algorithm inspects before returning the increasing subsequence,
then by the definition of β(·) we have β(Nk) ≤ E[Tk]; one then argues that (40)
follows from this relation.
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We now consider [0, 1] and for 1 ≤ i ≤ rk, we consider the disjoint intervals
Ii = [(i − 1)/k, i/k) and a final “reserve” interval I∗ = [rk/k, 1] that is added to
complete the partition of [0, 1]. Next, we let ν(1) be the first integer such that

S1 := {X1, X2, . . . , Xν(1)} ∩ I1
has cardinality n, and for each i > 1 we define ν(i) to be least integer greater ν(i−1)
for which the set Si := {Xν(i−1)+1, Xν(i−1)+2, . . . , Xν(i)} ∩ Ii has cardinality n. By
Wald’s lemma and (41) we have

(42) E[ν(rk)] = nkrk where rk = bk − k2/3c.

Now, for each 1 ≤ i ≤ n, we run the optimal fixed horizon sequential selection
algorithm on Si, and we let L(n, i) be the length of the subsequence that we obtain.
The random variables L(n, i), 1 ≤ i ≤ rk, are independent, identically distributed,
and with mean equal to `(n). We then set

L(n, rk) = L(n, 1) + L(n, 2) + · · ·+ L(n, rk),

and we note that if L(n, rk) ≥ Nk, for Nk as defined in (41), then we have extracted
an increasing subsequence of length at least Nk; in this case, we halt the procedure.

On the other hand if L(n, rk) < Nk, we need to send in the reserves. Specifically,
we recall that I∗ = [rk/k, 1] and we consider the post-ν(rk) reserve subsequence

S∗ := {Xi : i > ν(rk) and Xi ∈ I∗}.

We now rescale the elements of S∗ to the unit interval, and we run the optimal
time-focused algorithm on S∗ until we get an increasing sequence of length Nk. If
we let R(n, k) denote the number of observations from S∗ that are examined in this
case, then we have E[R(n, k)] = β(Nk) by the definition of β. Finally, since I∗ has
length at least k−1/3, the expected number of elements of {Xi : i > ν(rk)} that
need to be inspected before we have selected our increasing subsequence of length
Nk is bounded above by k1/3β(Nk).

The second phase of our procedure may seem wasteful, but one rarely needs to
use the reserve subsequence. In any event, our procedure does guarantee that we
find an increasing subsequence of length Nk in a finite amount of time Tk. By (42)
and the upper bound k1/3β(Nk) on the incremental cost when one needs to use the
reserve subsequence, we have

(43) β(Nk) ≤ E[Tk] ≤ knrk + {knrk + k1/3β(Nk)}P(L(n, rk) < Nk),

where, as noted earlier, the first inequality comes from the definition of β.
The summands of L(n, rk) are uniformly bounded by n and E[L(n, rk)] = rk`(n),

so by the definition (41) of Nk and rk we see from Hoeffding’s inequality that

P(L(n, rk) < Nk) ≤ P
(
L(n, rk)− E[L(n, rk)] < −(k2/3 − 1)`(n)

)
(44)

≤ exp{−Ank1/3},

for constants An, Kn, and all k ≥ Kn. The exponential bound (44) tells us that for
each n there is a constant Cn such that the last summand in (43) is bounded by Cn
for all k. By the bounds (2) of Theorem 1 we have β(Nk) = (1/2)N2

k+O(Nk logNk),
and by (41) we have

Nk = (k − 2k2/3)`(n) +O(1), rk = k − k1/3 +O(1),
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so, in the end, our estimate (43) tell us

1

2
`2(n){k2 − 2k5/3 + 4k4/3} ≤ k2n+ on(k2).

When we divide by k2 and let k →∞, we find `(n) ≤
√

2n, just as we hoped.

Lower Bounds for `(n) and the Duality Gap.

One can use the time-focused tools to get a lower bound for `(n), but in this case
the slippage, or duality gap, is substantial. To sketch the argument, we first let Tr
denote the time required by the optimal time-focused selection policy to select r
values. We then follow the r-target time-focused policy. Naturally, we stop if we
have selected r values, but if we have not selected r values by time n, then we quit,
no matter how many values we have selected. This suboptimal strategy gives us
the bound rP(Tr ≤ n) ≤ `(n), and from this bound and Chebyshev’s inequality, we
then have

(45) r{1−Var(Tr)/(n− E[Tr])
2} ≤ `(n).

If we then use the estimates (2) and (5) for E[Tr] and Var[Tr] and optimize over
r, then (45) gives us the lower bound (2n)1/2 − O(n1/3). However in this case the
time-focused bounds and the duality argument leave a big gap.

Earlier, by different methods — and for different reasons — Rhee and Talagrand
(1991) and Gnedin (1999) obtained the lower bound (2n)1/2 − O(n1/4) ≤ `(n).
Subsequently, Bruss and Delbaen (2001) studied a continuous time interpretation
of the online increasing subsequence problem where the observations are presented
to the decision maker at the arrival times of a unit-rate Poisson process on the
time interval [0, t), and, in this new formulation, they found the stunning lower

bound
√

2t−O(log t). Much later, Arlotto, Nguyen and Steele (2014) showed by a
de-Poissonization argument that the lower bound of Bruss and Delbaen (2001) can
be used to obtain

√
2n−O(log n) ≤ `(n) for all n ≥ 1

under the traditional discrete time model for sequential selection. Duality estimates
such as (45) are unlikely to recapture this bound.

7. Observations, Connections, and Problems

A big challenge that remains is to determine the asymptotic distribution of τ∗n,
the time at which one completes the selection of n increasing values by following the
unique optimal policy π∗ that minimizes the expected time E[τ∗n] = β(n). By The-
orems 1 and 2 we know the behavior of the mean E[τ∗n] and of the variance Var[τ∗n]
for large n, but this does not bring one as close to a distributional limit theorem as
one might hope. The crux of the problem is that τ∗n may be substantially influenced
by the time to achieve the last few selections, so anything resembling a central limit
theorem for τ∗n seems unlikely.1 In a way this is ironic, since for the online size-
focused selection problem, two central limit theorems are available. The first was
obtained by Bruss and Delbaen (2004) in the context of the model introduced in
Bruss and Delbaen (2001), and the second was obtained by Arlotto, Nguyen and
Steele (2014) in the traditional context of the online size-focused selection prob-
lem that was described in Section 6. The proof of the second CLT depends on a

1We are pleased to thank Svante Janson for this last observation.
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direct argument using martingales, and it does not appeal to a de-Poissonization
argument.

Another natural challenge concerns unimodal subsequence selection problems.
In the corresponding size-focused problem, the random variable of interest is

Uon(πn) = max{k : Xτ1 < Xτ2 < · · · < Xτt < Xτt+1
< · · · < Xτk , where

1 ≤ τ1 < τ2 < · · · < τk ≤ n},

and where each τk is a stopping time. Here, Arlotto and Steele (2011) found that
one has

max
πn

E[Uon(πn)] ∼ 2
√
n, as n→∞.

The analogous time-focused selection problem is again easy to pose, but, its analysis
is not easy. In particular, the formulation of a useful analog of Lemma 3 seems
problematical.
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