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Abstract. Motivated by “condensation” phenomena often observed in social networks
such as Twitter where one “superstar” vertex gains a positive fraction of the edges, while
the remaining empirical degree distribution still exhibits a power law tail, we formulate a
mathematically tractable model for this phenomenon which provides a better fit to em-
pirical data than the standard preferential attachment model across an array of networks
observed in Twitter. Using embeddings in an equivalent continuous time version of the
process, and adapting techniques from the stable age-distribution theory of branching
processes, we prove limit results for the proportion of edges that condense around the su-
perstar, the degree distribution of the remaining vertices, maximal non-superstar degree
asymptotics, and height of these random trees in the large network limit.

1. Retweet Graphs and a mathematically tractable Model

Our goal here is to provide a simple model that captures the most salient features of
a natural graph that is determined by the Twitter traffic generated by public events. In
the Twitter world (or Twitterverse), each user has a set of followers; these are people who
have signed-up to receive the tweets of the user. Here our focus is on retweets; these are
tweets by a user who forwards a tweet that was received from another user. A retweet is
sometimes accompanied with comments by the retweeter.

Let us first start with an empirical example which contains all the characterstics ob-
served in a wide array of such retweet networks. Data was collected during the Black
Entertainment Television (BET) Awards of 2010. We first considered all tweets in the
Twitterverse that were posted between 10 AM and 4 PM (GMT) on the day of the cere-
mony, and we then restricted attention to all the tweets in the Twitterverse that contained
the term “BET Awards.” We view the posters of these tweets as the vertices of an undi-
rected simple graph where there is an edge between vertices v and w if w retweets a tweet
received from v, or vice-versa. We call this graph the retweet graph.

In the retweet graph for the 2010 BET Awards one finds a single giant component (see
Figure 1.1). There are also many small components (with five or fewer vertices) and a
large number of isolated vertices. The giant component is also approximately a tree in

Date: November 14, 2012,
Key words: dynamic networks, preferential attachment, continuous time branching processes, multi-type
branching processes, Twitter, social networks, retweet graph.
MSC2000 subject classification. 60C05, 05C80, 90B15.

Shankar Bhamidi: University of North Carolina, Chapel Hill, NC 27599. Email address:
bhamidi@email.unc.edu.

J. M. Steele: The Wharton School, Department of Statistics, Huntsman Hall 447, University of Penn-
sylvania, Philadelphia, PA 19104. Email address: steele@wharton.upenn.edu.

Tauhid Zaman: Sloan School of Management, Massachusetts Institute of Technology, Cambridge, MA
02142. Email address: zlisto@mit.edu.

1

ar
X

iv
:1

21
1.

30
90

v1
  [

m
at

h.
PR

]  
13

 N
ov

 2
01

2



2

Figure 1.1. Giant component of the 2010 BET Awards retweet graph.

the sense that if we remove 91 edges from the graph of 1724 vertices and 1814 edges we
obtain an honest tree. Finally, the most compelling feature of this empirical tree is that
it has one vertex of exceptionally large degree. This “superstar” vertex has degree 992, so
it is connected to more than 57% of the vertices. As it happens, this “superstar” vertex
corresponds to the pop-celebrity Lady Gaga who received an award at the ceremony.

1.1. Superstar Model for the giant component. Our main observation is that the
qualitative and quantitative features the giant component of the retweet graph may be
captured rather well by a simple one-parameter model. The construction of the model
only makes an obvious modification of the now classic preferential attachment model, but
this modification turns out to have richer consequences than its simplicity would suggest.
Naturally, the model has the “superstar” property baked into the cake, but a surprising
consequence is that the distribution of the degrees of the non-superstar vertices is totally
different from what one finds in the preferential attachment model.

To construct the model we consider a graph evolution process that we denote by {Gn,
n = 1, 2, . . .}. The graph G1 consists of the single vertex v0, and we call v0 the superstar.
The graphG2 then consists of the superstar v0 , a non-superstar v1, and an edge between the
two vertices. For n ≥ 2, we then construct Gn+1 from Gn by attaching the vertex vn to the
superstar with probability 0 < p < 1 while with probability q = 1−p we attach vn to a non-
superstar according to the classical preferential attachment rule. That is, with probability
q the non-superstar vn is attached to one of the non-superstars {v1, v2, . . . , vn−1}, and given
that vn is attached to a non-superstar, it is attached to the vertex vi, 1 ≤ i ≤ n− 1, with
probability that is proportional to the degree of vi in Gn.

1.2. Organization of the paper. The rest of the paper is organized as follows. In the
next section, we state the main mathematical results for the Superstar Model. We discuss
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previous work analyzing Twitter networks and the connection between the model analyzed
in this paper and existing models in Section 3. In Section 4 we study the performance
of this model on various real networks constructed from the Twitterverse and compare
this to the standard preferential attachment model. Section 5 is the heart of the paper
where we construct a special two type continuous time branching process which turns out
to be equivalent to the Superstar Model and analyze various structural properties of this
continuous time model. In Section 6 we prove the equivalence between the continuous time
model and the Superstar Model through a surgery operation. In Section 7 we complete
the proofs of all the main results by using the equivalence between the two models and the
proven properties of the continuous time model to read off results for the Superstar Model.

2. Mathematical Results for the Superstar Model

Let {Gn, n = 1, 2, . . .} denote a graph process that follows the the Superstar Model
with parameter 0 < p < 1. We shall think about all the processes constructed on a single
probability space through the obvious sequential growth mechanism so that one can make
almost sure statements. As before, the first vertex v0 is called the “superstar.” and the
remaining vertices are non-superstars. The degree of the vertex v in the graph G is denoted
by deg(v,G). The first result describes asymptotics of the condensation phenomena around
the superstar.

Theorem 2.1 (Superstar Strong Law). With probability one, we have

lim
n→∞

1

n
deg(v0, Gn) = p. (2.1)

The next result describes the asymptotic degree distribution.

Theorem 2.2 (Degree Distribution Strong Law). With probability one we have

lim
n→∞

1

n
card {1 ≤ j ≤ n : deg(vj , Gn) = k} = νSM (k, p) ,

where νSM (·, p) is the probability mass function defined by

νSM (k, p) =
2− p

1− p
(k − 1)!

k∏
i=1

(
i+

2− p

1− p

)−1

.

Remark 2.3. This theorem implies that the degree distribution of the non-superstar vertices
have a power law tail. Specifically,

2− p

1− p
(k − 1)!

k∏
i=1

(
i+

2− p

1− p

)−1

∼ Cpk
−α ,

as k → ∞ for the constants α = (3− 2p)/(1− p) and Cp = (2− p)/(1− p)Γ(α)e2+α.

The next theorem concerns the largest degree amongst all the non-superstar vertices
{vi : 1 ≤ i ≤ n}. Let

Υn := max
1≤i≤n

deg(vi, Gn).
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Theorem 2.4 (Maximal non-superstar degree). Let γ = (1−p)/(2−p). There exists
a non-degenerate strictly positive finite random variable Δ∗ such that with probability one
we have

lim
n→∞

1

nγ
Υn = Δ∗.

The almost sure linear growth of the degree of the superstar (Theorem 2.1) is to be
expected from our construction. The scaling of the second largest degree vertex underscores
a notable divergence from the preferential attachment model where the maximal degree
grows at the rate O(n1/2) [20].

Recall that Gn is a tree. We shall think of this tree as rooted at the superstar v0. Let
H(Gn) denote the graph distance of the vertex furthest from the root. Call this the height
of Gn. Theorem 2.1 implies that a fraction p of the network is directly connected to the
superstar. One immediately wonders if this reflects a general property of the network, does
the height H(Gn) = Op(1) as n → ∞? The next theorem shows that in fact the height of
the tree increases logarithmically in the size of the network.

Theorem 2.5 (Logarithmic height scaling). Let W (·) be the Lambert special function
with W (1/e) ≈ 0.2784. Then with probability one we have

lim
n→∞

1

log n
H(Gn) =

1− p

W (1/e)(2− p)
.

3. Related results and questions

The fields of social networks and attachment models have witnessed an explosive growth
over the last few years. In this Section we briefly discuss the connections between this model
and some of the more standard models in the literature as well as extensions of the results
in the paper. We also discuss previous empirical research done on the structure of Twitter
networks.
(a) Preferential attachment: This has become one of the standard workhorses in the
complex networks community. It is almost impossible to provide even a partial list of
references but see [7] for bringing this model to the attention of the networks community,
[22],[13] for survey level treatments of a wide array of models, [9] for the first rigorous results
on the asymptotic degree distribution, and [11], [8], [26], and [14] and the references therein
for more general models and results. Restricting ourselves to the simplest case, one starts
with two vertices connected by a single edge as in the Superstar Model and then each new
vertex joins the system by connecting to a single vertex in the current tree by choosing
this vertex with probability proportional to its degree. In this case, one can show ([9]) that
there exists a limiting asymptotic degree distribution such that with probability one

lim
n→∞

1

n
card {1 ≤ j ≤ n : deg(vj , Gn) = k} =

4

k(k + 1)(k + 2)
,

thus exhibiting a degree exponent of three. The Superstar Model changes the degree ex-
ponent of the non-superstar vertices from three to (3 − 2p)/(1 − p) (see Theorem 2.4).

Further, for the preferential attachment model the maximal degree scales like n1/2 ([20]),
while for the Superstar Model, the maximal non-superstar degree scales like nγ with
γ = (1− p)/(2− p).
(b) Statistical estimation: We use real data on various Twitter streams to analyze the
empirical performance of the Superstar Model and compare this with typical preferential
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attachment models in Section 4. Estimating the parameters from the data raises a host
of new interesting statistical questions. See [27] where such questions were first raised and
likelihood based schemes were proposed in the context of usual preferential attachment
models. Considering how often such models are used to draw quantitative conclusions
about real networks, proving consistency of such procedures as well as developing method-
ology to compare different estimators in the context of models of evolving networks would
be of great interest to a number of different fields.
(c) Stable age distribution: The proofs for the degree distribution build heavily on the
analysis of the stable age distribution for a single type continuous time branching process
in [21]. We extend this analysis to the context of a two type variant whose evolution
mirrors the discrete type model. Using Perron-Frobenius theory a wide array of structural
properties are known about such models (see [17]). The models used in our proof tech-
nique are relatively simpler and we can give complete proofs using special properties of the
continuous time embeddings, including special martingales which play an integral role in
the treatment (see e.g. Proposition 5.3). There have been a number of recent studies on
various preferential attachment models using continuous time branching processes, see e.g.
[25, 5, 12]. For the usual preferential attachment model (p = 0), [24] using embeddings in
continuous time and results on the first birth time in such branching processes [18] shows
that the height satisfies

H(Gn)

log n

a.s.−→ 1

2W (1/e)

We use a similar technique but we first need to extend [18] to the multi-type setting, of
relevance to us.
(d) Previous analysis of Twitter networks: The majority of work analyzing Twitter
networks has been empirical in nature. In one of the earliest studies of Twitter networks
[19] the authors looked at the degree distribution of the different networks in Twitter,
including retweet networks associated with individual topics. Power-laws were observed,
but no model was proposed to describe the network evolution. In [4] the link between
maximum degree and the range of time for which a topic was popular or “trending” was
investigated. Correlations between the degree in retweet graphs and the Twitter follower
graph for different users was studied in [10]. These empirical analyses provided many
important insights into the structure of networks in Twitter. However, the lack of a model
to describe the evolution of these networks is one of the important unanswered questions
in this field, and the rigorous analysis of such a model has not even been considered yet.
Our work here presents one of the first such models which produces predictions that match
Twitter data and also is given a rigorous theoretical analysis.

4. Retweet Graphs for Different Public Events

We collected tweets from the Twitter firehose for thirteen different public events, such
as sports matches and musical performances [1]. The Twitter firehose is the full feed
of all public tweets which is accessed via Twitter’s Streaming Application Programming
Interface [2]. By using the Twitter firehose, we were able to access all public tweets in the
Twitterverse.

For each public event E ∈ {1, 2, ..., 13}, we kept only tweets which have an event specific
term and used those tweets to construct the retweet graph which we denote GE . Our
analysis focuses on the giant component of the retweet graph, which we denote G0

E . In
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E |V (G0
E)| |E(G0

E)| dmax(G
0
E) Superstar

1 7365 7620 512 warrenellis
2 3995 4176 362 anison
3 2847 2918 566 FIFAWorldCupTM
4 2354 2414 657 taytorswift13
5 1897 1929 256 FIFAcom
6 1724 1814 992 ladygaga
7 1659 2059 56 MMFlint
8 1408 1459 269 FIFAWorldCupTM
9 1025 1045 247 FIFAWorldCupTM
10 1024 1050 229 SkyNewsBreak
11 705 710 113 realmadrid
12 505 521 186 Wimbledon
13 239 247 38 cnnbrk

Table 4.1. For each event E, we list the number of vertices ( |V (G0
E)|),

number of edges (|E(G0
E)|) , and maximal degree (dmax(G

0
E)) in the giant

component G0
E , along with the Twitter name of the superstar corresponding

to the maximal degree.

Table 4.1 we present important properties of each retweet graph’s giant component such
as the number of vertices, number of edges, maximal degree, and the Twitter name of the
superstar corresponding to the maximal degree. A more detailed description of each event,
including the event specific term, can be found in the Appendix.

The sizes of the giant components range from 239 to 7365 vertices. The giant components
are not trees, but are very tree-like. As can be seen in the table, for each giant component,
the deletion of a small number of edges will result in an honest tree.

4.1. Maximal degree. The maximal degree in the retweet graphs is larger than would
be expected under preferential attachment. Let us call the number of vertices in the giant
component n = |V (G0

E)|. For a preferential attachment graph with n vertices it is known

that the maximal degree scales as n1/2. Figure 4.1 shows a plot of the maximal degree in
the giant component dmax(G

0
E) and a plot of n1/2 versus n for the retweet graphs. It can

be seen from the figure that the sublinear growth predicted by preferential attachment is
not capturing the superstar effect in these retweet graphs.

4.2. Estimating p and the degree distribution. The Superstar Model degree distri-
bution is known once the superstar parameter p is specified. We are interested in seeing if
for each event E this model can predict the degree distribution in G0

E . For an event E and
degree k ∈ {1, 2, ...} we define the empirical degree distribution of the giant component as

ν̂E(k) =
1

|V (G0
E)|

card
{
vj ∈ V (G0

E) : deg(vj , G
0
E) = k

}
To predict the degree distribution using the Superstar Model, we need a value for p. We
estimate p for each event E as p̂(E) = dmax(G

0
E)/|V (G0

E)|. Using p = p̂(E) we obtain the
Superstar Model degree distribution prediction for each event E and degree k, νSM (k, p̂)
from Theorem 2.2. For comparison, we also compare ν̂E(k) to the preferential attachment
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Figure 4.1. Plot of dmax(G
0
E) versus n = |V (G0

E)| for the retweet graphs
of each event. The events are labeled with the same numbers as in Table
4.1. Also shown is a plot of n1/2.

degree distribution νPA(k) = 4 (k(k + 1)(k + 2))−1 [9]. Figure 4.2 shows the empirical
degree distribution for the retweet graphs of four of the events, along with the predictions
for the two models. As can be seen, the Superstar Model predictions seem to qualitatively
match the empirical degree distribution better than preferential attachment. To obtain a
more quantitative comparison of the degree distribution we calculate the relative error of
these models for each value of degree k. The relative error for event E and degree k is
defined as relerrorSM (k,E) = |νSM (k, p̂)− ν̂E(k)| (νSM (k, p̂))−1 for the Superstar Model
and relerrorPA(k,E) = |νPA(k)− ν̂E(k)| (νPA(k))

−1 for preferential attachment. In Figure
4.3 we show the relative errors for different values of k. As can be seen, the relative error
of the Superstar Model is lower than preferential attachment for degrees k = 1, 2, 3, 4 and
for all of the events with the exception of k = 4 and E = 7. There is a clear connection
between the superstar degree and the degree distribution in the giant component of these
retweet graphs which is captured well by the Superstar Model.

5. Analysis of a special two type branching process

The proofs of the theorems of Section 2 exploit a special two-type continuous time
branching processes together with a simple surgery that proves the equivalence between
this construction and the superstar model. We start by describing this construction and
proving the equivalence between the two models. We shall then derive various properties
(degree distribution, height and maximal degree) of the continuous time version and show
how these results carry over to the Superstar Model.

5.1. A two type continuous branching process. We now consider a two-type contin-
uous time branching process BP(t) whose types we call red and blue. We use |BP(t)| for
the total number of individuals in the population by time t. In the construction, every
individual survives forever so there is no distinction between living and dead individuals.
We shall also let {BP(t)}t≥0 be the associated filtration of the process. At time t = 0 we
begin with a single red vertex which we call v1. For any fixed time 0 < t < ∞, let Vt

denote the vertex set of BP(t). Each vertex v ∈ Vt in the branching process tree gives birth
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Figure 4.2. Plots of the empirical degree distribution for the giant com-
ponent of the retweet graphs (νE(k)), and the estimates of the Superstar
Model (νSM (k, p̂(E))) and preferential attachment (νPA(k)) for four differ-
ent events. Each plot is labeled with the event specific term and p̂(E).

according to a Poisson process with rate

λ(v, t) = cB(v, t) + 1

where cB(v, t) is equal to the number of blue children of vertex v at time t. Also let cR(v, t)
denote the number of red children of vertex by time t. At the moment of a new birth,
the new child vertex is colored red with probability p and colored blue with probability
q = 1− p. There are no deaths of vertices, and all vertices continue to procreate through
all time. For t ≥ 0, write R(t) and B(t) for the total number of red and blue vertices
respectively in BP(t). Finally for n ≥ 1, define the stopping times

τn = inf {t : |BP(t)| = n} . (5.1)

Since the counting process |BP(t)| is a non-homogenous Poisson process with a rate that
is always greater than or equal to one, we see that for any n ≥ 1, the stopping times τn
are almost surely finite.

5.2. Elementary properties of the branching process. By construction of the pro-
cess, every new vertex is independently colored red with probability p and blue with prob-
ability 1 − p. In particular the number of blue vertices B(t) is just the time changes of a
random walk with Bernoulli(1− p) increments. Thus by the strong law of large numbers,
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Figure 4.3. Plots of the relative errors of the degree distribution predic-
tions of preferential attachment and the Superstar Model for 13 retweet
graphs. The errors are plotted for degree k = 1, 2, 3, 4

we have

b(t) :=
B(t)

|BP(t)|
a.s.−→ 1− p, as t → ∞. (5.2)

Before moving onto an analysis of the branching process, we introduce the Yule process.

Definition 5.1 (Rate a Yule process). Fix a > 0. A rate a Yule process is defined as
a pure birth process Yua(·) which starts with a single individual Yua(0) = 1 with the
rate of creating a new individual proportional to the number of present individuals in the
population with

P(Yua(t+ dt)− Y ua(t) = 1|Yua(t)) = aYua(t)dt.

The Yule process is well studied and the next Lemma collects some of its standard
properties (see [23], Section 2.5).

Lemma 5.2 (Yule process).

(a) For any t > 0, Yua(t) has a geometric distribution with

P(Yua = k) = e−at(1− e−at)k−1, k ≥ 1.

(b) The process e−atYua(t) is an L
2 bounded martingale with respect to the natural filtration
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of the process. Thus e−atYua(t)
a.s.−→ W ′, where W ′ has an exponential distribution with

mean one.

Now define the process

M(t) = e−(2−p)t (|BP(t)|+B(t)) 0 ≤ t < ∞.

Proposition 5.3 (Asymptotics for BP(t)). The process {M(t)}t≥0 is a positive L2 bounded

martingale with respect to the natural filtration {BP(t)}t≥0 and thus converges to a random

variable M(t) → W ∗ almost surely and in L
2 with E(W ∗) = 1. The random variable

W ∗ > 0 with probability one. By (5.2)

lim
t→∞ e−(2−p)t|BP(t)| = W ∗

2− p
:= W with probability one. (5.3)

Proof Write Z(t) = |BP(t)| and Y (t) = Z(t) + B(t) so that M(t) = e−(2−p)tY (t). We
shall denote dM(t) = M(t+ dt)−M(t). Then

dM(t) = e−(2−p)tdY (t)− (2− p)e−(2−p)tY (t)dt. (5.4)

Note that the processes Z(t), B(t) are all counting process which increase by increments
of one. For such processes, we shall use the infinitesimal notation E(dZ(t)|BP(t)) = a(s)ds

to denote the fact that Z(t)−
∫ t
0 a(s)ds is a local martingale.

Now the counting process Z(t) = |BP(t)| evolves by jumps of size one with

P (dZ(t) = 1|BP(t)) =

⎛⎝ ∑
v∈F(t)

(cB(v, t) + 1)

⎞⎠ dt

where cB(v, t) denotes the number of blue children of vertex v at time t. The number
of blue vertices can be written as B(t) =

∑
v∈F(t) cv(b; t) since every blue vertex is an

offspring of a unique vertex in BP(t) and is counted exactly once in this sum. Thus using
the rate description, we get the conditional expectation

E(dZ(t)|BP(t)) = (Z(t) +B(t))dt.

Since B(t) ≤ Z(t), we see that the rate of producing new individuals is bounded by 2|BP(t)|.
Thus the process |BP(t)| can be stochastically bounded by a Yule process with a = 2. This
implies by Lemma 5.2 that for all t ≥ 0, E(|BP(t)|2) < ∞.

Let us now analyze the process B(t). This process increases by one when the new vertex
born into BP(·) is colored blue which happens with probability 1− p. Thus we get

E(dB(t)|BP(t)) = (1− p)(Z(t) +B(t))dt.

Combining we get

E(dY (t)|BP(t)) = (2− p)Y (t)dt.

Now using (5.4) gives E(dM(t)|BP(t)) = 0 which completes the proof that M(·) is a
martingale.

Let us next show that M(·) is an L
2 bounded martingale. The process Y 2(t + dt) can

take values (Y (t) + 1)2 or (Y (t) + 2)2 at rate pY (t) and (1− p)Y (t) respectively. Thus we
get

E(dM2(t)|BP(t)) = (4− 3p)e−(2−p)tM(t)dt.
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In particular the process U(t) defined as

U(t) = M2(t)− (4− 3p)

∫ t

0
e−(2−p)sM(s)ds

is a martingale. Taking expectations and noting that since M(·) is a martingale, this
implies that E(M(s)) = 1 for all s gives

E(M2(t)) = 1 + (4− 3p)

∫ t

0
e−(2−p)sds ≤ 1 +

4− 3p

2− p
.

This shows L
2 boundedness and immediately implies that there exists a random variable

W ∗ such that

e−(2−p)t(|BP(t)|+B(t))
a.s.,L2

−→ W ∗.

Using equation (5.2) shows that e−(2−p)s|BP(t)| → W ∗/(2 − p) := W . Now we only need
to show W is strictly positive. First note that by L

2 convergence, E(W ∗) = 1. This shows
that P(W = 0) = r < 1. Let ζ1 < ζ2 < · · · be the times of birth of children (blue or red)
of the root vertex v1 and write BPi(·) for the subtree consisting of the ith child and its
descendants. Then

e−(2−p)t|BP(t)| =
∞∑
j=1

e−(2−p)ζi
[
e−(2−p)(t−ζi)|BPi(t− ζi)|

]
11 {ζi ≤ t}+ e−(2−p)t.

Thus as t → ∞ we have the distributional identity W =
∑∞

j=1 e
−(2−p)ζiWi where {Wi}i≥1

are independent and identically distributed with the same distribution as W (independent
of {ζi}i≥1). Thus

P(W = 0) = P(Wi = 0 ∀ i ≥ 1) = 0.

Before ending this Section, we derive some elementary properties of the offspring of
an individual in BP(·). Let σv be the time of birth of vertex v in BP(·). Recall that
cB(v, σv + s) and cR(v, σv + s) denote the number of blue and red children respectively of
this vertex s units of time after the birth of v. Also define the process

M∗(t) := cR(v, t+ σv)−
∫ t

0
p(cB(v, σv + s) + 1)ds, t ≥ 0.

Lemma 5.4 (Offspring distribution properties).

(a) Conditional on BP(σv), the process cB(v, σv+ ·) has the same distribution as Yu1−p(·)−
1. In particular E(cB(v, t)) = e(1−p)t − 1.
(b) The process M∗(t) is a martingale with respect to the filtration {BP(σv + s) : s ≥ 0}.
In particular E(cR(v, σv + t)) = p

1−p(e
(1−p)t − 1).

Proof. Part(a) is obvious from construction. To prove (b), note that E(dcR(v, σv+t)|BP(t+
σv)) = p(cB(v, σv + t) + 1)dt. �

5.3. Convergence for blue children proportions. The equivalence between BP(·) and
the superstar model will imply that the number of vertices with degree k + 1 in Gn+1 is
the same as the number of vertices in BP(τn) with exactly k blue children. We will need
general results on the asymptotics of such counts for the process BP(t) as t → ∞.
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Theorem 5.5. Fix k ≥ 1 and let Z≥k(t) denote the number of vertices in BP(t) which
have at least k blue children. Then

e−(2−p)tZ≥k(t)
a.s.−→ p≥k(∞)

W ∗

2− p

as t → ∞, where W ∗ is the martingale limit obtained in Proposition 5.3 and p≥k(∞) is
defined by

p≥k(∞) = k!

k∏
i=1

(
i+

2− p

1− p

)−1

.

Proof: The proof uses a variant of the “reproduction martingale” technique developed
in [21]. The proof relies on two steps:

(a) Proving convergence of expectations of the desired quantities: Section 5.3.1.
(b) Bootstrapping this to a.s. convergence using law of large numbers: Section 5.3.2.
We setup some initial notation to carry out this program. Write ξ = (ζ1, ζ2, . . . , ) for

the offspring birth times of the root vertex v1 (the offspring distribution of any vertex in
BP(·) is independent with the same distribution). For t ≥ 0, let ξ[0, t] denote the number
of offspring in the interval [0, t] and let μ[0, t] = E(ξ[0, t]) be the corresponding intensity
measure. We start with a simple Lemma which will have profound consequences.

Lemma 5.6 (Renewal measure). Define α = 2− p. Then∫ ∞

0
e−αtμ(dt) = 1.

Thus the measure defined as μα := e−αtμ(dt) is a probability measure. Further this measure
has expectation

∫∞
0 tμα(dt) = 1.

Proof: Recall that in Lemma 5.4 we used cB(v1, t), cR(v1, t) to denote the number of
red and blue children respectively of vertex v1. Then μ([0, t]) = E(cR(v1, t) + cB(v1, t)).
Further by Fubini’s theorem∫ ∞

0
e−αtμ(dt) = α

∫ ∞

0
e−αtμ[0, t]dt.

Using the expressions for E(cB(v1, t)),E(cR(v1, t)) from Lemma 5.4 completes the proof.
The second assertion regarding the expectation follows similarly. �

5.3.1. Convergence of expectations. The first step in the proof of Theorem 5.5 is conver-
gence of expectations. This follows using standard renewal theory. However we will first
need to setup notation that will allow us to use the linearity of expectations to derive a
renewal equation.

Let us motivate an abstract definition of a characteristic. Fix some time t > 0. Suppose
we are interested in the number of vertices with at least k blue children at this time. For any
vertex v ∈ BP(·), write σv for the time of birth of the vertex into BP(·). Then conditional
on BP(σv), the distribution of the number of blue children of vertex v by time t − σv is
Yuv1−p(t − σv) − 1, where we construct a countable family of independent rate 1 − p Yule
processes Yuv1−p(·) and use these to construct BP(·) along with additional randomization
for the red vertices. In particular, writing Z≥k(t) for the number of vertices with degree
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at least k, this can be expressed as

Z≥k(t) =
∑

v∈BP(t)
11
{
[Yuv1−p(t− σv)− 1] ≥ k

}
.

This motivates the following abstract construction. Let φ : R+ → R+ be a bounded
(supt φ(t) < C for some non-random constant C) non-negative measurable stochastic pro-
cess which depends only on the offspring distribution of a single vertex, often referred to
as a characteristic, see e.g.[16]. Let φv(·) be copies of this characteristic for each vertex
v ∈ BP. Finally define

Zφ(t) =
∑

v∈BP(t)
φv(t− σv), t ≥ 0

for the branching process BP(·) counted according to characteristic φ. The main examples
of interest are
(a) Total size: φ(t) = 1 gives Zφ(t) = |BP(t)|.
(b) Degree: φ(t) = 11 {k or more blue children at time t} gives Zφ(t) = Z≥k(t).

Fix any time t > 0. Conditioning on the offspring distribution of v1, both of these
characteristics satisfy the recursion

Zφ(t) = φv1(t) +
∑
ζi≤t

Z(i)

φ (t− ζi), (5.5)

where Z(i)

φ (·) d
= Zφ(·) and are independent. Taking expectations and writing mφ(t) =

E(Zφ(t)), these functions satisfy the renewal equation

mφ(t) = E(φ(t)) +

∫ t

0
mφ(t− s)μ(ds)

Lemma 5.6 and renewal theory ([15]) now imply the next result.

Proposition 5.7. For bounded characteristics, writing α = (2− p) we have

e−αtmφ(t) →
∫ ∞

0
e−αs

E(φ(s))ds := m̃φ(∞)

Corollary 5.8. Taking the two characteristics of interest one gets for φ(t) = 1

e−αt
E(|BP(t)|) → 1

α
, as t → ∞

and for φ(t) = 11 {k or more blue children at time t}

e−αt
E(Z≥k(t)) →

p≥k(∞)

α
as t → ∞.

Proof: The first assertion in the corollary is obvious. To prove the second assertion
regarding the number of blue vertices, observe that the limit constant in Proposition 5.7
can be written as

1

α

∫ ∞

0
αe−αs

E(11 {k or more blue children at time s})ds = 1

α
P(cB(v1, T ) ≥ k)

where T is an exponential random variable with mean α−1 that is independent of the blue
offspring distribution cB(v1, ·) = Yu1−p(·)−1 where Yu1−p(·) is rate 1−p Yule process. The
inter-arrival times Xi between blue children i and i+1 are independent exponential random
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variables with mean (1−p)−1(i+1)−1, independent of T . In particular P(cB(v1, T ) > k) =

P(T >
∑k−1

j=0 Xj). One can check that the last probability equals p≥k(∞). �

5.3.2. Almost sure convergence. The aim of this section is to strengthen the convergence
of expectations to almost sure convergence. A key role is played by a “reproduction
martingale”, a close relative of the martingale used in [21] to analyze single type branching
processes as well as in [18] to analyze times of first birth in generations. As before let
v1, v2, v3, . . . denote the order in which vertices appear and let τi = σvi denote the times at
which these vertices are born into the branching process BP(·). Let ξ(i) = (ζvi,1, ζvi,2, . . .)
denote the offspring point process of vi. Viewing ξ(i) as a random measure on R+, we get

ξ(i)
α :=

∞∑
j=1

e−αζvi,j =

∫ ∞

0
e−αtξ(i)(dt).

For m ≥ 1 let F̃m be the sigma-algebra generated by vertices {v1, . . . , vm} and their

offspring distribution point process (i.e. for 1 ≤ i ≤ m, F̃m has the type of vi, times of

birth as well as types of all the offspring). Define R̃0 = 1 and

R̃m+1 := R̃m + e−ασvm+1 (ξ(m+1)
α − 1).

Let Γm be the set of the first m individuals born and all of their offspring. It is easy to
check that

R̃m = 1 +
∑
v∈Γm

e−ασv −
m∑
j=1

e−ασvj . (5.6)

In particular R̃m > 0 for all m. The next Lemma shows that the sequence
{
R̃m

}
m≥1

is

much more.

Proposition 5.9 (Reproduction martingale). The sequence
{
R̃m

}
m≥1

is a non-negative

martingale with respect to the filtration
{
F̃m

}
m≥1

. Thus there exists a random variable

R∞ with E(R∞) = 1 such that R̃m → R∞ almost surely and in L
2.

Proof: By the choice of α = 2− p in Lemma 5.6, E(ξ(i)
α ) =

∫∞
0 e−αtμ(dt) = 1. Further

σvm+1 is F̃m measurable while ξ(m+1)
α is independent of F̃m. Thus one gets

E(R̃m+1 − R̃m|F̃m) = e−ασvm+1E(ξ(m+1)
α − 1) = 0.

Now assuming E([ξ(i)
α ]2) < ∞, we see by the orthogonal increments of the martingale Rm

that

E(R̃2
m) ≤ E([ξ(i)

α ]2)E

(
m∑
i=1

e−2ασvi

)
.

Thus to check L
2 boundedness it is enough to check that the right hand side is bounded.

The following lemma accomplishes this.

Lemma 5.10.
(a) Assume 0 < p < 1. Then E([ξα]

2) < ∞.
(b) For any m, E(

∑m
i=1 e

−2ασvi ) ≤ 1 + α−1



15

Proof: To prove (a), we observe that ξα =
∫∞
0 αe−αtξ[0, t]dt = E(ξ[0, T ]), where T is

an exponential random variable with mean α−1 independent of ξ which is the offspring
distribution of v1. Thus it is enough to show E([ξ[0, T ]]2) < ∞. Note that ξ[0, T ] =
cR(v1, T ) + cB(v1, T ), i.e. the number of red and blue vertices born to v1 by the random
time T . Thus it is enough to show E(c2R(v1, T )) and E(c2B(v1, T )) < ∞. Conditioning on

T = t and noting by Lemma 5.2 that for fixed t, E(c2B(v1, t)) ≤ Ce2(1−p)t while for any t,
conditional on cB(v1, t), cR(v1, t) is stochastically bounded by a Poisson random variable
with rate tcB(v1, t). Noting that α = 2− p, we get

E([ξ[0, T ]]2) ≤ C

∫ ∞

0
e−(2−p)t

(
e2(1−p)t + t2e2(1−p)t

)
dt < ∞.

To prove (b), let S(t) =
∑

v∈BP(t) e
−2ασv . Then

∑m
i=1 e

−2ασvi = S(τm). Further, since the

rate of creation of new vertices is |BP(t)|+B(t) (see Proposition 5.3), one has

E(dS(t)|BP(t)) = e−2αt(|BP(t)|+B(t))dt.

Taking expectations and noting that e−αt(|BP(t)|+B(t)) is a martingale gives

E(S(t)) = 1 +

∫ t

0
e−αsds.

This completes the proof. �
The next Theorem completes the proof of Theorem 5.5. Recall the limit constant m̃φ(∞)

in Proposition 5.7.

Theorem 5.11 (Convergence of characteristics). For any bounded characteristic which
satisfies the recursive decomposition in (5.5) one has

e−αtZφ(t)
a.s.−→ m̃φ(∞)R∞.

Taking φ = 1 and using Proposition 5.3 implies that R∞ = W , the a.s. limit of the
martingale e−αt(|BP(t)|+B(t)).

Proof: A key role will be played by the martingale
{
R̃n

}
n≥0

. Recall that this was a

martingale with respect to the filtration {Fm}m≥0. We shall switch gears and now think

about the process in continuous time. Define I(t) as the set of individual born after time
t whose mothers were born before time t and let

Rt =
∑

x∈I(t)
e−ασx := R̃|BP(t)|, {Ft}t≥0 :=

{
F̃|BP(t)|

}
t≥0

.

It is easy to check that Rt is an L
2 bounded martingale with respect to this filtration

and further Rt
a.s.−→ R∞. For a fixed c > 0, define I(t, c) as the set of vertices born

after time (t + c) whose mothers are born before time t and let Rt,c =
∑

x∈I(t,c) e
−ασx .

Obviously Rt,c ≤ Rt. Intuitively one should expect Rt,c to be small for large c. The next
Lemma quantifies this fact. First recall the random variable ξα =

∫∞
0 e−αtξ(dt) and write

ξα(c) =
∫∞
c e−αtξ(dt). Let K(c) = E(ξα(c)). It is easy to check that K(c) → 0 as c → ∞.

Proposition 5.12. There exists a constant A such that for all c > 0

lim sup
t→∞

Rt,c ≤ K(c)W

where W = limt→∞ e−αt|BP(t)| from Proposition 5.3.
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Proof: Without loss of generality we shall assume t = k is an integer. The proof extends
easily to general t. A key role is played by a strong law of large numbers, see [3] or [6] for
a proof. This result was crucially used in [21] to prove convergence in the one type setting.

Lemma 5.13 (Strong law). Let ni, i = 1, 2, . . . be a sequence of positive integers and let Xi,j

for j = 1, 2, . . . , ni be a triangular array, independent for each fixed i and constructed on
the same probability space. Suppose there exists a random variable Y ≥ 0 with E(Y ) < ∞
such that |Xij | is stochastically dominated by Y . Further suppose that

lim inf
i→∞

ni+1

n1 + . . .+ ni
> 0. (5.7)

Then

Si =

∑ni
j=1(Xij − E(Xij))

ni

a.s.−→ 0

as i → ∞. Further assume the random variables are independent as i varies. The same is

true of S̃k =
∑k

i=1

∑ni
j=1(Xij − E(Xij))/(

∑k
i=1 ni).

Proof of Proposition 5.12: Fix t = k, where k i an integer. By definition Rk,c is
made up contributions from all vertices u who are born after time k + c whose mother
v = v(u) are in BP(k). Decomposing the sum Rk,c according to the times of birth of this
mother one has

Rk,c =

k∑
i=1

∑
v:σv∈[i−1,i)

e−ασv

∫ ∞

k+c−σv

e−αsξv(ds).

Writing ξvα(y) =
∫∞
y e−αtξv(dt) where ξv(·) is the offspring distribution point process of v,

one immediately has

Rk,c ≤ e−αk
k∑

i=1

∑
v:σv∈[i−1,i)

ξvα(c)

Each of these random variables are independent across different v and further are all
stochastically bounded by the random variable ξα(c). Writing ni = BP(i) − BP(i − 1),
Prop 5.3 implies that the conditions in Lemma 5.13 are satisfied. Thus one has

e−αkBP(k)

∑k
i=1

∑
v:σv∈[i−1,i) ξ

v
α(c)

BP(k)
a.s.−→ WE(ξα(c)).

This completes the proof. �
Completing the proof of Theorem 5.11: Recall that we are dealing with bounded

characteristics, i.e. |φ|∞ < C for some constant C. Without loss of generality, let C = 1.
We shall show that there exists a constant κ such that for all ε > 0,

lim sup
t→∞

|e−αtZφ(t)− m̃φ(∞)| ≤ κε(W +R∞). (5.8)

Since this is true for any arbitrary ε, this completes the proof. Thus fix any ε > 0. First
choose c large such that the function arising in the bound of Proposition 5.12 K(c) < ε.
Next, define φs as the truncated characteristic

φs(u) =

{
φ(u), u ≤ s
0, u > s

(5.9)
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This characteristic is zero for any vertices who have been alive for more that s, so we can
view it as a characteristic for “young” vertices. The limit constant for this characteristic
by Proposition 5.7 is

m̃φs(∞) =

∫ s

0
e−αu

E(φ(u))du.

Here φ is the original characteristic. If we write φ′ = φ − φs, we can view φ′ as the
characteristic for “old” vertices. With this notation we have Zφ(u) = Zφs(u) + Zφ′(u).

Define m̃φs(u) = e−αu
E(Zφs(u)). Now choose choose s large enough such that s > c and

for all u > s − c one has e−αs < ε, |m̃φs(∞) − m̃φ(∞)| < ε, and |m̃φs(u) − m̃φs(∞)| < ε.
The constructs s and c shall remain fixed for the rest of the argument.

Let us understand Zφs(·), which is the branching process counted according to the
truncated characteristic. We first observe that since φs(u) = 0 when u > s, for any t > s,
vertices born before time t − s (old vertices) do not contribute to Zφs(t). Thus we can
write

Zφs(t) =
∑

x∈I(t−s)

Zx
φs
(t− σx) =

∑
x∈I(t)\I(t−s,c)

Zx
φs
(t− σx) +

∑
x∈I(t−s,c)

Zx
φs
(t− σx)

where Zx
φs
(t − σx) are the contributions to Zφs(t) by the descendants of a vertex x born

in the interval [t− s, t] whose mother belongs to BP(t− s). Let N (t, c) = I(t) \ I(t, c), i.e.
the set of individuals born in the interval [t, t + c] to mothers who were born before time
t. Then we can decompose the difference as a telescoping sum:

e−αtZφ(t)−mφ(∞) := E1(t) + E2(t) + E3(t) + E4(t) + E5(t). (5.10)

Here:

(a) E1(t) is defined as

E1(t) = e−αtZφ′(t).

Observe that for E1(t), the only vertices which contribute are those with age greater than
s (since φ′(u) = 0 for u < s). In particular E1(t) = e−αtZφ′(t) ≤ e−αt|BP(t− s)|. Thus by
Prop 5.3, one has lim supt→∞E1(t) ≤ e−αsW ≤ εW by choice of s.

(b) E2(t) is defined as

E2(t) :=
∑

x∈N (t−s,c)

e−ασx

[
e−α(t−σx)Zx

φs
(t− σx)− m̃φs(t− σx)

]
.

For E2(t), N (t − s, c) consists of all children of mothers in BP(t − s) born in the interval
[t− s, t− s+ c]. Since each of the individuals in BP(t− s) reproduce at rate at least 1, one
can check by the strong law of large numbers that lim inft→∞ |N (t− s, c)|/|BP(t− s)| ≥ c.
Further the terms in the summand (conditional on BP(t − s)) are independent random
variables and each such term in the sum looks like X − E(X), where X is stochastically
bounded by the random variable Zφs(c). Similar to the proof of Prop 5.12, using Lemma
5.13 one can show that lim supt→∞ |E2(t)| → 0 a.s. We omit the details.

(c) E3(t) is defined as

E3(t) :=
∑

x∈N (t−s,c)

e−ασx (m̃φs(t− σx)− m̃φs(∞)) .
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By the choice of s since t − σx ≥ s − c, |m̃φs(t − σx) − m̃φs(∞)| ≤ ε. Thus one has
|E3(t)| ≤ εRt. Letting t → ∞, one gets lim supt→∞ |E3(t)| ≤ εR∞.

(d) E4(t) is defined as

E4(t) := m̃φs(∞)

⎛⎝ ∑
x∈N (t−s,c)

e−ασx −Rt−s

⎞⎠ .

For E4(t), we have |
(∑

x∈N (t−s,c) e
−ασx −Rt−s

)
| = Rt−s,c. Thus lim supt→∞E4(t) ≤

m̃φs(∞)K(c)W ≤ m̃φs(∞)εW by choice of c and using Proposition 5.12 for the asymp-
totics of Rt,c.

(e) Finally E5(t) := m̃φs(∞)(Rt−s −R∞). Since Rt−s
a.s.−→ R∞, E5(t)

a.s.−→ 0.
Combining all these bounds, one finally arrives at

lim sup
t→∞

|e−αtZφ(t)− m̃φ(∞)| ≤ ε(W + m̃φs(∞)R∞).

Since ε > 0 was arbitrary, this completes the proof. �

5.4. Time of first birth asymptotics. For a rooted tree with root ρ, there is a natural
notion of a generation of a vertex v, which is the number of edges on the path between v
and ρ. Thus ρ belongs to generation zero, all the neighbors of ρ belong to generation one,
and so forth. The aim of this Section is to define a modified notion of generation in BP(t).
For each fixed k, we shall then define a sequence of stopping times Bir(k) representing
the first time an individual in modified generation k is born into the process BP(·). We
shall study asymptotics of Bir(k) as k → ∞. In the next Section we shall show how these
asymptotics result in height asymptotics for the Superstar Model.

Fix t > 0. For each vertex v ∈ BP(t) let r(v) denote the first red vertex on the path
between v and the original progenitor of the process BP(·) namely v1. If v is a red vertex
then r(v) = v. Let d(v) be the number of edges on the path between v and r(v) so that
d(v) = 0 if v is a red vertex.

Fix k ≥ 1. Let Bir(k) denote the stopping times

Bir(k) = inf {t > 0 : ∃ v ∈ BP(t), d(v) = k} .
This is equivalent to the first time that there exists a red vertex in BP(t), such that the
subtree consisting of all blue descendants of this vertex and rooted at this red vertex has
an individual in generation k. The next theorem proves asymptotics for these times.

Theorem 5.14. Let W (·) be the Lambert function. We have

Bir(k)

k

a.s.−→ W (1/e)

1− p
as l → ∞.

Proof of Theorem 5.14: Given any rooted tree T and v ∈ T , we shall let G(v)
denote the generation of this vertex in T . Write BPv1

b (·) for the subtree consisting of all
blue descendants of the original progenitor v1 and rooted at v1. In distribution this is
just a single type continuous time branching process where each vertex has a Yu1−p(·)− 1
offspring distribution. Further let

Bir∗(k) = inf
{
t : ∃ v ∈ BP v1

b (t), G(v) = k
}
.
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In words, this is the time of first birth of an individual in generation k for the branching
process BPv1

b (·). From the definitions of Bir(k),Bir∗(k), we have Bir(k) ≤ Bir∗(k).
Much is know about the time of first birth of a single type supercritical branching

process, in particular implies that for BPv1
b (·), there exists a limit constant β such that

Bir∗(k)/k a.s.−→ β. Here β can be derived as follows. Write μb for the expected intensity

measure of the blue offspring distribution, i.e. μb([0, t]) = E(cB[v1, t]) = e(1−p)t − 1 from
Lemma 5.4. For θ > 0, let φ(θ) := E(

∫∞
0 e−θtcB(v1, dt)). It is easy to check that this is

finite only for θ > 1− p since

φ(θ) = θ

∫ ∞

0
e−θtμb([0, t])dt =

1− p

θ − (1− p)
.

For a > 0 define

Λ(a) := inf
{
φ(θ)eθa : θ ≥ 1− p

}
= (1− p)ae(1−p)a+1. (5.11)

Then the limit constant β is derived as

β = sup {a > 0 : Λ(a) < 1} . (5.12)

From this it follows that β = W (1/e)/(1 − p) where W (·) is the Lambert function. Then
we have

lim sup
k→∞

Bir(k)

k
≤ lim

k→∞
Bir∗(k)

k

a.s.−→ W (1/e)

1− p
.

This gives an upper bound in Theorem 5.14. Lemma 5.15 proves a lower bound and
completes the proof.

Lemma 5.15. Fix any ε > 0 and let β = W (1/e)/(1− p) be the limit constant. Then
∞∑
l=1

P(Bir(l) < (1− ε)βl) < ∞.

Thus one has lim inf l→∞ Bir(l)/l ≥ β a.s.

Proof. For ease of notation, for the rest of this proof we shall write tε(l) = (1 − ε)βl. In
the full process BP(·), two processes occur simultaneously:
(a) New “roots” (red vertices) are created. Recall that we used R(·) for the counting
process for the number of red roots.
(b) The blue descendants of each new root have the same distribution as a single type
continuous time branching process with offspring distribution Yu1−p(·)− 1.

Fix l ≥ 2 and suppose a new red vertex v was created at some time σv < tε(l). Let
BPv

b (·) denote the subtree of blue descendants of v. Let Bir∗(v, l) > σv be the time of
creation of the first blue vertex in generation l for subtree BPv

b (·). Now Bir(l) < tε(l)
if and only if there exists a red vertex v born before tε(l) such that the subtree of blue
descendants of this vertex has a vertex in generation l by this time. For a fixed red vertex

v ∈ BP(·), write Av(l) for this event. Since Bir
∗(v, l)−σv

d
= Bir∗(l), conditional on BP(σv)

one has

P(Av(l)|BP(σv)) = P(Bir∗(l) ≤ tε(l)− σv)

Fix 0 < s < (1− ε)βl. Then for θ > 1− p, Markov’s inequality implies

P(Bir∗(l) < (1− ε)βl − s) ≤ eθ((1−ε)βl−s)
E[e−θBir∗(l)]
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One of the main bounds of Kingman ([18], Theorem 1) is E[e−θBir∗(l)] ≤ (φ(θ))l. Thus
we get

P(Bir∗(l) < (1− ε)βl − s) ≤ [φ(θ)eθ(1−ε)β ]le−θs. (5.13)

By the definition of β,

Λε := Λ(β(1− ε)) := inf
{
φ(θ)eθ(1−ε)β : θ > 1− p

}
< 1.

It is easy to check that the minimizer occurs at

θε = 1− p+
1

(1− ε)β
.

The final probability bound we shall use is

P(Bir∗(l) < (1− ε)βl − s) ≤ [Λε]
le−θεs. (5.14)

Let N ε
l be the number of red vertices born before time tl(ε) whose trees of blue descendants

BPv
b (·) have at least one vertex in generation l by time tl(ε). Obviously P(Bir∗(l) <

(1− ε)βl) ≤ E(N ε
l ). Conditioning on the times of birth of red vertices one gets

E(N ε
l ) ≤

∫ tl(ε)

0
[Λε]

ldE(R(s)) using Eqn. (5.14),

= p[Λε]
l

∫ tε(l)

0
e−(θε−q)sds using Lemma 5.4.

Simplifying, we get for all l ≥ 2, E(N ε
l ) ≤ C[Λε]

l for a constant C. Thus

∞∑
l=1

P (Bir(l) < (1− ε)βl) < ∞.

�

6. Equivalence between the branching process and the superstar model

We start with an informal description of the connection between the Superstar Model
and the branching process BP(·). We connect vertex v1, which is the initial progenitor of
BP(·), to the superstar v0 (which does not play a role in the evolution of BP(·)) in G2. All
the red vertices in the process BP(·) correspond to the neighbors of the superstar v0. The
true degree of a (non-superstar) vertex in Gn+1 is one plus the number of its blue children
in BP(τn), where the additional factor of one comes from the edge connecting this vertex
to it’s ancestor. By elementary properties of the exponential distribution, the dynamics of
BP(·) imply that each new vertex which is born is red (connected to the superstar v0) with
probability p, else with probability q = 1 − p is blue and connected to any other vertex
with probability proportional to it’s current degree, increasing the degree of this chosen
vertex by one. This is nothing but the Superstar Model.

Formally our surgery will take the random tree BP(τn) and modify it to get an n + 1-
vertex tree Sn which has the same distribution as the superstar model Gn+1. From this
we will be able to read off the probabilistic properties of the Superstar tree Gn.

As before we label the vertices of BP(τn) by {v1, v2, . . . , vn} in order of their birth and
then we add a new vertex v0 to this set to give us the vertex set for Gn+1. One can
anticipate that v0 will be our superstar.
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Figure 6.1. The surgery passing from BP(τn) to Sn+1 and Gn+1 for n = 6.

Next, we define the edge set for Sn. To do this, we take each red vertex v in BP(τn),
remove the edge connecting v to its parent (if it has one), and then we create a new edge
between v and v0. To complete the construction of Sn it only remains to ignore the color
of the vertices. An illustration of this surgery for n = 6 is given in Figure 6.1.

Proposition 6.1 (Equivalence from surgery operation). The tree Sn viewed as a tree with
vertices without colors has the same distribution as the Superstar Model Gn+1. In fact the
process {Sn}n≥1 has the same distribution as {Gn+1}n≥1.

Proof: We shall prove this by induction. Think of Sn as being rooted at v0 so that
every vertex except v0 in Sn has a unique ancestor. The ancestor of all the red individuals
is the superstar v0 while the ancestors of all of the other blue individuals are unchanged
from BP(τn).

The induction hypothesis will be that Sn has the same distribution as Gn+1 and the
degree of each non-superstar vertex in Sn is the number of blue children it possesses plus
one for the edge connecting the vertex to it’s ancestor in Sn. Condition on BP(τn) and fix
v ∈ BP(τn). By the property of the exponential distribution, the probability that the next
vertex born into the system is born to vertex v is given

λ(v, τn)∑
u∈BP(τn) λ(v, τn)

=
cB(v, τn) + 1∑

u∈BP(τn) cB(v, τn) + 1
.

Thus a new vertex attaches to vertex v with probability proportional to the present degree
of v in Sn. Further, with probability p, this vertex is colored red, whence by the surgery
operation, the edge to v is deleted and this new vertex is connected to the superstar v0.
In this case the degree of v in Sn is unchanged. With probability 1− p this new vertex is
colored blue, whence the surgery operation does not disturb this vertex so that the degree
of vertex v is increased by one. These are exactly the dynamics of Gn+2 conditional on
Gn+1. By induction the result follows. �

For the rest of the proof we shall assume Gn+1 is constructed through this surgery
process and suppress Sn.



22

7. Proofs of the main results

Let us now prove all the main results by using the equivalence created by the surgery
operation and the proven results on BP(·) in Section 5. We record the following fact about
the asymptotics for the stopping times τn.

Lemma 7.1 (Stopping time asymptotics). The stopping times τn satisfy

τn − 1

2− p
log n

a.s.−→ − 1

2− p
logW.

Proof: Proposition 5.3 proves that |BP(t)|e−(2−p)t a.s.−→ W . Thus ne−(2−p)τn a.s.−→ W . �
7.1. Proof of the Superstar strong law. By the surgery operation, the degree of the
superstar is given by R(τn), the total number of red vertices. Equation (5.2) shows that

the number of blue vertices satisfies B(τn)/|BP(τn)| a.s.−→ 1−p. Thus R(τn)/|BP(τn)| a.s.−→ p.
This completes the proof. �
7.2. Proof of the degree distribution strong law. Since Gn+1 is a connected tree,
every vertex has degree at least one. Recall that cB(v, t) denoted the number of blue
children of vertex v by time t. Write deg(v,Gn+1) for the degree of a vertex in Gn+1. The
surgery operation implies that for any non-superstar vertex

deg(v,Gn+1) = cB(v, τn) + 1. (7.1)

Fixing k ≥ 0, the number of non-superstar vertices with degree exactly k + 1 is the
same as the number of number of vertices in BP(τn) which have exactly k blue children.
Recall that we used Z≥k(t) for the number of vertices in BP(t) which have at least k
blue children. Proposition 5.3, showed that the total number of vertices |BP(t)| satisfies
e−(2−p)t|BP(t)| a.s.−→ W ∗/(2− p). Theorem 5.5 showed that

e−(2−p)tZ≥k(t)
a.s.−→ k!

k∏
i=1

(
i+

2− p

1− p

)−1 W ∗

2− p
.

Thus writing p≥k(t) = Z≥k(t)/BP(t) for the proportion of vertices with degree k, Theorem
5.5 implies one has

p≥k(t)
a.s.−→ k!

k∏
i=1

(
i+

2− p

1− p

)−1

:= p≥k(∞)

as t → ∞. Now let k ≥ 1. Writing N≥k(n) for the number of non superstar vertices

with degree at least k in Gn+1, one has N≥k(n)/n
a.s.−→ p≥k−1(∞) as n → ∞. Thus the

proportion of vertices with degree exactly k converges to p≥k−1(∞) − p≥k(∞) = νSM (k).
This completes the proof. �
7.3. Proof of maximal degree asymptotics. The aim of this is to prove Theorem 2.4.
We wish to analyze the maximal non-superstar degree which we wrote as

Υn = max {deg(vi, Gn+1) : 1 ≤ i ≤ n} .
The plan will be as follows: we will first prove the simpler assertion of convergence of the
degree of vertex vk for fixed k ≥ 1. Then we shall show that given any ε > 0, we can
choose K such that for large n, the maximal degree vertex has to be one of the first K
vertices v1, v2, ..., vK with probability greater than 1− ε. This completes the proof.
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Fix k ≥ 1. Recall from (7.1) that deg(vk, Gn+1) = cB(vk, τn) + 1 where cB(vk, t) are the
number of blue vertices born to vertex k by time t. Recall that cB(vk, t) is a Yule process
of rate 1− p started at time τk (i.e. at the birth of vertex vk). By Lemma 5.2,

cB(vk, t)

e(1−p)(t−τk)

a.s.−→ W ′
k, (7.2)

whereW ′
k is an exponential random variable with mean one. By Proposition 5.3, |BP(t)|/e(2−p)t a.s.−→

W . Write γ = (1− p)/(2− p) and let Δk = e−(1−p)τkW ′W−γ . Then we have

n−γ deg(vk, Gn) =
cB(vk, τn−1) + 1

e(1−p)(τn−1−τk)

(
e(2−p)τn−1

|BP(τn−1)|+ 1

)γ

e−(1−p)τk

a.s.−→ W ′
kW

−γe−(1−p)τk

= Δk.

�
Now let us prove the convergence of the maximal non-superstar degree Υn. Fix L > 0

and let

M̃n[0, L] := max {deg(vk, Gn+1) : τk ≤ L} . (7.3)

In words, this is the largest degree in Gn+1 amongst all vertices born before time L in
BP(·). The convergence of the degree of vk for any k ≥ 1 implies the next result.

Lemma 7.2 (Convergence near the root). Fix any L > 0. Then there exists a random
variable Δ∗[0, L] > 0 such that

M̃n[0, L]

nγ

a.s.−→ Δ∗[0, L].

Now if we can show that with high probability, Υn = M̃n[0, L] for large finite L as
n → ∞, then we are done. This is accomplished via the next Lemma. First we shall need
to setup some notation. Recall that by asymptotics for the stopping times τn in Lemma
7.1, given any ε > 0, we can choose Kε > 0 such that

lim sup
n→∞

P

(∣∣∣∣τn − 1

2− p
log n

∣∣∣∣ > Kε

)
≤ ε. (7.4)

For any 0 < L < t, let BP(L, t] denote the set of vertices born in the interval (L, t].
Recall that we used v1 for the original progenitor. For any time t and v ∈ BP(t), let
degv(t) = cB(v, t) + 1 denote the degree of vertex v in the superstar model G|BP(t)|+1

obtained through the surgery procedure. For fixed K and L, let An(K,L) denote the
event that for some time t ∈ [(2− p)−1 log n±K], there exists a vertex v in BP(L, t] with
degv(t) > degv1(t).

Lemma 7.3 (Maxima occurs near the root). Given any K and ε, one can choose L > 0
such that

lim sup
n→∞

P(An(K,L)) ≤ ε.

In particular, given any ε > 0, we can choose L such that

lim sup
n→∞

P(Υn �= M̃n([0, L])) ≤ ε.
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Using Lemma 7.2 now shows that there exists a random variable Δ∗ such that Υn/n
γ a.s.−→

Δ∗, and this completes the proof of Theorem 2.4.
Proof of Lemma 7.3: For ease of notation, write t−n = (2 − p)−1 log n − K and

t+n = (2 − p)−1 log n + K. Since the degree of any vertex is an increasing process it is
enough to show that we can choose L = L(K, ε) such that as n → ∞, the probability that
there is some vertex born in the time interval [L, t+n ] whose degree at time t+n is larger than
the degree of the root v1 at time t−n is smaller than ε. Let M[L,t+n ](t

+
n ) denote the maximal

degree by time t+n of all vertices born in the interval [L, t+n ]. Then for any constant C

P(An(K,L)) ≤ P

({
degv1(t

−
n ) < Cnγ

}
∩
{
M[L,t+n ](t

+
n ) > Cnγ

})
≤ P

(
degv1(t

−
n ) < Cnγ

)
+ P

(
M[L,t+n ](t

+
n ) > Cnγ

)
.

Since the offspring distribution of v1 is a rate (1− p) Yule process

e−(1−p)t−n degv1(t
−
n ) = e(1−p)K/2degv1(t

−
n )

nγ

a.s.−→ Wv1

where Wv1 has an exponential distribution. Thus for a fixed K, we can choose C = C(ε)
large enough such that

lim sup
n→∞

P
(
degv1(t

−
n ) < Cnγ

)
≤ ε/2.

Thus for a fixed ε, C,K, it is enough to choose L large such that

lim sup
n→∞

P

(
M[L,t+n ](t

+
n ) > Cnγ

)
≤ ε/2.

Without loss of generality, we shall assume Lε, t
+
n are all integers. For any integer Lε <

m < t+n − 1, let M[m,m+1](t
+
n ) denote the maximum degree by time t+n of all vertices born

in the interval [m,m+ 1]. Then

M[L,t+n ](t
+
n ) = max

L≤m≤t+n−1
M[m,m+1](t

+
n ).

Let |BP[m,m+1]| denote the number of vertices born in the time interval [m,m+1]. Since
for a vertex born at some time s < t+n , the degree of the vertex at time t+n has distribution
Yu1−p(t

+
n − s), an application of the union bound yields

P

(
M[L,t+n ](t

+
n ) > Cnγ

)
≤

t+n−1∑
m=L

E(|BP[m,m+ 1]|)P(Yuq(t+n −m) > Cnγ).

Now E(BP[m,m+1]) ≤ E(|BP(m+1)|). By Proposition 5.3, E(|BP(t)|) ≤ e(2−p)t. Further
by Lemma 5.2, for fixed time s, a rate 1−p Yule process has a geometric distribution with
parameter e−(1−p)s. Thus we have

P

(
M[L,t+n ](t

+
n ) > Cnγ

)
≤

t+n−1∑
m=L

Ae(2−p)m
[
1− e−(1−p)(t+n−m)

]Cnγ

≤
t+n−1∑
m=L

Ae((2−p)m−Ce(1−p)(m−K))
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where last inequality follows from the fact that for 0 ≤ x ≤ 1, 1 − x ≤ e−x and et
+
n /2 =

nγe(1−p)K . Now choosing L large, one can make the right hand side of the last inequality
as small as one desires and this completes the proof.

�

7.4. Proof of logarithmic height scaling. The aim of this section is to complete the
proof of Theorem 2.5. Let us first understand the relationship between the distances in
BP(τn) and Gn+1 due to the surgery operation. The distance of all the red vertices in
BP(τn) from the superstar v0 is one. For each blue vertex v ∈ BP(τn), let r(v) denote
the first red vertex on the path from v to the root v1 in BP(τn). Recall from Section 5.4
that d(v) denoted the number of edges on the path between v and r(v) with d(v) = 0 if v
was a red vertex. Then the distance of this vertex from the superstar v0 in Gn+1 is just
d(v) + 1 since the vertex needs d(v) steps to get to r(v) which is then directly connected
to v0 in Gn+1 by an edge. Let D(u, v) denote the graph distance between vertices u and
v in Gn+1. Since by convention d(v) = 0 for all the red vertices, this argument shows that
for all v �= v0 ∈ Gn+1, D(v, v0) = d(v) + 1. In particular the height of Gn+1 is given by

H(Gn+1) = max {d(v) + 1 : v ∈ BP(τn)} . (7.5)

Now by the definition of H(Gn+1), there is a vertex in BP(τn) such that d(v) = H(Gn+1)−1
but no vertex with d(v) = H(Gn+1). Recall the stopping times Bir(k), defined as the first
time a vertex with d(v) = k is born in BP(·). Thus we have

Bir(H(Gn+1)− 1) ≤ τn ≤ Bir(H(Gn+1)). (7.6)

Now recall that Theorem 5.14 showed that the stopping times Bir(k) satisfy Bir(k)/k
a.s.−→

W (1/e)/1− p as k → ∞. Dividing (7.6) throughout by H(Gn+1) we have

Bir(H(Gn+1)− 1)

H(Gn+1)

a.s.−→ W (1/e)

1− p
,

τn
log n

a.s.−→ 1

2− p
.

Here the first assertion follows by Theorem 5.14 while the second assertion follows from
Lemma 7.1 which described asymptotics for the stopping times τn. Rearranging shows
that

H(Gn+1)

log n

a.s.−→ (1− p)

W (1/e)(2− p)
.

This completes the proof. �
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Appendix

Below we describe each of the thirteen events and show the corresponding event specific
term.
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• E = 1: Brazil vs Netherlands soccer match from the 2010 World Cup. The term
is “Brazil” or “Netherlands”.

• E = 2: Basketball player Lebron James announcement of signing with the Miami
Heat. The term is “Lebron”.

• E = 3: The 2010 World Cup Kick-Off Celebration Concert. The term is “World
Cup”.

• E = 4: Brazil vs Portugal soccer match from the 2010 World Cup.. The term is
“Brazil” or “ Portugal”.

• E = 5: Italy vs Slovakia soccer match from the 2010 World Cup. The term is
“Italy” or “Slovakia”.

• E = 6: The 2010 BET Awards show. The term is “BET Awards”.
• E = 7: The firing of General Stanly McChrystal by US President Barack Obama.
The term is “McChrystal”.

• E = 8: The 2010 World Cup Opening Ceremony. The term is “World Cup”.
• E = 9: Mexico vs South Africa soccer match from the 2010 World Cup. The term
is “Mexico”.

• E = 10: England vs Slovakia soccer match from the 2010 World Cup. The term is
“England”.

• E = 11: Portugal vs North Korea soccer match from the 2010 World Cup. The
term is “Portugal”.

• E = 12: Roger Federer’s tennis match in the first round of the 2010 Wimbledon
tournament. The term is “Federer”.

• E = 13: The UN imposing sanctions on Iran. The term is “Iran”.


