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We consider a simple model of sequential decisions made by a fusion agent that
receives binary-passive reports from distributed sensors. The main result is an explicit
formula for the probability of making a decision before a fixed budget is exhausted.
These results depend on the relationship between a special ruin problem for a “lazy
random walk” and a traditional biased walk.

1. DISTRIBUTED SENSING WITH DECENTRALIZATION AND FUSION

For many tasks of reconnaissance and surveillance, networks of spatially distributed
sensors provide the low-cost, low-risk solution, and the rapidly growing field of dis-
tributed sensing now provides many interesting challenges for probabilistic modeling
(see, e.g., Chong and Kumar [1]). The main purpose of this article is to examine a
simple model that joins the rudiments of sequential decision-making with the engi-
neering constraint of a fixed budget for the cost of the transmissions sent to and from
the distributed sensors. Here the costs associated with transmissions from the sensors
are intended to either real physical expenditures, such as battery life, or to capture
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more subtle costs, such as the cumulative risk of a remote sensor (or bug) being found
by an adversary.

Our focus is specifically on distributed sensor networks with a decentralized
architecture; that is, each sensor is capable of certain preliminary decision processing
before sending summarized information to an automated fusion agent. The fusion
agent is thought of as being remote from the distributed sensors, and it has two
responsibilities. First, it interrogates the distributed sensors according to some protocol
and, second, it makes an “overall” network decision at such as time as sufficient
evidence has been collected to support a decision. In the protocols considered here,
the fusion agent remotely interrogates the distributed sensors sequentially one by one.

We are mostly concerned with a “binary-plus-passive” design for which at the
time a sensor is interrogated, it checks its locally stored observation data and acts
according to a three-part rule: (1) If the observation data has a “large weight” (in some
appropriate sense), it sends +1 to the fusion center; (2) If it has a correspondingly
“small weight”, then the sensor sends −1; and, (3) if the observation is within a certain
intermediate range, the sensor does not reply at all. Here the fusion agent does know
that the sensor was interrogated, so the nonreply conveys useful information. The
benefit of this “passive reply” alternative is that the sensor does not expend energy
or expose itself to incremental risk of adversary detection. Naturally, we view an
active response from a sensor as expensive and we view a nonresponse as relatively
inexpensive—but not entirely costless.

2. TRACKINGTHE COSTS ANDTHETIMETO DECISION

To fix notation, we first describe a version of our problem that is a bit more general
than the one we analyze in detail. By {Xi}i≥1 we denote a sequence of discrete-
valued, independent and identically distributed (i.i.d) random variables that we view
as “information weights” coming from of the reports (or nonreports) from a sequence
of queries that are put to the distributed sensors. Next, we consider a nonnegative
function c(·) and we view c(Xi) as the cost of the fusion agent collecting the value Xi,
either directly from the sensor report or through the information of a “nonreport.” We
then let B denote our budget for payment for the costs of this collected information.

We assume that we can continue to collect distributed sensor information so long
as our cumulative cost Cn satisfies the budget constraint

Cn
def= c(X1) + c(X2) + · · · + c(Xn) < B,

and we assume that decision rule for the fusion agent is based on the sum of the signal
information weights

Sn = X1 + X2 + · · · + Xn.

A decision is made by the fusion agent at the time when the process {Sn} hits either
an upper boundary U ≡ {U(n) : n = 1, 2, . . .}, say for a positive decision, or a lower
boundary L ≡ {L(n) : n = 1, 2, . . .} for a negative decision. Naturally, the upper and
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lower boundaries depend on the hypothesis that the fusion must test to make the net-
work decision. In general, these boundaries are curved, and they would be determined
by the usual tools of sequential decisions theory such as the sequential probability
ratio test (or its extensions and approximations).

Thus, our distributed sensing problem leads to a special kind of boundary crossing
problem for the two-dimensional process Zn = (Cn, Sn), n = 1, 2, . . . . From the design
prospective, the random variables of most interest are the decision time,

τD = min{n : Sn ≥ U(n) or Sn ≤ L(n)}, (1)

and the budget exhaustion time,

τE = min{n : Cn ≥ B}. (2)

This frames the general problem, but without further specialization, the tools for
analysis are limited. Guerriero, Pozdnyakov, Glaz, and Willett [3] considered the case
when B is large and used the renewal theorem approximation τE ∼ B/E(c(X1)) to
make some progress, but here we are specifically concerned with the case for which
the budget B is reasonably small. It is precisely for applications with a strongly binding
budget that exact formulas are most useful.

3. BINOMIAL-PLUS-PASSIVE WALK

To have any hope for exact formulas, one needs more detailed information on dis-
tribution of the Xi, the cost function c, and the decision boundaries. The simplest
nontrivial case begins with a trinomial model for the Xi that we parameterize as
P(Xi = 1) = p, P(Xi = 0) = r, and P(Xi = −1) = q with nonnegative p, r, and q such
that p + r + q = 1. We then take the simplest possibilities for the decision boundaries;
for the upper boundary U , we take a constant U, and for the lower boundary L, we
take the constant −L, where U > 0 and L > 0 are integers.

The choice of a useful cost function is more subtle since the cost function must cap-
ture the benefit of the “nonresponse” possibility in the binary-plus-passive protocols.
Still, only special choices are likely to yield tractable formulas. These considerations
lead us to introduce an integer K and to consider the cost function defined by

c(x) = |x| + δ(x)/K , (3)

where δ(0) = 1 and δ(x) = 0 if x �= 0. In other words, our cost for the binary trans-
mission of 1 or −1 from a distributed sensor is a “unit,” and the cost of the passive
transmission from a distributed sensor (i.e., a nonresponse to a query) is just a 1/K
fraction of a “unit.”
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The decision time (1) is now more explicitly given by

τD = min{n : Sn ≥ U or Sn ≤ −L}, (4)

and the budget exhaustion time is given by (3) and

τE = min{n : c(X1) + c(X2) + · · · + c(Xn) ≥ B}. (5)

Here one should note that the total cost CτE at the time the budget is exceeded can
take on the any of the values B, B + 1/K , . . . , B + (K − 1)/K , but an “overshoot” of
the budget is only possible if the sensor response at time τE was an active response.

There are several probabilities that can inform us about the design of a binary-
plus-passive distributed sensor network. We are particularly interest in

P(τD ≤ τE), (6)

the probability that we make a decision before we overrun our budget. We are also
interested in this event together with the kind of decision that we make:

P(τD ≤ τE and SτD = U) and P(τD ≤ τE and SτD = −L). (7)

Moreover, it may be useful sometimes to know just where the evidence stands when
no decision has been made and yet the budget is exhausted; this is given by

P(τE < τD and SτE = x). (8)

4. COMPUTATIONAL FORMULAS FOR PROBABILITIES OF INTEREST

Formulas for these probabilities of interest for the binary-passive distributed sensor
model can be given with help from some related binary variables for which analogous
probabilities are either well known or easily found. To describe these variables, first
note that a {−1, 0, 1} trinomial process can be associated with a binomial process
simply by deleting zeros and the times at which they occur. This process of “casting
out zeros” distorts the values (and distribution) of hitting times, but it does so in way
that still permits useful calculations. To make this explicit, we first introduce a new
i.i.d. sequence {X∗

i : i = 1, 2, . . .} with

P(X∗
i = 1) = p∗ and P(X∗

i = −1) = q∗,

where

p∗ = p/(p + q) and q∗ = q/(p + q),

and we consider the new binomial random walk S∗
n = X∗

1 + X∗
2 + · · · + X∗

n together
with a corresponding “decision time”

τ ∗
D = min{n : S∗

n ≥ U or S∗
n ≤ −L}. (9)
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Finally, it will be useful in our analysis to consider the number ν of active responses
observed up to and including time τE . Under our binary-passive protocol, this is simply

ν =
τE∑

i=1

|Xi|. (10)

We now have a theorem that tells shows how the basic probability results for τD, τE ,
SτD , and SτE can be expressed in terms of the more easily analyzed (or well-known)
quantities ν, τ ∗

D, τ ∗
E , S∗

τD
, and S∗

τE
. In a later section we illustrate these computational

relations with a numerical example.

Theorem 1: For each 0 ≤ n ≤ B, one has

P(ν = n) =
(

(B − n)K + n

n

)
(1 − r)nr(B−n)K

+
K−1∑
i=1

(
n − 1 + (B − n)K + i

n − 1

)
(1 − r)nr(B−n)K+i.

Moreover, we have four identities that relate the “unstarred variables” to ν and the
simpler “starred variables”:

P(τD > τE) =
B∑

n=0

P(τ ∗
D > n) P(ν = n), (11)

P(τD ≤ τE , SτD = U) =
B∑

n=0

P(τ ∗
D ≤ n, S∗

τ ∗
D

= U) P(ν = n),

P(τD ≤ τE , SτD = −L) =
B∑

n=0

P(τ ∗
D ≤ n, S∗

τ ∗
D

= −L) P(ν = n),

P(τD > τE , SτE = x) =
B∑

n=0

P(τ ∗
D > n, S∗

n = x) P(ν = n),

where −L < x < U.

Comment: One should note that given the first formula, all of the terms on the right side
of the subsequent formulas can be readily computed since all the “starred” variables
refer to the standard biased random walk {S∗

k : k = 0, 1, . . .} for which formulas (or
methods) for all of the required probabilities are wellknown.

Proof of Theorem 1: We will first prove the identity (11) and then derive the formula
for P(ν = n). The proofs of the remaining formulas are similar and can be safely
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omitted. To begin, we note that 0 ≤ ν ≤ B, so we have

P(τD > τE) =
B∑

n=0

P(τD > τE , ν = n).

Next, we let Q(n, j) denote number of paths (S∗
1 , S∗

2 , . . . , S∗
n) of length n of the affiliated

binomial random walk such that the following hold:

1. The path (S∗
1 , S∗

2 , . . . , S∗
n) never hits −L or U.

2. Exactly j of the summands of S∗
n are equal to +1.

We then have

P(τ ∗
D > n) =

n∑
j=0

Q(n, j)pj
∗qn−j

∗ .

We then consider padding the trajectory of the affiliated random walk of length n with
k zero-valued summands.

The idea here is that each zero-valued summand has a cost of 1/K and we want
these added summands to bring us precisely to the point where the budget is exhausted.
Specifically, we choose k so that we have Cn+k−1 < B ≤ Cn+k , and because of the
possibility of overshooting, this gives us a range of values for k that is given by
(B − n)K ≤ k ≤ (B − n)K + K − 1. This padding gives us a trajectory for a trinomial
walk (S1, S2, . . . , Sn+k) with the following properties:

1. (S1, S2, . . . , Sn+k) stays inside the “no decision” interval (−L, U).

2. Sn+k has j summands equal to +1.

3. Sn+k has n − 1 summands equal to −1.

4. Sn+k has k summands equal to zero.

Here one should note that number P(n, k) of ways of padding the affiliated walk with
zeros depends only on n and k because adding such zeros does not change boundary
crossing events. We then have the representation

P(ν = n) =
(B−n)K+K−1∑

k=(B−n)K

P(n, k)(p + q)nrk ,

and for the moment, we do not need the exact values of the P(n, k), although these
will be found shortly. The proof of the identity (11) is now a calculation:

P(τD > τE , ν = n) =
(B−n)K+K−1∑

k=(B−n)K

n∑
j=0

Q(n, j)P(n, k), pjqn−jrk

=
(B−n)K+K−1∑

k=(B−n)K

P(n, k)(p + q)nrk
n∑

j=0

Q(n, j)pj
∗qn−j

∗
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=
(B−n)K+K−1∑

k=(B−n)K

P(n, k)(p + q)nrkP(τ ∗
D > n)

= P(ν = n)P(τ ∗
D > n).

Now, all we need to do now is to derive the distribution of ν. First, note that
because of the possibility of going over the budget, we have the disjoint union

{
ν = n

}
=

{
ν = n, CτE = B

}
∪

{
ν = n, CτE = B + 1/K

}
∪ · · ·

· · · ∪
{
ν = n, CτE = B + (K − 1)/K

}
.

In the first event, there is no overshoot, and we calculate its probability separately:

P(ν = n, CτE = B) = P(|{i ≤ τE : |Xi| = 1}| = n

and |{i ≤ τE : |Xi| = 0}| = (B − n)K)

=
(

(B − n)K + n

n

)
(1 − r)nr(B−n)K .

In the other events, there is some overshoot, and one should note that overshooting is
possible only if the last summand was +1 or −1. Thus, for i = 1, 2, . . . , K − 1, we
see that P(ν = n, CτE = B + i/K) is given by

(1 − r)

(
n − 1 + (B − n)K + i

n − 1

)
(1 − r)n−1r(B−n)K+i (12)

because out of the first n − 1 + (B − n)K + i summands, exactly (B − n)K + i are
zero. Finally, for completeness, we note that when n = 0, overshooting is impossible,
but, pleasantly enough, the formula still applies since, by convention, one has

( j
−1

) = 0.
�

Remark 1: What was actually shown in the first half of the proof is that because of
linear boundaries, we have

P(τD > τE | ν = n) = P(τ ∗
D > n).

Although this certainly seems intuitive, one can see from the argument above that a
rigorous justification does require work.

Remark 2: From the proof one sees that we have identified P(n, k) as

P(n, k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
n + k

n

)
if k = (B − n)K

(
n − 1 + k

n − 1

)
if (B − n)K < k ≤ (B − n)K + K − 1.
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5. SMALL B CALCULATIONS VERSUS LARGE B APPROXIMATIONS

The main benefit of Theorem 1 is that it expresses nonstandard ruin probabilities such
as P(τD ≤ τE) in terms the distribution of τ ∗

D, the hitting time for a Bernoulli random
walk. This hitting time is very well understood. For example, Feller [2, p. 351] gives
a classic textbook treatment via generating functions, and there is a useful survey of
modern developments by Lengyel [4].

The bottom line is that for B of small, or moderate size, Theorem 1 combines with
the classical calculations to answer most of what one might ask about the probability
P(τD ≤ τE) and related quantities. For large B, there is an alternative approach to that
takes advantage of natural approximations from a renewal theory.

5.1. Two RenewalTheory Approximations

Guerriero et al. [3] observed that the strong renewal theorem tells us that as B → ∞,
one has

τE

B/E(c(X1))
= τE

B/(p + q + r/K)
→ 1

with probability 1, and this suggests some natural approximations to P(τD ≤ τE).
The first — and most natural — approximation is based directly on original

trinomial walk. It is given by the formula

P(τD ≤ τE) ≈ P
(

τD ≤ Round

[
B

p + q + r/K

])
, (13)

which one gets by replacing τE by its renewal theory approximation.
A more refined approximation uses the affiliated binomial random walk. Specifi-

cally, if τE is well represented by its renewal theory approximation B/(p + q + r/K),
then ν is well approximated by B/(p + q + r/K) × (p + q), because the fraction of the
summands Xi that are different from zero is approximately p + q. These considerations
motivate a second approximation:

P(τD ≤ τE) ≈ P
(

τ ∗
D ≤ Round

[
B

p + q + r/K
× (p + q)

])
. (14)

Finally, we should note that the use of rounding in the approximations (13) and
(14) is reasonable — but somewhat arbitrary. One could just as well replace Round
with Floor or Ceiling. We will also take these variations into consideration when we
compare the trinomial approximation (13) and binomial approximation (14) to the
exact values of P(τD ≤ τE) computed with the help of Theorem 1.

5.2. Numerical Comparisons

For the renewal theory approximations to have a fighting chance, the budget B must be
of at least moderate size, so we first consider cases B = 20. To specify the rest of the
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TABLE 1. Probability Estimates of Decision before Exhaustion in
Example 1

P(τD ≤ τE)

Exact .0113587

Approximation Round Floor Ceiling
Trinomial (13) .0138173 .0138173 .0130238
Binomial (14) .00683594 .00683594 .0147705

TABLE 2. Probability Estimates of Decision before Exhaustion in
Example 2

P(τD ≤ τE)

Exact .0971227

Approximation Round Floor Ceiling
Trinomial (13) .0930403 .0876269 .0930403
Binomial (14) .0980835 .0703125 .0980835

model, we take the signal probabilities to be p = 1/10 and q = 1/10 (so r = 8/10),
take the decision limits to be U = 10 and L = 10, and, finally, take the cost to send a
passive response to be 1/K = 1/8. We then have a table of comparisons of the exact
value for P(τD ≤ τE) with the six candidate approximations given by (13) and (14)
together with the variations that substitute “Floor” and “Ceiling” for “Round.” (see
Table 1.)

For the second example, we decrease B just a little to 17. We then take p = 1/5,
q = 1/5, r = 3/5, U = 8, L = 8, and K = 20 to complete the model. (see Table 2.)

The first observation to be drawn from Tables 1 and 2 is that for such a moderate
B, the approximation errors are relatively large. Moreover, there is no apparent way to
try to make the renewal theory approximations much better through some “continuity
correction.” One needs to move the renewal theory approximations for τE to an integer
value, and there does not appear to be any dominant choice among the three obvious
alternatives. The absence of a good approximation (at least within the class of renewal
theory alternatives) helps to underscore the benefit of computational formulas such as
those provided by Theorem 1. In addition to its direct benefits, it provides a calibration
on the accuracy of earlier approximations.

6. CONCLUDING REMARKS: DEALING WITH MORE REALISTIC
BOUNDARIES

Here we have restricted attention to flat decision boundaries, but in the decision prob-
lems of most importance in sequential analysis, the decision boundaries are curved.
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The assumption of level boundaries was essential to the effectiveness of the affiliated
random walk, which set the stage for the conditioning used in Theorem 1.

At this moment, it is not at all clear how one would calculate—or even
approximate—the analog of P(τD ≤ τE) for parabolic boundaries or for boundaries
given by sloping lines. In such cases, formulas of the style developed here seem highly
unlikely.

As an intermediate step, one can consider multistage a sequential procedure with
constant boundaries within each stage. For such problems, Theorem 1 provides useful
guidance, and in many applied contexts, it is reasonable to expect that such multistage
decision designs might offer effective approximations for decision problems with
curved boundaries.

Still, in the absence of any exact theoretical results (or even numerical algorithms)
for the corresponding curved boundary problems, it is not easy to say how one would
evaluate the suggested multistage approximations. In the end, any approximations for
the curved boundary problem would have to be evaluated by engineering judgement
and experimentation. Theorem 1 at least provides a starting point.
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