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PETAR JEVTIC AND J. MICHAEL STEELE

ABSTRACT. A caterpillar network (or graph) G is a tree with the property
that removal of the leaf edges of G leaves one with a path. Here we focus on
minimum weight spanning caterpillars (MSCs) where the vertices are points
in the Euclidean plane and the costs of the path edges and the leaf edges are
multiples of their corresponding Euclidean lengths. The flexibility in choosing
the weight for path edges versus the weight for leaf edges gives some useful
flexibility in modeling. In particular, one can accommodate problems moti-
vated by communications theory such as the “last mile problem.” Geometric
and probabilistic inequalities are developed that lead to a limit theorem that
is analogous to the well-known Beardwood, Halton Hammersley theorem for
the length of the shortest tour through a random sample.
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1. INTRODUCTION

Given a set x = {1,Z2, ..., 2, } of n points in R?, the set C = C(x) of spanning
caterpillars for x is the set of all connected graphs G such that G has vertex set
x and there exists a path w of edges in G such that if the edges of 7w are removed
then the remaining subgraph is a collection of one or more disjoint stars. Here, as
usual, a star is simply a connected graph with at most one vertex that has degree
greater than one. To visualize the typical picture, just draw a long path graph and
add a liberal sprinkling of edges incident to the vertices on the path.

The main focus here is on minimum weighted spanning caterpillars where we
differentiate between the costs of edges that are on the path and those that are
not on the path. To make this precise, we first note that the full specification of a
spanning caterpillar requires three elements. One has to specify the vertex set x,
the edge set E, and some path 7 in G such that if the edges of 7w are removed from
E one is left with a collection of disjoint stars with vertex set y. Typically there
are multiple options for the path 7, so a fully specified spanning caterpillar G is
given by a triple G = (x, E, 7).

For each edge e in the edge set of G, we let |e| denote its Euclidean length; that
is, if e = (z,y) € E = E(G) then we have |e| = |x — y|. Now, given a fixed A > 0,
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we define the weight W (G) of the spanning caterpillar G = (x, F, ) to be

(1) W(G) =AY lel+ > el
eem eeme

One motivation for this weighting scheme is the infamous “last mile” problem of
communication network theory. In that context, the weight factor A for the path
edges would be smaller than one — possibly much smaller since communication
along a network backbone may be very fast. Nevertheless, there is no mathemat-
ical reason to restrict the value of A beyond requiring it to be positive; moreover,
there are benefits to being flexible about the size of A. For example, in a ground
transportation model where the “drop off” cost is cheap, one would want to take A
bigger than one.

Here we are concerned with the cost of the minimum weight spanning cater-
pillar under two situations. First, there is instructive geometry to be understood
when the points are placed deterministically — or even adversatively. Second,
one wants to understand the generic situation — say when the set x,, is given by
{X1,X5,...,X,} and the random points X;, 1 < i < n are independent and iden-
tically distributed in R2. In this generic scenario, the random variable of primary
interest is the weight of the minimum spanning caterpillar of the random sample
Xn'

M(x,) = M(X1, Xa,..., X)) € min{W(G) : G eClx,)}.

Our main theorem is a strong law for M (X1, Xo,...,X,,) that is of a kind that
goes back to Beardwood, Halton and Hammersley (1959) for the traveling salesman
problem.

Theorem 1 (Strong Law for MSCs of Random Samples from the Square). If the
random points X;, i = 1,2,... are chosen independent and uniformly from the unit
square, then there is a constant Byrsc(A) > 0 such that

(2) lim 71_1/2M(X1,X27 oo, X)) = Busc(N)  with probability one.

n—roo

More generally, if the random variables X;, i = 1,2, ... are independent and have
a density f on R? that has compact support, then we have with probability one that

(3) lim n '2M (X1, Xo, ..., X)) = Busc(N) /Rz Vf () de,

n— o0
where the constant Barsc(N) in is the same as in .

Small values of A\ favor path edges over leaf edges, so it is natural to ask if The-
orem [I| might actually be a generalization of the Beardwood, Halton, Hammersley
theorem. As the theorem is framed and proved it does not rigorously include the
that theorem. Nevertheless, one can give a theorem that covers both the behavior
of minimum spanning caterpillars and the minimum cost traveling salesman paths.
We will return to this point in later sections where we also discuss the relationship
between the MSC constant Sysc(A) and the corresponding constants frsp and
Barst for the traveling salesman problem and the minimum spanning tree problem.

Limit results like the Beardwood, Halton, Hammersley theorem have an exten-
sive literature, much of which is summarized in the monographs of Yukich (1998)
and Steele (1997). Nevertheless, the development here is specifically attentive to
minimal spanning caterpillars, and it is largely independent of the general theory.
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Section [2] develops the key geometric facts that one needs to prove our theorem.
Subsequent sections complete the proof and discuss applications of the theorem.

2. GEOMETRIC FEATURES OF MINIMUM SPANNING CATERPILLARS

Several of our inferences about the structure of a minimal spanning caterpillar
will depend on estimates of the weight of a suboptimal spanning caterpillar. Some
of these depend in turn on a classic bound for the length of the shortest path
through a set of points in a square.

Lemma 1 (Short Path Bound). For any {y1,y2,...,ym} C [0,t]?, t > 0, there is
a permutation o : [1,m] — [1,m] such that

m—1
Z Yo (i) = Yo(it1)] < 3tv/m.
i=1

In other words, given a vertex set {y1,¥92,...,ym} in a square of side ¢, we can
always find a path that is not longer than 3t\/m. Results of Few (1955) are more
precise (and still easily proved). For our purposes here, any explicit O(ty/m) bound
would suffice.

One of the features that makes the minimum spanning caterpillar problem chal-
lenging is that the cost can go up or down as one adds points. For example,
if x = {x1,22,73,74} is the set of corner points of the square [0,1]?, then with
A = 1 we have M(x) = 3, but if x5 = (271/2,271/2) and X’ = x U {@5} then
M(x'") = 23/2 < 3. In particular, M(-) is not a Subadditive Euclidean functional
in the sense of Steele (1997). The tools of Section |2 help us to deal with this and
related geometric difficulties.

Several of our arguments depend on decompositions of the unit square into sub-
squares, and the most central of these is given by the next lemma. Here by B(k)
we denote the collection of all of the k? subsquares of [0, 1]? that have the form

[a/k,(a+1)/k] x [b/k,(b+1)/k], where 0<a,b< k.

For any graph G and any vertex y of G we let Ng(y) be the set of the neighbors of
y in G. Also to any y € R? we associate a family of annuli

Aly,r)y={zeR*:r/2< |z —y| <7} 0<7r<o0.

Lemma 2 (No Crowded Annulus). There ezists a constant o« = a(X) > 0 such that
for any set x = {x1,29,...,2,} C [0,1] and for any minimum spanning caterpillar
G = (x, E,7) we have for ally € x and all v > 0 that

|NG(y) n A(yﬂ")‘ < a.

Proof. If y is a star point of G the assertion is trivial since y has just one neighbor.
Hence we assume that y € m and — for the moment — we further assume that y
is an interior vertex of m with neighbors y; and y2 on 7 as show in Figure [I| We
now let m = [Ng(y) N A(y,r)| and we assume with out loss that m > 4. We will
now construct a new spanning graph G’ of x, as shown in Figure [2 and use the
suboptimality of G’ to get a bound on m.

First, delete all of the edges from y to the star points S of G in Ng(y) N A(y, r).
Thus, we delete at least m — 2 edges with a total cost at least (m — 2)r/2. Next
we apply Lemma [I] to get a path 7y trough the points of S such that the Euclidean
length of 7 is not greater than 67m'/2; here we use the observation that the annulus
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FIGURE 1. The annulus with the inner radius r/2 and the outer
radius r centered at the path point y. Open dots denote non-path
points of G and the heavy line indicates the path .

is contained in a box with side 2r and m is an upper bound on the number of points
in S. We let z; and z5 be the endpoints of the path my. These are distinct by our
assumption that m > 4.

To complete the construction, we add the edge (y, z1), delete the edge (y,y2)
and insert the edge (22,92). Consequently, for the path 7’ for G’ = (x, F',7’) we
can take the segment of 7 up to y, the edge (y, z1), the path 7y through S from 2,
to z2, the edge (z2,y2) and then finally we take the remainder of the original path
7 that follows ys.

FIGURE 2. A view of the annulus of Figure[1] after surgery. In the
new caterpillar G’, all points of x that are in the annulus are now
on the new path 7’.

By our construction we have
W(G") < W(G) = (m —2)r/2 + 6Arm'/? + Ay — 21| = Ay — 2| + Alz2 — gol.
By the triangle inequality we have |z —y2| — |y —y2| < r and trivially |y —z1| < r,
so from W(G) < W(G') we have
m < 12xm'/% 44X+ 2.

Therefore, for case when y is an interior point of 7 we can take the generous bound
m < (14X + 2)2. The case when y is an end point of 7 is completely analogous —
even a bit easier, so we omit the details for that case. [
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A basic consequence of the “No Crowded Annulus” lemma is that a vertex v of a
MSC with a large number of neighbors must have some neighbor that is very close
to v; in fact, it must be exponentially close.

Lemma 3 (Existence of an Exponentially Near Neighbor). There exists constants
C >0 and 0 < p <1 depending only on X such that for any x = {x1,22,..., 20},
any spanning caterpillar G = (x, E,m), yo € X, and R > 0, we have

min{ly — yol : y € Na(yo), |y — yo| < R} < Cp'R,
where g = [Na(yo) N {y = [y — yo| < R}|.
Proof. The infinite set of annuli A(yo, R), A(yo, R27Y), ..., A(yo, R27F), ... cover
the punctured disk {y : 0 < |y — yo| < R}, and by Lemma [2| none of these annuli
can contain more that « points of Ng(yo). Let k be the maximal integer for which

it holds that ¢ > ka. Then, one of the annuli A(yo, R277), with j > k must contain
a point of Ng(yo); that is,

q>ka implies min{|y —yo| : ¥y € Na(yo)} < 27"R.

and this is more than is needed for the lemma. In particular, by review of the proof
one can check that C' = 2 and p = 2=/ would suffice. O

FI1GURE 3. The caterpillar of Lemmal[d]where dotted lines show the
new caterpillar after x, is dropped and yq is promoted to become
a path vertex. None of the old edges incident to x,, are present in
the new caterpillar.

Lemma 4 (Cost to Drop One). There is a constant C = C(\) such that for all
X = {z1,%2,...,2n} and all minimal spanning caterpillars G = (x, E, ), we have

(4) M(xy,x9,. .. &n_1) < M(x1,29,...,2,) + C/k,
provided that every B € B(k) contains a vertex of the path .

Proof. We first set x' = {z1,22,...,2p—1}. If there is a minimum spanning cater-
pillar G = (x, F, ) of x where the point z,, is not a vertex of the path =7 = n(G),
then we can simply delete x,, and the edge incident to z,, to get a minimum span-
ning caterpillar of x’ that has weight less than M (z1,22,...,2,). Similarly, if
T, € 7 but x,, has degree one in G, then we can just delete z,, and its edge to get a
spanning caterpillar that has weight less than M (x1,xa,...,x,). Also, if x, is on
m and has degree equal to two, then we can delete z,, and the edges incident to x,,
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and add an edge connecting the neighbors of z,, on 7. In all of these easy cases we
get a spanning caterpillar for x’ that has weight less than M (x).

Thus, we may assume that x, is a vertex of m and that xz, has at least one
neighbor in G that is not on the path 7. As before, we have two cases to consider:
(a) when z,, is an end point of the path 7 and (b) when z,, is an interior point of
7 as shown in Figure [3] The cases are similar, so we will only give the details for
the second case.

Setting m = |Ng(x,)| we have m > 3 and there is at least one star vertex
adjacent to x,. Let u be smallest distance from x,, to a star vertex of G in Ng(z,),
and let yo be a star vertex in Ng(z,,) with p = |yo — x,|. We also let z1 and 25 be
the neighbors of x, on the path 7.

Now we construct a new spanning caterpillar G’ = (x/, E',7’) . To define E’ we
take (a) all of the edges of E not incident to z, and (b) as new edges we add all
of the edges (yo,w) where w € Ng(zy,) \ {yo}. Since the set E’ contains the edges
(21,90) and (yo, 22), we define the path 7’ of the new spanning caterpillar G’ by
taking the old path 7 up to the vertex z1, followed by the edge (21, ¥0), (Yo, 22) and
then we follow the old path from z, to the end of w. This construction is illustrated
by Figure

To estimate the weight W (G’) of the spanning caterpillar that we have con-
structed, we repeat the construction with bookkeeping. By the triangle inequality
and the definitions of m and u, we have

W(Gl) SM(Z‘l,JTQ, (R ,l’n) - )‘lzl - xn' - )‘|22 - x"'
+ Mz = @n| + [0 — yol} + M2z — zal + |20 — ol}
+ (m = 3)lyo — =
(5) = M(z1,%2,...,2n) + (M — 3+ 2X\)p.
The task now is to bound the last summand, and plan is to exploit Lemma
which tells us that if m is large then p must be small. We assume that each
B € B(k) contains a vertex of the path m = 7(G), so the optimality of G implies

that the star edges incident to z, cannot have length greater than R = 2'/2 /k.
This gives us the lower bound

q=|Na(z,) N {y: |y —azn| <R} >m -2,

so, using Lemmawith R = 22k gives the bound p < Cp™~22'/2/k. Thus, we
can generously bound last summand of @ by

mp 4 22 < Cp~22Y2 max{mp™} /k + 222Y2 [k = O (1/k).
m
which is all we need. (]

Lemma 5 (Cost to Add One). There is a constant C = C(X) such that for all

X = {z1,22,...,2n_1} and all minimal spanning caterpillars G = (x, E, ), we
have
(6) M(ml,xg,...,xn)§M(m1,$2,...,xn_1)+0/kz,

provided that every B € B(k) contains a vertex of the path 7.

Proof. Unlike Lemma [ this lemma is trivial. To get a spanning caterpillar of
X' = xU{z,} we just join z,, to the nearest path point of the spanning caterpillar
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G = (x, E,n). If x,, € B € B(k) there is a path point 2’ of G in B and we can joint
2’ to x, at a cost not greater than 2'/2 /. (]

3. STOCHASTIC FEATURES OF THE MSC’S BACKBONE

When the sample x,, = {X1, Xs, ..., X, } is independent with the uniform distri-
bution on [0, 1], the minimal spanning caterpillar of x,, is unique with probability
one, and it will be denoted by G = (x,,, E, 7). The path 7 = 7(G) of the minimal
spanning caterpillar is itself a graph, and we denote the vertices of = by my(x,,)-
The set vertices of G that are not on the path will be denoted by 7{,(x,,), and the
elements of this set are called star points. Every element of x,, is thus either a star
point or a path point.

Lemma 6 (Path Points in the Box). There are two constants a = a(\) > 0 and
C = C(N) such that for all n,k and B € B(k) we have

(7) P(ry(x,) N B = 0) < Ckexp(—an/k?).

Proof. Let (G, E,n) be the minimum spanning caterpillar with vertex set x,,; we
observed earlier that for a uniform independent sample, the minimum spanning
caterpillar is unique with probability one. To begin, we define £ = ¢(k) by setting

(8) 0= 3\ +VEN] + 1.

Now, for a given box B € B(k), we let H(¢, B) denote the set of £ squares of
B(3k() that are the middle ninth of B; explicitly, H(¢, B) is the set of all squares
B’ € B(3k¢) for which we have

(9) B’ Cla/k+1/(3k),a/k +2/(3k)] x [b/k + 1/(3k),b/k + 2/(3k)].
Now we consider the two events

A=Aw:mv(x,)NB=0} and F:{w:SE%l%EB)\Sﬂxn|>O};

that is, A is the event that there are no path points in the box B and F is the event
that each subbox S € H(¢, B) contains at least one point of the vertex set x,,.

If ANF # (), we take an w € AN F and then for x,, = X,,(w) we construct a
new spanning caterpillar G’ = (x,,, E', ') as follows:

(1) Since w € F we have x,, NS # 0 for each of the ¢? subsquares S € H (¢, B)
and we select one point vg € x,, NS for each S € H(¢, B).

(2) We let mg be a path through the set of 2 points {vs : S € H(¢, B)} that is
of minimal Euclidean length.

(3) Since w € A, no vertices of my(x,,) are in B, so each element of the set
{vs : S € H(¢,B)} is a star point of G and each such vg is connected to
path point of caterpillar G that is in B¢. We call this edge eg and we note
that |eg| > 1/(3k) since the distance from a point of S € H(¢, B) to a point
of B¢ is at least 1/(3k).

(4) To define the edge set E’, we first take the edge set E and remove from E
all of the set of edges {es : S € H(¢,B)}. We then add to E’ the edges
of the path 7y from Step (2). Lastly, we add an edge e’ that connects end
point of my to an end point of 7. It does not matter how one makes the
last choice from the four possibilities. The only control over the length of
¢ is that |¢/| < 21/2.
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(5) To complete the specification of the spanning graph G’ = (x,,, E',7’), we
take 7’ to be the path consisting of the edges of the old path 7, the con-
necting edge €', and the path my from Step (2).

To estimate the weight of G’ we recall |eg| > 1/(3k), bound the length of mg by
Lemma [I] (with ¢ = 1/(3k)), and use the generous bound |¢/| < 2 to get

W(G)<W(G) — DY les|+AD [e|+ el

SeH(¢,B) eE€mo
(10) < W(G) — £2/(3k) + €Nk + 2.

By the minimality of the weight of the spanning caterpillar G we have that
W(G) < W(G"), so by solving a quadratic equation we see that the bound
implies that

(11) <3\ +VEN).

By our choice of £ = ¢(k), the bound does not hold, so we conclude that
ANF =0.

Consequently, we have A C F° and since there are ¢? elements of H (¢, B) we
have

1 \" n
< cy < 2 o < 2 -
(12) P(A) < P(F°) <{ (1 ggzkz) < oo (g )

Again, using the specification given by of £ = U(k) = O(VE), we have

. k
0 < fuf {9@(@ } !
and we then take a = a(A) to be any constant less than this infimum. Again we

observe by our choice (8) we have 2 = O(k), so we can then choose C' = C()\) such
that we have the bound foralln>1and k > 1. O

4. MOMENTS OF CHANGE-ONE BOUNDS AND THE VARIANCE

Lemma 7 (Expected Cost of Change). For all 1 < p < oo and all ¢ > 0 we have
the bound

(13) E[|M(Xn11) = M(x,)["] = Oxpe(n=?%)  forn— oo.
Proof. First we fix k and consider the set
(14) Fo(k) ={w:Bnmy(x,) # 0 for all B € B(k)}

Since there are k? elements of B(k), Boole’s inequality and Lemma |§| give us a
bound on the complementary event,

(15) P(FS(k)) < Ck? exp(—an/k?).

and for F¢_, (k) we have the analogous bound.
Now, by using Lemmas 4] and [5| for w € F, (k) N F},—1(k) and applying Lemma
for w e FS(k) U FS_, (k) we have the pointwise bound

(16) M (Xp41) = M(x,)| < C/k + Cn'PLE; (k) U F_y (k).
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Taking p’th powers and using (a + b)? < 2P(a? + bP) on the right side of (|16)), we
find from the bound that for a new constant C' = C'(p) we have
E[|M(Xs1) = M(x,) "] < /K + OnP2k* exp(—an/k?).
Finally, taking k = |n'/3¢/?| gives us . a
There is a general inequality for the variance that works nicely with “discrete
continuity” like that provided Lemma [7] To state the inequality, first consider a
set of 2n independent random variables {X;, X/ : 1 < ¢ < n} that take values in

S = R<. Next, given a Borel function f : S® — R we set F = f(X1, Xo,...,X,))
and for 1 < i <n we set

F=f(X1,. ., Xio1, X, Xiv1, -, X))

One then has the jackknife bound (see e.g. Steele (1986) or Boucheron, Lugosi and
Bousquet (2004)):

R )
(17) VarF < o EY (F-F).

i=1

From this inequality and the estimate with p = 2, one immediately gets a
useful bound on the variance of M (x,,)-

Lemma 8 (Variance Estimate). For all € > 0 we have
(18) VarM (x,,) = Oxe(n“T1/3).

With the variance of M(x,,) under control, the proof of Theorem [I| will be in
range once we determine the asymptotic behavior of EM (x,,).

5. ASYMPTOTICS OF THE MEAN

Let {N(t) : 0 <t < oo} be a standard Poisson process with arrival rate one, and
let {X;, Xs,...} be an independent sequence of random vectors with the uniform
distribution on [0,1]2. The sequence is assumed to be independent of the process
{N(t):0<t< oo} Next we set

Xny = 1X1, X2, X} and () = E[M (X))l

The idea behind this construction is that ¢(¢) is a smoothed version of the sequence
of expected means, and we have the added benefit that for each B € B(k) the
cardinality of the set {X1,Xs,..., Xy} N B is Poisson with mean ¢/k*. This
observation leads to a simple inequality from which we can deduce the asymptotic
behavior of ¢(t).

Lemma 9 (Poisson Averages of the Means). For all t > 0, and all integer k > 0
we have

(19) o(t) < ko(t/k?) + 3k,
and there is a constant Byrsc = Brsc(N) > 0 such that

(20) A o(t)/Vt = Busc-
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Proof. For each B € B(k), we let Sp = B N {X1,Xo,..., XN} We then let
Gp = (Sp, Ep,mp) be the unique minimum spanning caterpillar for Sg. Assume
for the moment there is at least one edge of 7 for all B and let ag and bp be the
two distinct end points of mg. We then sew together all the paths 7, B € B(k).
Specifically, we order the boxes of B(k) in Boustrophedon (or plowman’s) order;
that is, we start on the upper left, go right along the top row, move down to the
second row, then move left along the second row, etc. We connect bp to aps where
B’ is a successor of B. The Euclidean length of this stitching can be bound above
(very crudely) by 3k. This gives the bound

(21) M(X1, Xa, ..., Xng) < 3kA+ ) W(Gp),
B

To remove the assumption that each Sp is not empty, we just note that if for some
B we have Sp = () we just can skip that box when we sew the small caterpillars
together to get our spanning caterpillar x,,. Similarly, if for some B the caterpillar
Gp is a star with central vertex v we just take ap = bp = v. We can then
go ahead with our sewing as before, and the bound again applies. Finally,
we take expectations in the bound . Scaling by both side and area, gives us
EW(Gg)] = p(t/k?)k=1, and there are k? summands in sum, so in the end we
have (19)).

To prove , we replace t with k2t in and we divide by V&2t to get the
stabilized recursive inequality,

k2t t 3\
al )<@+7 forall 1 < k < oo and ¢ > 0.

VER T OVE WVt
Now, given any € > 0 and any I' < oo, we can find by the continuity of ¢ an interval
(a,b) such that T' < a < b and for which we have

(23) Si([?geqtlisrgg}fw\(f?—eJr’y for all t € (a,b).

Choosing T > (3)\/¢€)?, we then have by and that
p(k?t)
Vit

or, in other words, we have

(22)

<~v+4+2 foralll<k<ooandalltée (a,b),

t oo
0} <~v+2 forallte U (k%a, k%) = S.
Vi K
For k > 3a(b — a)~! the intervals (k2a, k?b) and ((k + 1)%a, (k + 1)2b) overlap, so
we have (32a2(b — a)~2a,00) C S, and consequently we have

o(t)

L <y +2¢ forallt>3%a*(b—a)” 2

Vit

Since € > 0 is arbitrary, this is more than we need for the proof. O

Now we want to extract the asymptotic behavior of E M(x,,) from what we
have learned about ¢(t). One could appeal to the Tauberian theory for Borel
means (cf. Korevaar (2004, Chapter 6)), but E M(x,,) is so well-behaved that it is
quicker to use bare hands.
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Lemma 10 (Mean Increments and DePoissonization).
(24) lim B M (x,)/vVi = Aarse (M) > 0.

Proof. If we set A(n) = E[M(x,,)] and take N; to be a Poisson random variable
with mean ¢, then by conditioning and the definition of ¢ we have

p(t) = EA(N,) = ZA PN =) =3 AG) e
=0

Fixing 0 < € < 1/6, we then write
ti(e) =t +tY* andt_(e) =t — t¥/2e,
and, by repeated applications of with p = 1, we get the relation

(25) sup [(A()) — A([t])] = O(*H0).

Jeft-(e), t+ ()]

Now we make estimations over the three ranges. On the mid-range [t_(¢), ¢4 (¢)]
we use (25, and on the outside ranges [0,¢_(¢)], , and [t (€),00) we use the bound
from Lemma that tells us A(j) < Cj'/2 for all j. Assembling the three pieces we
have

o (t) = A([t]) I—ZI{A A([th)He™"t7/j!

= O(th(Nt < t-(6)) + O V%) + O(B(N*I(N; = 4(e)))
= o(t1/?).

To check this, note that first summand is o(t'/2) because P(N; < t_(¢)) = o(1), and
the last summand is o(t'/?) by the Cauchy-Schwarz inequality and the exponential
estimate for the upper Poisson tail. From this bound and the limit we have
the limit . Finally, for the strict positivity of Sassc (), one can look ahead to
the comparison of Byrsc(A) to st in the inequality of Section ]

6. COMPLETION OF THE ARGUMENT

The tools are in place to complete the proof of the first assertion of Theorem
We first note that if we set n; = 52, then by the variance bound we have

Var[n; /* M (x,,,)] = O(**/?).
Now, taking 0 < € < 1/6, Chebyshev’s inequality gives us for all 6 > 0 that

ZP (M (x,,) — EM(x,,,))| > 0) <6 2ZVar CPM(x,,,)] < oo
j=1
The Borel-Cantelli lemma, Lemma [10} and the arbitrariness of § then tell us that
(26) lim n; *M(x,,) = Busc  a.s..
j—}OO

Next, fix k and recall the set F,(k) = {w : BN7y(x,) # 0 for all B € B(k)}
that was introduced in the proof of Lemma [7]] We observed there that we have
the bound P(F¢(k)) < Ck3 exp(—an/k?), so by another application of the Borel-
Cantelli lemma we have P(FS(k) i.0.) = 0.
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Now, given n we define j by the relations n; < n < n;11. We can then apply
Lemma for w € Fy (k) and apply Lemma for w € F,; (k) to get the bound

M(x,) < M(x,,) +C(n— ni)kt + 3n'/? max(1, MNL(E, (k).

Dividing by n'/2, taking the limsup, using , and recalling the definition of n;,
we find
lim sup nfl/zM(Xn) < Bmsc with probability 1,
n—oo
and this proves half of the assertion of Theorem

With the natural changes, one can prove the second half. This time we apply
Lemma [I] for w € F£(k) and use Lemma 5| for w € F,(k) to get the bound

M(Xn,,,) € M(x) + Clnjn = n)k™" 4 3033 max(1, ) L(FS(K)),
so, when we divide by n'/2 and take the liminf on both sides, we find from
that

Brrse < liminfn~Y2M(x,,) with probability 1,
n—oo

completing the proof of the first assertion of Theorem

One can prove the second assertion of Theorem [I} by a variation of the approxi-
mation argument that Beardwood, Halton and Hammersley (1959) used in analysis
of the traveling salesman problem. At this point the argument is routine, so we
will just give a sketch.

First, we note that if the random variables X;, ¢ = 1,2, ... have a density f with
compact support in R?, then by translation and scaling we can suppose without
loss of generality that the support of f is contained in [0, 1]?. Next we note that we
can approximate f as well as we like by a density ¢ that is constant on each of the
subsquares B in our decomposition B(k) of [0,1]? into squares of side 1/k. More
precisely, for any € > 0 there is an integer k and there is a constant a(B) > 0 for
each B € B(k) such that the weighted sum of indicator functions

o)=Y a(B)s)

BeB(k)

is a density on [0, 1]? and

/Iﬂ@—¢@mmSa
RZ

Now, by the existence of a maximal coupling (see e.g. Lindvall (1992), p.18), we
can choose an independent sequence Z; = (X;,Y;), ¢ = 1,2,... such that for all 4,
X; has density f, Y; has density ¢, and

(27) P(X; #Yi) <e
Since we have P(Y; € B) = ap/k?, we see by the law of large numbers that

{Y1,Ya,...,Y,} N B| ~nag/k* with probability one,
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so, by scaling and the first part (2 of Theorem [I] we have with probability one for
each B € B(k) that

lim M({Yl,ifg,...,yn}ﬂB)/fz %ﬁMsc()\)\/OzB/k'Z

(28) — Bursc(V) /B V@) de

since ¢(x) = ap for all x € B. The union of the minimum spanning caterpillars
{Y1,Ys,...,Y,} N B over all subsquares B € B(k) has a length that differs from the
length of the minimum spanning caterpillar of the whole sample {Y7,Ya,...,Y,}
by an amount that is bounded independently of n (for k fixed), so by summing the
previous limit we have

(29) i MY, Y- Vo) Vit = Buasc) [ Vo) da.

n—oo

Finally, by the strong law of large numbers and the coupling bound applied
to the sum of the indicators 1(X; # Y;), we see that the cardinality of the dif-
ference between the sets {Y7,Ys,...,¥,} and {X;, Xs,..., X,,} is almost surely
O(en). Consequently we have that the difference between M (Y7,Y5,...,Y,) and
M(X1,Xs,...,X,) is almost surely O(y/en) so by (29) and the arbitrariness of
€ > 0, one has the second conclusion of Theorem

7. CONNECTING THE MSC, MST, AND TSP: CONSTANTS AND COMPLEXITY

The limiting constant Sy;sc(A) of Theorem [1| has a natural relationship to the
corresponding limit constants 8y;s7 and Brsp for the minimal spanning tree prob-
lem and the traveling salesman problem. Although the values of By;s7 and Brsp
are not known exactly, they have been investigated repeatedly (see e.g. Finch (2003,
pp- 497-500)). Rigorous bounds on Byst and Brsp are still relatively crude, but
for the TSP there have been increasingly sophisticated simulations with bounded
errors on the TSP calculations. Record holders Johnson, McGeoch and Rothberg
(1996) give

(30) Brsp = 0.7124 + 0.0002

Moscato and Norman (1998) also give a fractal, spacefilling heuristic for which they
determine the exact value By;n«7sp of their limit constant,

4(1+2v2)V/51
153

This is certainly intriguing, but the spacefilling model and the independent uniform

model are not perfect matches.

In a remarkable paper Avram and Bertsimas (1992) give an exact formula for
BarsT, but it comes at the price of an infinite sum of integrals that are not easy to
evaluate. The authors required an integration tour de force for to give a rigorous
proof (in their Theorem 9) that

(32) BusT > 0.0600822.

(31) BMN«TSP = =0.7147...

In a brief but interesting simulation study, Cortina-Borja and Robinson (2000)
estimated that

(33) Brrst = 0.6331 % 520.0013.
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This estimate is based on relatively small sample size (with n not bigger than
215 = 32,768) and, since fast algorithms are available for the MST, it seems feasible
to extend the analysis to much larger sample sizes.

Returning to spanning caterpillars, we note that for any set x = {x1,z2,...,2,},
we have the elementary bounds
(34) min(1, )M ST (x) < MSCx(x) < max(1,\)TSP(x),

where T'SP(x) denotes the length of shortest Euclidean path through x, M.ST(x)
denotes the Euclidean length of the minimal spanning tree, and M.SC\(x) is the
weight of the minimum spanning caterpillar with path edge weight factor A. These
bounds are crude, but they do show that Byrsc(A) is strictly positive for all A > 0.
For A = 1, the minimum spanning caterpillar constant Syrsc(1) also inherits the
suggestive simulation bounds and as well as any rigorous bounds that are
pI"OVGd for 5TSP and /BMST-

For exact optimum and for (14 ¢) approximations, the computational complexity
of the MSC is much closer to the notoriously hard TSP than to the notoriously easy
MST. Even if some generous oracle were to identify the set of vertices that are on
the path of an optimal MSC, one would still need to solve a traveling salesman
problem to put those vertices into an optimal order. While this observation may
fall short of a formal proof that the Euclidean MSC problem is NP-hard, it cannot
not fall short by much.

The question of approximate solution of the Euclidean MSC problem is much
more interesting. It seems inevitable that the approximation schemes of Arora
(1998) can be modified to provide a solution of the Euclidean MSC problem that
is within in a factor of 14 1/¢ of the optimum and do so with a running time of
O(n(logo(c) (n)). We have not pursued this point, but it does seem worth pursuing.

Even though though our interest in minimum weight caterpillars comes mainly
from communication networks, we should note that caterpillars have a long history
in graph theory. Harary and Schwenk (1973) used Pdlya enumeration theory to
show that the number of non-isomorphic caterpillars on n + 4 vertices is given by
the elegant formula 2" +2L"/2) and, in the same paper (p. 361), the authors credit
A. Hobbs for introducing the term “caterpillar.” Harary and Schwenk (1971) and
Harary and Schwenk (1972) had earlier investigated the connectivity properties of
graph powers of caterpillars. More recently, Ortiz and Villanueva (2012) studied
independent sets in caterpillar graphs and found that the whole family of indepen-
dent sets can be found in polynomial time. Caterpillars are the simplest graphs
for which the graphical bandwidth problem is non-trivial, so in many bandwidth
investigations caterpillars are important — see, e.g. Assmann, Peck, Systo and Zak
(1981), Miller (1981), Monien (1986), Haralambides, Makedon and Monien (1991),
Feige and Talwar (2005), and Lin, Lin and Xu (2006).

Finally, we should note that in chemistry, caterpillars are also known as Gut-
man trees, the later name referring back to Gutman (1977); sometimes they are
also called benzenoid trees because of their common presence in the structure of
benzenoid hydrocarbons. Surveys of El-Basil (1987), El-Basil (1990) and El-Basil
(2008) detail these connections and give many further references.

8. Two CONCLUDING OBSERVATIONS

T. Tao’s essay on the extended reals (Tao (2008, pp. 38-56)) makes the case that
the extend real numbers *R can be of concrete benefit to almost any mathematician,
pure or applied. Here with a very light use of the extended reals, we can answer a
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question that was raised in the introduction; we just need to take our path weight
A to be a strictly positive infinitesimal.

Specifically, we fix A to be any extended real such that 0 < A < z for all z € R
with > 0. With this choice, the weight of the minimum spanning caterpillar
is just A\ times the (usual Euclidean) cost of the optimal traveling salesman path.
Thus, if one reformulates Theorem [1] to permit an infinitesimal A € *R, we see that
Theorem [I] is a strict generalization of the Beardwood, Halton, Hammersley theo-
rem. Moreover, a proof of Theorem [I| that allows for a strictly positive infinitesimal
A € *R is virtually identical to the proof we have given here.

It is fair to say that this (very light) use of the extend reals is just a mater of
language. Nevertheless, we were genuinely uncertain at one point if one could view
Theorem [I] as an honest generalization of the Beardwood, Halton, Hammersley
theorem. It eventually became clear that the formal introduction of the extended
reals would make an affirmative answer easy. While this may be a just matter of
language, at the end of the day, it seems to be an instance of useful language.

Our second observation also concerns the flexibility of the free parameter A. This
parameter was introduced because of modeling motivations of the kind that were
mentioned in the introduction. Nevertheless, after A enters the game, it presents
new mathematical possibilities — possibilities that are not present in problems like
the TSP and MST. For example, Sarsc(A) is differentiable, and £},g- () provides
a measure of the relative weight that is placed on the path edges in the limit. Thus,
the free parameter \ offers a special handle on the asymptotic geometry of the MSC
for which there are no direct analogs in the traditional theory of the TSP or MST.
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