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Abstract. A caterpillar network (or graph) G is a tree with the property

that removal of the leaf edges of G leaves one with a path. Here we focus on
minimum weight spanning caterpillars (MSCs) where the vertices are points

in the Euclidean plane and the costs of the path edges and the leaf edges are
multiples of their corresponding Euclidean lengths. The flexibility in choosing

the weight for path edges versus the weight for leaf edges gives some useful

flexibility in modeling. In particular, one can accommodate problems moti-
vated by communications theory such as the “last mile problem.” Geometric

and probabilistic inequalities are developed that lead to a limit theorem that is

analogous to the well-known Beardwood, Halton Hammersley theorem for the
length of the shortest tour through a random sample, but the minimal span-

ning caterpillar fall outside the scope of the theory of subadditive Euclidean

functionals.
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1. Introduction

To visualize a caterpillar graph, just draw a long path graph and then add a
liberal sprinkling of additional vertices where each added vertex is connected to
the path by a single edge. Such graphs (or networks) have a natural place in
communication models where the path typically represents a fast backbone and the
edges that come off the path represent local service connections.

Given a set χ = {x1, x2, . . . , xn} of n points in R2, we say that a graph G is
a spanning caterpillar for χ if G is a caterpillar graph with vertex set χ. More
formally, a spanning caterpillar G is determined by a triple G = (χ,E, π), with
vertex set χ, edge set E, and a designated path graph π that is a subgraph of G.
The graph G is connected and each vertex of G that is not a vertex of π is required
to have degree one.

The main focus here is on weighted spanning caterpillars where we differentiate
between the costs of edges that are on the designated path π and those edges of G
that are not on the path π. For each edge e in the edge set of G, we let |e| denote
its Euclidean length; that is, if e = (x, y) ∈ E = E(G) then we have |e| = |x − y|.
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Now, given a fixed real value λ > 0, we define the weight W (G) of the spanning
caterpillar G = (χ,E, π) to be the sum over G of the weighted edge lengths:

(1) W (G) = λ
∑
e∈π
|e|+

∑
e/∈π

|e|.

One motivation for this weighting scheme is the infamous “last mile” problem of
communication network theory. In that context, the weight factor λ for the path
edges would be smaller than one — possibly much smaller since communication
along a network backbone may be very fast. Nevertheless, there is no mathemat-
ical reason to restrict the value of λ beyond requiring it to be positive; moreover,
there are benefits to being flexible about the size of λ. For example, in a ground
transportation model where the “drop off” cost is cheap, one would want to take λ
to be larger than one.

Here we are concerned with the cost of the minimum weight spanning caterpil-
lar under two distinct analytical situations. First, there are worst case scenarios
where the points are placed deterministically subject only to geometric constraints.
Second, one wants to understand the more generic situations such as those with
χn = {X1, X2, . . . , Xn} where the points Xi, 1 ≤ i ≤ n, are independent and
identically distributed random variables with values in R2. In this scenario, we let
C(χn) denote the set of all spanning caterpillars of χn and the random variable of
primary interest is the weight of the minimum spanning caterpillar :

M(χn) = M(X1, X2, . . . , Xn)
def
= min{W (G) : G ∈ C(χn)}.

Our main theorem is a strong law for M(X1, X2, . . . , Xn) that is of a kind that
goes back to the limit theorem of Beardwood, Halton and Hammersley (1959) for
the traveling salesman problem.

Theorem 1 (Strong Law for MSCs of Random Samples). If the random points
Xi, i = 1, 2, . . . are chosen independently and uniformly from the unit square, then
there is a constant βMSC(λ) > 0 such that with probability one we have

(2) lim
n→∞

n−1/2M(X1, X2, . . . , Xn) = βMSC(λ).

More generally, if the independent random variables Xi, i = 1, 2, . . . have a density
f on R2 with compact support, then we have with probability one that

(3) lim
n→∞

n−1/2M(X1, X2, . . . , Xn) = βMSC(λ)

∫
R2

√
f(x) dx,

where the constant βMSC(λ) in (3) is the same as in (2).

Small values of λ favor path edges over leaf edges, so it is natural to ask if
Theorem 1 might actually be a generalization of the Beardwood, Halton, Hammer-
sley theorem. As the theorem is framed and proved, it does not rigorously include
the that theorem. Still, as we outline in Section 8, one can give a theorem that
covers both the behavior of minimum spanning caterpillars and the minimum cost
traveling salesman paths.

The Beardwood, Halton, Hammersley theorem and its extensions have an exten-
sive literature (see e.g. the monographs of Steele (1997) and Yukich (1998)), but, for
several reason, the theory of the minimum spanning caterpillar falls outside of the
scope of that literature. First, the MSC functional is not monotone, so it fails to be
a subadditive Euclidean functional in the sense of Steele (1981). A corresponding
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lack of monotonicity was addressed for the minimal spanning tree in Steele (1988)
and for the minimal matching problem in Rhee (1993), but the methods used there
run into trouble here. One source of difficulty is that the vertex degrees of a mini-
mum spanning caterpillar can be arbitrarily large. These and other distinctions are
discussed as the proof of the theorem progresses (see e.g. the remarks at the end of
Section 2 and 3 and the discussion of the MST in Section 8)

We begin the proof by developing the most basic geometric features of the MSC
functional for general finite sets of points. In particular, Lemma 2 gives us crucial
control of the number of edges incident to a vertex — provided that we constrain
the lengths of those edges. Probability enters for the first time in Section 3 where we
use concentration inequalities to show that with high probability the backbone path
π will visit every element of a certain partition of [0, 1]2 into subsquares. Sections
4, 5, and 6 complete the proof of Theorem 1.

Several relationships between the MSC, the TSP, and the MST are then detailed
in Section 7, and Section 8 concludes with a brief discussion of extensions and
refinements of the MSC limit theorem.

2. Geometric Features of Minimum Spanning Caterpillars

Several of our inferences about the structure of a minimal spanning caterpillar
depend on estimates of the weight of a suboptimal spanning caterpillar. Some of
these depend in turn on a classic bound for the length of the shortest path through
a set of points in a square.

Lemma 1 (Short Path Bound). For any {y1, y2, . . . , ym} ⊂ [0, t]2, t > 0, there is
a permutation σ : [1,m]→ [1,m] such that

m−1∑
i=1

|yσ(i) − yσ(i+1)| ≤ 3t
√
m.

In other words, given a set of points {y1, y2, . . . , ym} in a square of side t, we
can always find a path through the points that is not longer than 3t

√
m. Results of

Few (1955) are more precise (and still easily proved). For our purposes here, any
explicit O(t

√
m) bound would suffice.

One of the challenging features of the minimum spanning caterpillar problem
is that the minimal cost can go up or down as one adds points. For example,
if χ = {x1, x2, x3, x4} is the set of corner points of the square [0, 1]2, then with
λ = 1 we have M(χ) = 3, but if x5 = (2−1/2, 2−1/2) and χ′ = χ ∪ {x5} then
M(χ′) = 23/2 < 3. Thus, as mentioned earlier, M(·) fails to be monotone so it is
not a subadditive Euclidean functional in the sense of Steele (1981; 1997).

The tools of this section help us to deal with this lack of monotonicity and several
related geometric difficulties. The next lemma is the most critical of these, and it
gives us a kind of local finiteness without which progress would be difficult. Here,
for any graph G and any vertex y of G we let NG(y) be the set of the neighbors of
y in G. Also, for any y ∈ R2 we have an associated family of annuli,

A(y, r) = {x ∈ R2 : r/2 ≤ |x− y| ≤ r} 0 ≤ r <∞.
Lemma 2 (No Crowded Annulus). There exists a constant α = α(λ) > 0 such that
for any set χ = {x1, x2, . . . , xn} ⊂ [0, 1]2 and for any minimum spanning caterpillar
G = (χ,E, π) we have for all y ∈ χ and all r > 0 that

|NG(y) ∩A(y, r)| ≤ α.
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Proof. If y is a star point of G the assertion is trivial since y has just one neighbor.
Hence we assume that y ∈ π and — for the moment — we further assume that
y is an interior vertex of π with neighbors y1 and y2 on π as shown in Figure 1.
We now let m = |NG(y) ∩ A(y, r)| and we assume without loss of generality that
m ≥ 4. We will now construct a new spanning graph G′ of χ, as shown in Figure
2. The suboptimality of G′ is used to get a bound on m.

y

y1 y2
π

Figure 1. The annulus with the inner radius r/2 and the outer
radius r centered at the path point y. Open dots denote non-path
points of G and the heavy line indicates the path π.

First, delete all of the edges from y to the star points S of G in NG(y)∩A(y, r).
Thus, we delete at least m − 2 edges, and the total cost of these edges is at least
(m − 2)r/2. Next we apply Lemma 1 to get a path π0 through the points of S
such that the Euclidean length of π0 is not greater than 6rm1/2; here we use the
observation that the annulus is contained in a box with side 2r and m is an upper
bound on the number of points in S. We let z1 and z2 be the endpoints of the path
π0. These are distinct by our assumption that m ≥ 4.

To complete the construction, we add the edge (y, z1), delete the edge (y, y2)
and insert the edge (z2, y2). Consequently, for the path π′ for G′ = (χ,E′, π′) we
can take the segment of π up to y, the edge (y, z1), the path π0 through S from z1
to z2, the edge (z2, y2) and then finally we take the remainder of the original path
π that follows y2.

By our construction we have

W (G′) ≤W (G)− (m− 2)r/2 + 6λrm1/2 + λ|y − z1| − λ|y − y2|+ λ|z2 − y2|.

By the triangle inequality we have |z2−y2|−|y−y2| ≤ r and trivially |y−z1| ≤ r,
so from W (G) ≤W (G′) we have

m ≤ 12λm1/2 + 4λ+ 2.

Therefore, for case when y is an interior point of π we can take the generous bound
m ≤ (14λ+ 2)2. The case when y is an end point of π is completely analogous —
even a bit easier, so we omit the details for that case. �

A basic consequence of the “No Crowded Annulus” lemma is that a vertex v of a
MSC with a large number of neighbors must have some neighbor that is very close
to v; in fact, it must be exponentially close.
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y

y1 y2

z1
z2

π'

Figure 2. A view of the annulus of Figure 1 after surgery. In the
new caterpillar G′, all points of χ that are in the annulus are now
on the new path π′.

Lemma 3 (Existence of an Exponentially Near Neighbor). There exist constants
C > 0 and 0 < ρ < 1 depending only on λ such that for any χ = {x1, x2, . . . , xn},
any spanning caterpillar G = (χ,E, π), y0 ∈ χ, and R ≥ 0, we have

min{|y − y0| : y ∈ NG(y0), |y − y0| ≤ R} ≤ CρqR ,

where q = |NG(y0) ∩ {y : |y − y0| ≤ R }|.

Proof. The infinite set of annuli A(y0, R), A(y0, R2−1), . . . A(y0, R2−k), . . . covers
the punctured disk {y : 0 < |y − y0| ≤ R}, and by Lemma 2 none of these annuli
can contain more than α points of NG(y0). Let k be the maximal integer for which
one has q ≥ kα. One of the annuli A(y0, R2−j) with j ≥ k must then contain a
point of NG(y0); that is,

q ≥ kα implies min{|y − y0| : y ∈ NG(y0)} ≤ 2−kR,

and this is more than one needs for the lemma. Moreover, by review of the proof,
one can check that C = 2 and ρ = 2−1/α would suffice here. �

z1 xn

z2 π

y0

Figure 3. The caterpillar of Lemma 4 where dotted lines show the
new caterpillar after xn is dropped and y0 is promoted to become
a path vertex. None of the old edges incident to xn are present in
the new caterpillar.
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Several of our arguments depend on decompositions of the unit square into sub-
squares, and the next lemma is typical. Here by B(k) we denote the collection of
all of the k2 subsquares of [0, 1]2 that have the form

[a/k, (a+ 1)/k]× [b/k, (b+ 1)/k], where 0 ≤ a, b < k.

Lemma 4 (Cost to Drop One). There is a constant C = C(λ) such that for all
χ = {x1, x2, . . . , xn} and all minimal spanning caterpillars G = (χ,E, π), we have

(4) M(x1, x2, . . . , xn−1) ≤M(x1, x2, . . . , xn) + C/k,

provided that every B ∈ B(k) contains a vertex of the path π.

Proof. We first set χ′ = {x1, x2, . . . , xn−1}. If there is a minimum spanning cater-
pillar G = (χ,E, π) of χ where the point xn is not a vertex of the path π = π(G),
then we can simply delete xn and the edge incident to xn to get a minimum span-
ning caterpillar of χ′ that has weight less than M(x1, x2, . . . , xn). Similarly, if
xn ∈ π but xn has degree one in G, then we can just delete xn and its edge to get a
spanning caterpillar that has weight less than M(x1, x2, . . . , xn). Also, if xn is on
π and has degree equal to two, then we can delete xn and the edges incident to xn
and add an edge connecting the neighbors of xn on π. In all of these easy cases we
get a spanning caterpillar for χ′ that has weight less than M(χ).

Thus, we may assume that xn is a vertex of π and that xn has at least one
neighbor in G that is not on the path π. As before, we have two cases to consider:
(a) when xn is an end point of the path π and (b) when xn is an interior point of
π as shown in Figure 3. The cases are similar, so we will only give the details for
the second case.

Setting m = |NG(xn)| we have m ≥ 3 and there is at least one star vertex
adjacent to xn. Let µ be smallest distance from xn to a star vertex of G in NG(xn),
and let y0 be a star vertex in NG(xn) with µ = |y0 − xn|. We also let z1 and z2 be
the neighbors of xn on the path π.

Now we construct a new spanning caterpillar G′ = (χ′, E′, π′) . To define E′ we
take (a) all of the edges of E not incident to xn and (b) as new edges we add all
of the edges (y0, w) where w ∈ NG(xn) \ {y0}. Since the set E′ contains the edges
(z1, y0) and (y0, z2), we define the path π′ of the new spanning caterpillar G′ by
taking the old path π up to the vertex z1, followed by the edge (z1, y0), (y0, z2) and
then we follow the old path from z2 to the end of π. This construction is illustrated
by Figure 3.

To estimate the weight W (G′) of the spanning caterpillar that we have con-
structed, we repeat the construction with bookkeeping. By the triangle inequality
and the definitions of m and µ, we have

W (G′) ≤M(x1, x2, . . . , xn)− λ|z1 − xn| − λ|z2 − xn|
+ λ{|z1 − xn|+ |xn − y0|}+ λ{|z2 − xn|+ |xn − y0|}
+ (m− 3)|y0 − xn|
= M(x1, x2, . . . , xn) + (m− 3 + 2λ)µ.(5)

The task now is to bound the last summand, and plan is to exploit Lemma
3 which tells us that if m is large then µ must be small. We assume that each
B ∈ B(k) contains a vertex of the path π = π(G), so the optimality of G implies
that the star edges incident to xn cannot have length greater than R = 21/2/k.
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This gives us the lower bound

q ≡ |NG(xn) ∩ {y : |y − xn| ≤ R }| ≥ m− 2,

so, using Lemma 3 with R = 21/2/k gives the bound µ ≤ Cρm−221/2/k. Thus, we
can generously bound last summand of (5) by

mµ+ 2λµ ≤ Cρ−221/2 max
m
{mρm}/k + 2λ21/2/k = Oλ(1/k).

which is all we need. �

Lemma 5 (Cost to Add One). There is a constant C = C(λ) such that for all
χ = {x1, x2, . . . , xn−1} and all minimal spanning caterpillars G = (χ,E, π), we
have

(6) M(x1, x2, . . . , xn) ≤M(x1, x2, . . . , xn−1) + C/k,

provided that every B ∈ B(k) contains a vertex of the path π.

Proof. Unlike Lemma 4, this lemma is trivial. To get a spanning caterpillar of
χ′ = χ ∪ {xn} we just join xn to the nearest path point of the spanning caterpillar
G = (χ,E, π). If xn ∈ B ∈ B(k) there is a path point x′ of G in B and we can joint
x′ to xn at a cost not greater than 21/2/k. �

Remark. The results of this section underscore some distinctions between the MSC
functional and the general theory of subadditive Euclidean functionals. Here the
smoothness of M expressed by Lemmas 2 and 3 comes at a price. Constraints must
be place on the structure of the optimizing graph; specifically, one needs to know
that backbone path π is well distributed throughout the square. This phenomenon
is related in turn to the lack of uniform boundedness the degrees of the MSC.

3. Stochastic Features of the MSC’s Backbone

If the sample χn = {X1, X2, . . . , Xn} is independent with the uniform distribu-
tion on [0, 1]2, and if λ 6= 1, then the minimal spanning caterpillar of χn is unique
with probability one, and it will be denoted by G = (χn, E, π). If λ = 1 the mini-
mal spanning caterpillar need not be unique since one typically has multiple choices
for the backbone path π. Since these paths differ only in their first or last edges,
we regain uniqueness in this case if we take G = (χn, E, π) to be the minimum
spanning caterpillar that has the smallest number of vertices on the path π.

The path π = π(G) of the minimal spanning caterpillar is itself a graph, and we
denote the set of vertices of π by πV (χn). The set of vertices of G that are not on
the path will be denoted by πcV (χn), and the elements of this set are called star
points. Every element of χn is thus either a star point or a path point.

Lemma 6 (Path Points in the Box). There are two constants α = α(λ) > 0 and
C = C(λ) such that for all n, k and B ∈ B(k) we have

(7) P(πV (χn) ∩B = ∅) ≤ Ck exp(−αn/k3).

Proof. Let (G,E, π) be the minimum spanning caterpillar with vertex set χn; we
observed earlier that for a uniform independent sample, the minimum spanning
caterpillar is unique with probability one. To begin, we define ` = `(k) by setting

(8) ` = d3(λ+
√
kλ)e+ 1.
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Now, for a given box B ∈ B(k), we let H(`, B) denote the set of `2 squares of
B(3k`) that are the middle ninth of B; explicitly, H(`, B) is the set of all squares
B′ ∈ B(3k`) for which we have

(9) B′ ⊂ [a/k + 1/(3k), a/k + 2/(3k)]× [b/k + 1/(3k), b/k + 2/(3k)].

Now we consider the two events

A = {ω : πV (χn) ∩B = ∅} and F = {ω : min
S∈H(`,B)

|S ∩ χn| > 0};

that is, A is the event that there are no path points in the box B and F is the event
that each subbox S ∈ H(`, B) contains at least one point of the vertex set χn.

If A ∩ F 6= ∅, we take an ω ∈ A ∩ F and then for χn = χn(ω) we construct a
new spanning caterpillar G′ = (χn, E

′, π′) as follows:

(1) Since ω ∈ F we have χn ∩ S 6= ∅ for each of the `2 subsquares S ∈ H(`, B)
and we select one point vS ∈ χn ∩ S for each S ∈ H(`, B).

(2) We let π0 be a path through the set of `2 points {vS : S ∈ H(`, B)} that is
of minimal Euclidean length.

(3) Since ω ∈ A, no vertices of πV (χn) are in B, so each element of the set
{vS : S ∈ H(`, B)} is a star point of G and each such vS is connected to
path point of caterpillar G that is in Bc. We call this edge eS and we note
that |eS | ≥ 1/(3k) since the distance from a point of S ∈ H(`, B) to a point
of Bc is at least 1/(3k).

(4) To define the edge set E′, we first take the edge set E and remove from E
all of the set of edges {eS : S ∈ H(`, B)}. We then add to E′ the edges
of the path π0 from Step (2). Lastly, we add an edge e′ that connects end
point of π0 to an end point of π. It does not matter how one makes the
last choice from the four possibilities. The only control over the length of
e′ is that |e′| ≤ 21/2.

(5) To complete the specification of the spanning graph G′ = (χn, E
′, π′), we

take π′ to be the path consisting of the edges of the old path π, the con-
necting edge e′, and the path π0 from Step (2).

To estimate the weight of G′ we recall |eS | ≥ 1/(3k), bound the length of π0 by
Lemma 1 (with t = 1/(3k)), and use the generous bound |e′| ≤ 2 to get

W (G′) ≤W (G)−
∑

S∈H(`,B)

|eS |+ λ
∑
e∈π0

|e|+ λ|e′|

≤W (G)− `2/(3k) + `λ/k + 2λ.(10)

By the minimality of the weight of the spanning caterpillar G we have that
W (G) ≤ W (G′), so by solving a quadratic equation we see that the bound (10)
implies that

` ≤ 3(λ+
√
kλ).(11)

By our choice (8) of ` = `(k), the bound (11) does not hold, so we conclude that
A ∩ F = ∅.

Consequently, we have A ⊂ F c and since there are `2 elements of H(`, B) we
have

P(A) ≤ P(F c) ≤ `2
(

1− 1

9`2k2

)n
≤ `2 exp

(
− n

9`2k2

)
.(12)



CATERPILLARS 9

Again, using the specification given by (8) of ` = `(k) = O(
√
k), we have

0 < inf
k≥1

{
k

9`2(k)

}
,

and we then take α = α(λ) to be any constant less than this infimum. Again we
observe by our choice (8) we have `2 = O(k), so we can then choose C = C(λ) such
that we have the bound (7) for all n ≥ 1 and k ≥ 1. �

Remark. A novel and recurring feature of the MSC functional is that one has
to attend to internal structures of the optimizing graph such as the set πV (χn) of
points on the path. Lemma 6 tells us that with high probability every point in the
square is reasonably close to one of these special points, and this is the kind one
needs to make use of Lemmas 4 and 5.

4. Moments of Change-One Bounds and the Variance

Lemma 7 (Expected Cost of Change). For all 1 ≤ p < ∞ and all ε > 0 we have
the bound

(13) E[
∣∣M(χn+1)−M(χn)

∣∣p ] = Oλ,p,ε(n
ε−p/3) for n→∞.

Proof. First we fix k and consider the set

(14) Fn(k) = {ω : B ∩ πV (χn) 6= ∅ for all B ∈ B(k)}
Since there are k2 elements of B(k), Boole’s inequality and Lemma 6 give us a
bound on the complementary event,

(15) P (F cn(k)) ≤ Ck3 exp(−αn/k3).

and for F cn−1(k) we have the analogous bound.
Now, by using Lemmas 4 and 5 for ω ∈ Fn(k)∩Fn−1(k) and applying Lemma 1

for ω ∈ F cn(k) ∪ F cn−1(k) we have the pointwise bound

(16) |M(χn+1)−M(χn)| ≤ C/k + Cn1/21[F cn(k) ∪ F cn−1(k)].

Taking p’th powers and using (a + b)p ≤ 2p(ap + bp) on the right side of (16), we
find from the bound (15) that for a new constant C = C(p) we have

E[ |M(χn+1)−M(χn)|p ] ≤ C/kp + Cnp/2k3 exp(−αn/k3).

Finally, taking k = bn1/3−ε/pc gives us (13). �

There is a general inequality for the variance that works nicely with “discrete
continuity” like that provided Lemma 7. To state the inequality, first consider a
set of 2n independent random variables {Xi, X

′
i : 1 ≤ i ≤ n} that take values in

S = Rd. Next, given a Borel function f : Sn → R we set F = f(X1, X2, . . . , Xn)
and for 1 ≤ i ≤ n we set

Fi = f(X1, . . . , Xi−1, X
′
i, Xi+1, . . . , Xn).

One then has the jackknife bound, see e.g. Steele (1986) or Boucheron, Lugosi and
Bousquet (2004):

(17) VarF ≤ 1

2
E

n∑
i=1

(F − Fi)2.
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From this inequality and the estimate (13) with p = 2, one immediately gets a
useful bound on the variance of M(χn).

Lemma 8 (Variance Estimate). For all ε > 0 we have

(18) VarM(χn) = Oλ,ε(n
ε+1/3).

With the variance of M(χn) under control, the proof of Theorem 1 will be in
range once we determine the asymptotic behavior of EM(χn).

5. Asymptotics of the Mean

Let {N(t) : 0 ≤ t <∞} be a standard Poisson process with arrival rate one, and
let {X1, X2, . . .} be an independent sequence of random vectors with the uniform
distribution on [0, 1]2. We also assume that this sequence is independent of the
process {N(t) : 0 ≤ t <∞}. Next we set

χN(t) = {X1, X2, . . . , XN(t)} and ϕ(t) = E[M(χN(t))].

The idea behind this construction is that ϕ(t) is a smoothed version of the sequence
of expected means, and we have the added benefit that for each B ∈ B(k) the
cardinality of the set {X1, X2, . . . , XN(t)} ∩ B is Poisson with mean t/k2. This
observation leads to a simple inequality from which we can deduce the asymptotic
behavior of ϕ(t). The argument for Lemma 9 goes back to Beardwood, Halton and
Hammersley (1959). It is included here mainly for completeness, though it may
help that some details are treated more explicitly than usual.

Lemma 9 (Poisson Averages of the Means). For all t > 0, and all integer k > 0
we have

(19) ϕ(t) ≤ kϕ(t/k2) + 3kλ,

and there is a constant βMSC = βMSC(λ) > 0 such that

(20) lim
t→∞

ϕ(t)/
√
t = βMSC .

Proof. For each B ∈ B(k), we let SB = B ∩ {X1, X2, . . . , XN(t)}. We then let
GB = (SB , EB , πB) be the unique minimum spanning caterpillar for SB . Assume
for the moment there is at least one edge of πB for all B and let aB and bB be the
two distinct end points of πB . We then sew together all the paths πB , B ∈ B(k).
Specifically, we order the boxes of B(k) in Boustrophedon (or plowman’s) order;
that is, we start on the upper left, go right along the top row, move down to the
second row, then move left along the second row, etc. We connect bB to aB′ where
B′ is a successor of B. The Euclidean length of this stitching can be bound above
(very crudely) by 3k. This gives the bound

(21) M(X1, X2, ..., XN(t)) ≤ 3kλ+
∑
B

W (GB),

To remove the assumption that each SB is not empty, we just note that if for some
B we have SB = ∅ we just can skip that box when we sew the small caterpillars
together to get our spanning caterpillar χn. Similarly, if for some B the caterpillar
GB is a star with central vertex v we just take aB = bB = v. We can then
go ahead with our sewing as before, and the bound (21) again applies. Finally,
we take expectations in the bound (21). Scaling by both side and area, gives us
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E[W (GB)] = ϕ(t/k2)k−1, and there are k2 summands in sum, so in the end we
have (19).

To prove (20), we replace t with k2t in (19) and we divide by
√
k2t to get the

stabilized recursive inequality,

(22)
ϕ(k2t)√
k2t

≤ ϕ(t)√
t

+
3λ√
t

for all 1 ≤ k <∞ and t > 0.

Now, given any ε > 0 and any T <∞, we can find by the continuity of ϕ an interval
(a, b) such that T < a < b and for which we have

(23)
ϕ(t)√
t
≤ ε+ lim inf

s→∞

ϕ(s)√
s
≡ ε+ γ for all t ∈ (a, b).

Choosing T ≥ (3λ/ε)2, we then have by (22) and (23) that

ϕ(k2t)√
k2t

≤ γ + 2ε for all 1 ≤ k <∞ and all t ∈ (a, b),

or, in other words, we have

ϕ(t)√
t
≤ γ + 2ε for all t ∈

∞⋃
k=1

(k2a, k2b) ≡ S.

For k ≥ 3a(b − a)−1 the intervals (k2a, k2b) and ((k + 1)2a, (k + 1)2b) overlap, so
we have (32a2(b− a)−2a,∞) ⊂ S, and consequently we have

ϕ(t)√
t
≤ γ + 2ε for all t > 32a3(b− a)−2.

Since ε > 0 is arbitrary, this is more than we need for the proof. �

Now we want to extract the asymptotic behavior of EM(χn) from what we
have learned about ϕ(t). One could appeal to the Tauberian theory for Borel
means (cf. Korevaar (2004, Chapter 6)), but EM(χn) is so well-behaved that it is
quicker to use bare hands.

Lemma 10 (Mean Increments and DePoissonization).

(24) lim
n→∞

EM(χn)/
√
n = βMSC(λ) > 0.

Proof. If we set A(n) = E[M(χn)] and take Nt to be a Poisson random variable
with mean t, then by conditioning and the definition of ϕ we have

ϕ(t) = EA(Nt) =

∞∑
j=0

A(j)P (Nt = j) =

∞∑
j=0

A(j)
tj

j!
e−t.

Fixing 0 < ε < 1/6, we then write

t+(ε) = t+ t1/2+ε and t−(ε) = t− t1/2+ε,

and, by repeated applications of (13) with p = 1, we get the relation

(25) sup
j∈[t−(ε), t+(ε)]

|(A(j)−A(btc)| = O(t2ε+1/6).

Now we make estimations over the three ranges. On the mid-range [t−(ε), t+(ε)]
we use (25), and on the outside ranges [0, t−(ε)] and [t+(ε),∞) we use the bound
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from Lemma 1 that tells us A(j) ≤ Cj1/2 for all j. Assembling the three pieces we
have

|ϕ(t)−A(btc)| =
∞∑
j=0

|{A(j)−A(btc)}|e−ttj/j!

= O(t1/2P (Nt ≤ t−(ε))) +O(t2ε+1/6) +O(E(N
1/2
t I(Nt ≥ t+(ε))))

= o(t1/2).

To check this, note that first summand is o(t1/2) because P (Nt ≤ t−(ε)) = o(1), and
the last summand is o(t1/2) by the Cauchy-Schwarz inequality and the exponential
estimate for the upper Poisson tail. From this bound and the limit (20) we have the
limit (24). Finally, for the strict positivity of βMSC(λ), one can look ahead to the
comparison of βMSC(λ) and βMST given by the inequality (34) of Section 7. �

6. Completion of the Argument

The tools are in place to complete the proof of the first assertion of Theorem 1.
We first note that if we set nj = j2, then by the variance bound (18) we have

Var[n
−1/2
j M(χnj

)] = O(j2ε−4/3).

Now, taking 0 < ε < 1/6, Chebyshev’s inequality gives us for all δ > 0 that
∞∑
j=1

P (|n−1/2j (M(χnj
)− EM(χnj

))| ≥ δ) ≤ δ−2
∞∑
j=1

Var[n
−1/2
j M(χnj

)] <∞.

The Borel-Cantelli lemma, Lemma 10, and the arbitrariness of δ then tell us that

(26) lim
j→∞

n
−1/2
j M(χnj

) = βMSC a.s..

Next, fix k and recall the set Fn(k) = {ω : B ∩ πV (χn) 6= ∅ for all B ∈ B(k)}
that was introduced in the proof of Lemma 7. We observed there that we have
the bound P (F cn(k)) ≤ Ck3 exp(−αn/k3), so by another application of the Borel-
Cantelli lemma we have P (F cn(k) i.o.) = 0.

Now, given n we define j by the relations nj ≤ n < nj+1. We can then apply
Lemma 1 for ω ∈ F cnj

(k) and apply Lemma 5 for ω ∈ Fnj
(k) to get the bound

M(χn) ≤M(χnj
) + C(n− nj)k−1 + 3n1/2 max(1, λ)1(F cnj

(k)).

Dividing by n1/2, taking the limsup, using (26), and recalling the definition of nj ,
we find

lim sup
n→∞

n−1/2M(χn) ≤ βMSC with probability 1,

and this proves half of the assertion of Theorem 1.
With the natural changes, one can prove the second half. This time we apply

Lemma 1 for ω ∈ F cn(k) and use Lemma 5 for ω ∈ Fn(k) to get the bound

M(χnj+1
) ≤M(χn) + C(nj+1 − n)k−1 + 3n

1/2
j+1 max(1, λ)1(F cn(k)),

so, when we divide by n1/2 and take the liminf on both sides, we find from (26)
that

βMSC ≤ lim inf
n→∞

n−1/2M(χn) with probability 1,

completing the proof of the first assertion of Theorem 1.
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One can prove the second assertion of Theorem 1, by a variation of the approxi-
mation argument that Beardwood, Halton and Hammersley (1959) used in analysis
of the traveling salesman problem. Here we use a maximal coupling that shortens
that argument, but, even so, we just give a sketch.

First, we note that if the random variables Xi, i = 1, 2, ... have a density f with
compact support in R2, then by translation and scaling we can suppose without
loss of generality that the support of f is contained in [0, 1]2. Next we note that we
can approximate f as well as we like by a density φ that is constant on each of the
subsquares B in our decomposition B(k) of [0, 1]2 into squares of side 1/k. More
precisely, for any ε > 0 there is an integer k and there is a constant α(B) ≥ 0 for
each B ∈ B(k) such that the weighted sum of indicator functions

φ(x) =
∑

B∈B(k)

α(B)1B(x)

is a density on [0, 1]2 and ∫
R2

|f(x)− φ(x)| dx ≤ ε.

Now, by the existence of a maximal coupling (see e.g. Lindvall (1992), p.18), we
can choose an independent sequence Zi = (Xi, Yi), i = 1, 2, . . . such that for all i,
Xi has density f , Yi has density φ, and

(27) P (Xi 6= Yi) ≤ ε.

Since we have P (Yi ∈ B) = αB/k
2, we see by the law of large numbers that

|{Y1, Y2, . . . , Yn} ∩B| ∼ nαB/k2 with probability one,

so, by scaling and the first part (2) of Theorem 1, we have with probability one for
each B ∈ B(k) that

lim
n→∞

M({Y1, Y2, . . . , Yn} ∩B)/
√
n =

1

k
βMSC(λ)

√
αB/k2

= βMSC(λ)

∫
B

√
φ(x) dx(28)

since φ(x) = αB for all x ∈ B. The union of the minimum spanning caterpillars
{Y1, Y2, . . . , Yn}∩B over all subsquares B ∈ B(k) has a length that differs from the
length of the minimum spanning caterpillar of the whole sample {Y1, Y2, . . . , Yn}
by an amount that is bounded independently of n (for k fixed), so by summing the
previous limit we have

(29) lim
n→∞

M({Y1, Y2, . . . , Yn})/
√
n = βMSC(λ)

∫
R2

√
φ(x) dx.

Finally, by the strong law of large numbers and the coupling bound (27) applied
to the sum of the indicators 1(Xi 6= Yi), we see that the cardinality of the dif-
ference between the sets {Y1, Y2, . . . , Yn} and {X1, X2, . . . , Xn} is almost surely
O(εn). Consequently we have that the difference between M(Y1, Y2, . . . , Yn) and
M(X1, X2, . . . , Xn) is almost surely O(

√
εn) so by (29) and the arbitrariness of

ε > 0, one has the second conclusion (3) of Theorem 1.
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7. Connecting the MSC, MST, and TSP: Constants and Complexity

The limiting constant βMSC(λ) of Theorem 1 has a natural relationship to the
corresponding limit constants βMST and βTSP for the minimal spanning tree prob-
lem and the traveling salesman problem. Although the values of βMST and βTSP
are still not known exactly, they have been investigated repeatedly, see e.g. Finch
(2003, pp. 497–500). The known rigorous bounds on βMST and βTSP are relatively
crude, but for the TSP there have been increasingly sophisticated simulations with
bounded errors on the TSP calculations. Record holders Johnson, McGeoch and
Rothberg (1996) give

(30) βTSP = 0.7124± 0.0002.

Moscato and Norman (1998) also give a fractal, spacefilling heuristic for which they
determine the exact value βMN∗TSP of their limit constant,

(31) βMN∗TSP =
4(1 + 2

√
2)
√

51

153
= 0.7147...

This is certainly intriguing, but the spacefilling model and the independent uniform
model are not perfect matches.

In a remarkable paper Avram and Bertsimas (1992) give an exact formula for
βMST , but it comes at the price of an infinite sum of integrals that are not easy to
evaluate. The authors required an integration tour de force for to give a rigorous
proof (in their Theorem 9) that

(32) βMST ≥ 0.600822.

In a brief but interesting simulation study, Cortina-Borja and Robinson (2000)
estimated that

(33) βMST = 0.6331± ŝe 0.0013,

but this estimate is based on relatively small sample size with n not bigger than
215 = 32, 768. Since fast algorithms are known for the MST, it seems feasible to
extend the simulations to much larger sample sizes.

Returning to spanning caterpillars, we note that for any set χ = {x1, x2, . . . , xn},
we have the elementary bounds

(34) min(1, λ)MST (χ) ≤MSCλ(χ) ≤ max(1, λ)TSP (χ),

where TSP (χ) denotes the length of shortest Euclidean path through χ, MST (χ)
denotes the Euclidean length of the minimal spanning tree, and MSCλ(χ) is the
weight of the minimum spanning caterpillar with path edge weight factor λ. These
bounds are crude, but they do show that βMSC(λ) is strictly positive for all λ > 0.
For λ = 1, the minimum spanning caterpillar constant βMSC(1) also inherits the
suggestive simulation bounds (30) and (33) as well as any rigorous bounds that are
proved for βTSP and βMST .

For the exact optimum and for (1 + ε) approximations, the computational com-
plexity of the MSC is much closer to the notoriously hard TSP than to the notori-
ously easy MST. Even if some generous oracle were to identify the set of vertices
that are on the path of an optimal MSC, one would still need to solve a traveling
salesman problem to put those vertices into an optimal order. While this observa-
tion may fall short of a formal proof that the Euclidean MSC problem is NP-hard,
it cannot not fall short by much.
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The question of approximate solution of the Euclidean MSC problem is much
more interesting. It seems inevitable that the approximation schemes of Arora
(1998) can be modified to provide a solution of the Euclidean MSC problem that
is within in a factor of 1 + 1/c of the optimum and do so with a running time of

O(n(logO(C)(n)). We have not pursued this point, but it does seem worth pursuing.
Even though our interest in minimum weight caterpillars comes mainly from

communication networks, we should note that caterpillars have a long history in
graph theory. Harary and Schwenk (1973) used Pólya enumeration theory to show
that the number of non-isomorphic caterpillars on n + 4 vertices is given by the
elegant formula 2n + 2bn/2c, and, in the same paper (p. 361), the authors credit
A. Hobbs for introducing the term “caterpillar.” Harary and Schwenk (1971) and
Harary and Schwenk (1972) had earlier investigated the connectivity properties of
graph powers of caterpillars. More recently, Ortiz and Villanueva (2012) studied
independent sets in caterpillar graphs and found that the whole family of indepen-
dent sets can be found in polynomial time. Caterpillars are the simplest graphs for
which the graphical bandwidth problem is non-trivial, so caterpillars have a nat-
ural place in many bandwidth investigations, e. g. Assmann, Peck, Sys lo and Zak
(1981), Miller (1981), Monien (1986), Haralambides, Makedon and Monien (1991),
Feige and Talwar (2005), and Lin, Lin and Xu (2006).

Finally, we should note that in chemistry, caterpillars are also known as Gut-
man trees, the later name referring back to Gutman (1977); sometimes they are
also called benzenoid trees because of their common presence in the structure of
benzenoid hydrocarbons. Surveys of El-Basil (1987), El-Basil (1990) and El-Basil
(2008) detail these connections and give many further references.

8. Concluding Observations

T. Tao’s essay on the extended reals (Tao (2008, pp. 38–56)) makes the case
that the extended real numbers ∗R can be of concrete benefit to almost any math-
ematician, pure or applied. Here, with a very light use of the extended reals, we
can answer a question that was raised in the introduction; we just need to take the
weight factor λ for the path edges to be a strictly positive infinitesimal.

Specifically, we fix λ to be any extended real number such that 0 < λ < x for all
x ∈ R with x > 0. With this choice, the cost of any non-path edge is prohibitively
expensive. Consequently, one elects to run the backbone π through all of the points
of χn, and the weight of the minimum spanning caterpillar is just λ times the (usual
Euclidean) cost of the optimal traveling salesman path. Thus, if one reformulates
Theorem 1 to permit an infinitesimal λ ∈ ∗R, we see that Theorem 1 is a strict
generalization of the Beardwood, Halton, Hammersley theorem. Moreover, a proof
of Theorem 1 that allows for a strictly positive infinitesimal λ ∈ ∗R is virtually
identical to the proof we have given here.

It is fair to say that this use of the extended reals is just a matter of language.
Nevertheless, we were genuinely uncertain at one point if one could view Theorem
1 as an honest generalization of the Beardwood, Halton, Hammersley theorem. It
eventually became clear that the formal introduction of the extended reals would
make an affirmative answer easy. While this may be a just matter of language, at
the end of the day, it seems to be an instance of useful language.

Our second observation also concerns the flexibility of the free parameter λ. This
parameter was introduced because of modeling motivations of the kind that were
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mentioned in the introduction. Nevertheless, after λ enters the game, it presents
new mathematical possibilities — possibilities that are not present in problems like
the TSP and MST. For example, βMSC(λ) is differentiable, and β′MSC(λ) provides
a measure of the relative weight that is placed on the path edges in the limit. Thus,
the free parameter λ offers a special handle on the asymptotic geometry of the MSC
for which there are no direct analogs in the traditional theory of the TSP or MST.

Our final observations concern the possibility of refinements and extensions of
Theorem 1. In particularly, it is natural to ask if there is a central limit theorem to
complement the strong law for minimum spanning caterpillars. After all, Kesten
and Lee (1996) established the central limit theorem for the minimal spanning tree
under similar circumstances.

An important distinction between the MST and the MSC is that there is a vari-
ational characterization for edge set of the MST. Specifically, if the edges between
the elements of the vertex set V have distinct lengths, then e is an edge of the MST
of V if and only if there exists a partition (A,Ac) of V such that e is the shortest
edge between A and Ac. This property played a crucial role in the proof of Kesten
and Lee (1996), and there is no corresponding criterion for the TSP — or, a fortiori,
for the MSC. While it is perfectly plausible that there is a CLT for the MSC and
the TSP, the proof of such a result seems very far from current capabilities. People
have contemplated the possibility of a CLT for the TSP for at least fifty years.

On the other hand, one can be more sanguine about the extension of the MSC
strong law to d-dimensions. Specifically, it is natural to expect that if the random
variables Xi, i = 1, 2, . . . are independent and have a density f with compact
support in Rd, then we have with probability one that

(35) lim
n→∞

n−(d−1)/dM(X1, X2, . . . , Xn) = βMSC,d(λ)

∫
Rd

f(x)
1/d

dx,

where the constant βMSC,d(λ) depends only on the dimension d. A critical step
in the proof of (35) would be to develop the appropriate d-dimensional analogs of
Lemmas 2, 3, and 4. The surgeries we used to prove these lemmas were greatly
simplified by working in d = 2, and, since we were motivated by communication
network problems with distinctly geographic origins, we did not pursue this exten-
sion.
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