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A bound is given for the cost of the spanning tree produced by the sequential minimal insertion procedure as applied to n
points in the unit d-cube. The technique developed is reasonably general and can be applied to several other problems of
computational geometry, including the nearest neighbor heuristic for the traveling salesman problem. Attention is also given
to bounding the sum of the powers of the edge lengths of sequentially constructed trees and paths. Examples illustrate that the
bounds obtained are of best possible order as a function of the number of points.

spanning tree * minimal spanning tree + nearest neighbor heuristic * sequential insertion * traveling salesman problem

1. Introduction

This article develops a technique to provide
sequentially constrained analogues to some classi-
cal inequalities of combinatorial optimization in
Euclidean space. In particular, the technique pro-
vides sequential analogues to the following:

D) I S={x, x,,...,x,} €[0,1]¢ and |x,—
x;|, denotes the Euclidean distance between Xx;
and x;, then TSP(S), the minimum cost of a path
through the points of §, satisfies

TSP(S) < ayn'd~D/4, (1.1)

where a; is a constant that depends only on the
dimension d.

(2) If MST(S) denotes the cost of the minimal
Euclidean length spanning tree of S = {x,
Xp,.e0s X, } €[0, 119, then

MST(S) < ayntd-D/4, (1.2)
where the (smaller) constant «, again depends
only on the dimension d.

Inequalities (1.1) and (1.2) have been the focus
of many investigations and considerable ingenuity
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has been expended to determine good values of
the constants «, and a,. For example, Verbluns-
ky (1951) showed a, <(2.8)'/%, and Few (1955)
improved this to a, < 2'/%. The first bounds on a,
for general d are given by Few (1955), and these
have been improved by Moran (1984), Goldstein
and Reingold (1988), and Goddyn (1988). If one
does not press for the best values of @, and o/,
bounds (1.1) and (1.2) are both easy consequences
of the pigeon-hole bound;

There is a constant B,> 0 such that for any

m-element set
S={xy, X3,..., %, } € [0, 1]%,

the function defined by

&n(X1, X5,...,%,)= min | ;= x;
1gj<ksm
satisfies
gm(xl’ x2""7xm) <Ba’m—l/d' (13)

The problem that motivates this article is the
derivation of an analogue to (1.2) for the heuristic
construction of a spanning tree of S= {x,,
X3,..., X, } that is based on minimal sequential
insertions. It turns out that one has the precise
analogue of (1.2), and, moreover, an a priori in-
equality analogous to (1.3) is valid in an average
sense. Before developing that a priori inequality
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(which is somewhat technical in appearance), we
examine some of its consequences.

Given a fixed sequence S = {x;, x5,..., X, } of
points in R then we can build a spanning tree
for S by sequentially joining x, to the tree formed
by {x;, X5....,x) for 2<isa If =
r{X,; Xy, X3,-.., X;_;) denotes the shortest dis-
tance between x; and a point of {xy. x5,..., X, 1},
ie.

ro=r{x Xy Xgeoo, X,op) = min | x; =X,
jlsj<i

(1.4)

then 7, is the minimal cost of joining x; to a vertex
of a spanning tree of {x;, Xp,...,x;_y}. Natu-
rally, r(x;; Xy, X5,..., X;_1) is at least as large as
g%, X5,-.., x;) for each 1 <i<n, and by easy
examples one can show 7 can be much greater
than g. The cost of the minimal insertion tree
constructed by sequentially connecting x; to the
tree already constructed on {Xx;, X,,..., X;_1} 18
given by the sum of the r,, 1 <i<n, and will be
denoted by MIT(S). Despite the fact that the r;
are all at least as large as g it turns out that a
bound is available for the sum of the r; that is not
substantially larger than the bound available for
MST(S). Specifically, there is a constant, v,, de-
pending only on the dimension d such that for all
n> 1, we have

MIT(S)= Y r(x; xq, Xg50005X21)

1<ign
<ynd Ve, (1.5)

Fach of the inequalities (1.1), (1.2), and (1.5)
says that the average cost of each edge is of order
n~ 14 The twist in (1.5) is that one maintains the
same order of magnitude of average cost even
when one is required to insert the x; into the tree
in a specified order.

The next section develops a general method for
obtaining bounds in sequential problems, and, in
particular, a proof is given of (1.5). The third
section modifies the basic method to provide
bounds for the nearest neighbor heuristic for the
traveling salesman problem. In Section 4, the sum
of the d-th powers of the edges of the minimal
insertion tree are contrasted with those of the
minimal spanning tree and some surprising dif-
ferences emerge. The fifth section draws out the
connections and distinctions between the present
technique and a related method of Bentley and
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Saxe {1980). The final section points out some
open problems.

2. Sequential insertion trees

The following lemma provides the basis for
many inequalities involving r,. The key point is
that the right-hand side of (2.1) does not depend
on n and the left-hand side is almost the distribu-
tion function of the r,. While the bounding con-
stant is given explicitly, more attention has been
given to obtaining a simple bound than to obtain-
ing the sharpest possible constant. Although, the
constant is irrelevant for most applications, it
would be of interest to know if the right-hand side
of (2.1) could be replaced by ¢? for some ¢ not
depending on 4.

Lemma 1. If {x,, x,..., X, } ©[0,1] and

r;= min |x;,—

min_|x; x;| forl<ign,
iy <i

then for any 0 < x < o0 we have

Y orf<8di (2.1)

xgr<2x

Proof. Let C= {i: x<r;<2x} and foreachi€ C
let B, be a ball of radius 3r, with center x,. We
will argue by contradiction that B,N B; = for all
i<j. If B;NB;+#, then the bounds r,<2x and
r; < 2x gives us

lxi_le<%(ri+"j)<x' (22)

But, by definition of r; we have |x;,—x;| >r, for
all i <j; and, by the lower bound on the sum-
mands in (2.1) we have x<r;, so we also see
[x;—x;| >x. Since |x;,—x;|>x contradicts
(2.2), we have B,N B;=§.

Now, since all of the balls B; are contained in a
sphere with radius 2d'/?, the fact that they are
disjoint tells us the sum of their volumes is
bounded by the volume of the sphere of radius
2d'?. Thus, if w, denotes the volume of the unit
ball in R, we have the bound

Z wdr,-df-l'd < deddd/2
ieS

from which (2.1) follows. O
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Information is easily extracted from (2.1) if one
is guided by the theory of linear programming
where duality tells us that essentially all inequali-
ties that can be inferred {rom (2.2) are obtained by
taking linear combinations of (2.2) with positive
coefficients. This principle is made explicit by
inequality (2.3) and its applications to the proof of
(2.5) and (1.5).

The restriction 1n Lemma 2 to non-increasing
functions is convenient, but inessential. Similar
inequalities can be derived for ¥ that satisfy less
taxing regularity assumptions.

Lemma 2. ¢ is a positive and non-increasing func-
tion on the interval (0, d'/*), then for any 0 <a <
B < dl/z
&= 3

T ne(n) <289 [° w(x) dx.

asr<f @
(2.3)

Proof. By (2.1) we have

Y ri(x<r<2x) <842,
asn<p
where I(x <r,<2x)=I(3r,<x<r,) is the indi-
cator function. If we multiply by ¥(x) and in-
tegrate over {:a B], we find

Y 5 ¥(x)dx< 8ddd/2//3 ¥(x) dx.
a/2

asr<p “n/?

4

(2.4)

Since ¥ is non-increasing, the integrand on the
lefthand side of (2.4) is bounded from below by
¥(r,), so

OLZEY PR OTE

7

and (2.3) follows from (2.4). O

Our first application of (2.3) is to bound the
sum of the d-th powers of the r;. In Section 3 it
will be proved that this bound cannot be essen-
tially sharpened, even though we show that the
minimal spanning tree satisfies an essentially
stronger bound.

Lemma 3. There is a constant ¢, depending only on
d such that for all n > 2,

Y rf<c,log n. (2.5)

i=1
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Proof. Setting ¥(x)=1/x and [e, B]=[n""",
d'/*]in (2.3) gives us
E; ﬁd<:2.8ddd/2{iog(d1/z}_“log{%n—z/d)}A

AV

(2.6)
and the small values of r¢ are trivial to bound

T el (2.7

r:<n'1"'d

so (2.5) follows from (2.6). O

Inequality (2.5) can be used with Holder’s in-
equality to provide a bound on the basic sum of
(1.5), Zr,, but in this instance the bound one
obtains is not the best possible. Specifically,
applying Holder's inequality with p=d and
g=d/{(d-1)to X7 r-1, we find

3 <Y nt 4 (log n)'?. (2.8)
i=1

This bound falls short of the desired inequality
(1.5) by a factor of (log n)*/% so to prove (1.5),
we use (2.3) directly. Letting ¥(x)=1/x“ and
(e, B)=[n"14 d'?]in (2.3), we bound the sum
of the larger r,,

Y or<2-899%*(d-1)""

rzn1/4

{24 1@V _g@=b2y - (29)

To handle the smaller , we again rely on the
trivial bound

Z ro<n- n~Vd = pd-v/d
1/d

(2.10)

r<n”

and from (2.9) and (2.10) we conclude that (1.5) is
proved with y, =1+ 2%d9/? /(d - 1).

3. Sharpness of bounds for MIT’s and MST’s

The presence of the logarithmic factor in (2.5)
and the fact that it could be removed from (2.8)
might lead one to question if (2.5) is sharp. Suspi-
cions may be further raised by noting that Gilbert
and Pollak (1968) showed for d =2 that ]e|? is
uniformly bounded for any minimal spanning tree
of {x;, x3,...,%,} C[0,1]% It will be proved
shortly that (2.5) is nevertheless sharp, but first it
is instructive to look more deeply at the inequali-
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ties that hold for sum of powers of edge lengths of
minimal spanning trees.

The result of Gilbert and Pollak can be ex-
tended to arbitrary dimensions by using some
recent results from the theory of spacefilling
curves. In fact, the proof one obtains for general
d > 2 is substantially simpler than the bare-handed
proof given by Gilbert and Pollak in d = 2.

We will make use of a theorem of Milne (1980)
that says there is a function f from [0,1] onio
[0,1] which is Lipschitzian of order 1/d, i.e.

Lf(x)—f(») I <elx—y|V¢ (3.1)

for a constant ¢ > 0. To apply this to the bound-
ing of edge weights of a minimal spanning tree, we
suppose V, = {x, X5,...,X,} C [0,1]¢ and let T
be a minimal spanning tree of V,. Since f is
surjective we can choose { yy, ¥5,..., ¥, } in [0,1]
such that f(y,)=x, Next, we order the y, to
given yg, <yp < ' <Y, and define a new
suboptimal spanning tree T, on ¥, by choosing
the n—1 edges (f(¥u) f(¥yen), 1<i<n. By
the optimality of T and the Lipschitz property of
f, we find

Yolel?<s X lel?

eeT eeT,

n-1
= g:l lf()’(i)) —f-(y(i+1)) !d

n-1

< > | Yy = Yaepl < . (3.2)
i=1

In comparison with the complexity of the proof
of Gilbert and Pollak (1968) in d = 2, this proof of
the uniform boundedness of ¥|e|? is almost ef-
fortless. All of the geometry of [0,1]¢ has been
compressed into wthe existence of the Lipschitz
spacefilling curve. The use of spacefilling curves to
provide heuristics for a variety of optimization
problems is surveyed in Bartholdi and Platzman
(1988).

Before leaving the problem of bounding T |e |
for minimal spanning trees we should note a fact
that makes it possible to give an easy, new proof
of the Gilbert and Pollak result in d =2 that does
not require the relatively sophisticated machinery
of spacefilling curves. The key observation is given
in the following.
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Pythagorean Lemma. Given n points in a right
triangle, there is a path through the points such that
the sum of the squares of the edges on the path is
bounded by the square of the hypotenuse.

This lemma can be viewed as an adjunct to the
Pythagorean theorem, and, when n=3 and the
points are the vertices of the triangle, the lemma
even reduces to that result. For the details of the
proof of the lemma, one can consult Newman
(1982, p.8); but, if we gloss over some small
points, it is easy to sketch the idea. The first trick
is to consider a more specific induction hypothe-
sis: any set of n points including the end points of
the hypotenuse can be joined by a path with the
required bound. Next, drop a perpendicular from
the right-angled vertex to the hypotenuse, and add
the point that was at the right angle to each of the
sets of points in the two smaller triangles created
by the bisection. One then applies the induction
hypothesis and the Pythagorean theorem to com-
plete the proof.

The fact inequality (2.5) of Lemma 3 cannot be
essentially improved is a consequence of the fol-
lowing lemma that also shows that (1.3) is essen-
tially sharp. As before, w, denotes the volume of
the ball of unit radius in R%.

Lemma 4. For each d > 1, the constant 8,;= w7 /*
has the property that for any {xy, X5,...,%,} C
[0,1]¢ there is an x,,,€[0,1]? such that |x;—
Xpe1|=8n Y forall 1<i<n.

Proof. If B, is a ball of radius 8,77/ and center
x;, then by setting 4 =UJ_;B; we find the com-
plementary set 4° has measure at least 1. We can
thus take x,., to be any point in 4°. [

Returning to (2.5) we can use Lemma 4 sequen-
tially to construct {x;, 1 <i< oo} so that for all
i>2,

r>8,(i—1)""% (3.3)
From (3.3) we see that the order of the bounds

(1.5), (2.1), and (2.5) cannot be improved.
4. Nearest neighbor traveling salesman path

Consider the path through {x;, x,,...,x,}C
[0,1]¢ that is obtained by starting at x; and subse-
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quently going to the nearest unvisited point. If we

let x;, x,,..., x; denote the ordering of the points

on the path then the n — 1 values defined by

xh,...,xj,}},

1<i<n, (4.1)

F=min{ |x; = x|t % € {x,

are the lengths of the edges in the path. Naturally,
we also have

F=lx,—x, |, 1<i<n (4.2)

Although the 7 are computationally and con-
ceptually more difficult than the r, of Section 2,
we shall find inequalities analogous to (1.5), (2.1),
(2.3), (2.5) and (2.7). Since each of these inequali-
ties are consequences of (2.1), we only need to
prove the analogue of that one bound. Even in
this step, one sees close parallels to the proof of
Lemma 1.

Lemma 5. If S={x, X3,...,%,} C[ [01)¢ and
7,1<i<n, are the edge lengths of the nearest
neighbor path, then for any 0 < x < oo we have

DI ARS X e (4.3)

x€<r<2x

Proof. Let C= {i: x<F<2x}andforeachi€ C
let B, be a ball of radius 47, with center x; where
the j, are defined as in (4.1). As before, we claim
that B,n B,=# for all s<t¢ and we argue by
contradiction. If B,N\B, # @, then

$(R+F)<x. (4.4)

Since s<t, we see j, & {ji, jas---> Js}» SO (4.4)
and (4.1) imply 7 < x. But 7, <x contradicts the
assumption that s € C, so we conclude B, N B,=§
for all 5, ¢ contained in C. The remainder of the
proof is exactly as in Lemma 1. O

[x;, = x| <

It remains only to summarize some conse-
quences of (4.3).

Corollary. For alln>1,

Y Fi<cylogn, (4.5)
i=1
and
Y R <y (4.6)
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The constants in (4.5) and (4.6) are exactly the
same as those in (2.5) and (2.11).

5. Bentley—~Saxe method

The method developed in the preceding section
has a close relation to a method developed earlier
in Bentley and Saxe (1980). Two immediate (but
inessential) distinctions between the Bentley—Saxe
method and that developed here are: (1) the Bent-
ley—Saxe method was developed only in d=12;
and (2) the Bentley—Saxe method focused on the
overall cost of heuristic tours and paths rather
than the cost of sequential connection.

A more important distinction is that Bentley
and Saxe base their bounds is the notion of a
compatible k-circling. If Cy, C,, ..., C,, are m disks
in R%, k> 2, and cent(C) denotes the center of
the d1sk C, then we say {C;: 1 <i<m} is a com-
patible k-circling provided

cent(C;) € [0,17,

ac,N[0,1]> #4,

and

for any 1<i;<iy< --- <<
such that the relationship

cent( )Eﬂsle fails.

(5.1a)
(5.1b)

m, there is a j

(5.1¢)

The main lemma of Bentley and Saxe says that for
any k>2 and any k-compatible circling
{Cy, Cys..., C,,} satisfying radius (C) > a, for all
1 < i< m, one has
Y radius(C,) <4(k—1)(1+a?)/(ma®). (5.2)
i=1

Bentley and Saxe further show that if one places
a circle C, of radius 7 about x; where

Xjs Xjpones Xj, is the nearest ne1ghb0r tour of
Xj, Xg,..0, X, } ©[0,1]* described in Section 4,
then S={C:1<i<n} is a 3-compatible cir-

cling. Since a subset of a compatible circling is
compatible, Bentley and Saxe apply (5.2) to ap-
propriately chosen subsets of S to obtain

F.<2y2n/m + O(log n) (5.3)

1<1<n

and

Y. #*<8log n+0(1), (5.4)

1<i<n
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where the implied constants of the O-terms of
(5.3) and (5.4) can be made explicit.

. 6. Concluding remarks and open problems

We know by (2.5) and (4.6) that if E is the set
of edges for the minimal insertion tree or the
nearest neighbor tour we have that

> lel9<clog n. (6.1)
ek

Moreover, by Lemma 4 one cannot essentially
improve (6.1) despite the fact that by the argu-
ment of (3.1)-(3.2) we have the stronger bound
Y Jelf<c (6.2)
esE

for the minimal spanning tree.

One intriguing question that is left open is
whether one has the analogue of (6.2) for the
minimal traveling salesman problem. To see the
subtlety of this problem one first has to note that
the argument in (3.1)-(3.2) does not apply. The
crucial feature of the MST is that the trees one
obtains are the same for the weight function |e|?
as for the original weights |e|. This feature no
longer holds for the traveling salesman problem so
a new approach is required. One source of help
might be in Rosenkrantz, Stearns and Lewis (1977),
where one finds several results that complement
the inequalities of this article.

To motivate the second problem, first define
the sequence u(n) by

p(n) =max{MIT(S): S={xy, x3,...,%,}
c01]?}. (6.3)

We have seen that u(n)n~@~Y/? is bounded. Is it
true that p(n)n~“~1/9 converges as n — «0? The
analogous question for minimal spanning trees
and traveling salesman tours has been answered in
the affirmative by Steele and Snyder (1988), but
the fact that p(n) is not determined by an opti-
mality property makes the behavior of p(n) more
subtle.

The inequalities addressed in this article all
concerned deterministic point sets, but they are
closely related in spirit (and analytical content) to
a number of probabilistic topics especially the
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theory of subadditive Euclidean functionals. For a
survey that addresses both probabilistic and de-
terministic issues, one can consult Steele (1988)
where other open problems are also given.

Note added in proof

The Pythagorean Lemma of Section 3 is an
unpublished result of R. Gomory established in
1966. 1t is cited by R. Adler in his comments on a
paper of S. Kakutani (see Collected Works of S.
Kakutani, Vol. II, R.R. Kallman (ed.), Birkhauser,
Boston, 1986, p. 444).

Also the argument in (3.2) is cited by Adler in
d =2 as due to Kakutani (1966, unpublished).
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