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Several problems that deal with smoothness of discrete functions and that are
motivated by the task of deciding whether an N X N array of distances is a
feasible laser radar (LADAR) image are investigated. The main observation is that
there is a simple and explicit graph that is tightly related to the smoothness
problem. The graph is used to show that a function can be verified to be Lipschitz
on a random finite subset of R? by testing the Lipschitz condition at only O(n) pairs
of points. © 1989 Academic Press, Inc.

1. INTRODUCTION

The problems studied here are motivated in part by the investigation of
statistical models for laser radar images. The salient feature of such im-
ages is that they consist of an array of N x N pixels where each pixel is
associated with the actual distance to a corresponding part of a physical
scene being viewed. This direct link to distances contrasts powerfully
with more traditional image data where the value associated with each
pixel is typically the intensity (in some range of the EM spectrum) of
either the reflection or the emission from the scene being viewed.

For many practical applications, laser radar (LADAR) images have
important advantages over spectrally based images; and, while most of
these advantages come directly from the distance interpretation of the
pixel values, there are also technical considerations that make LADAR
applications easier. For example, LADAR images do not force us to
worry about the direction of the illumination source as we must in many
applications of optical images. Still, even with its technical and concep-
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tual advantages, there are features of LADAR images that provide new
challenges; and, in particular, one must come to grips with their genuinely
three-dimensional nature.

In several approaches to the understanding of 3D images. like those
that LADAR gives for a view of a physical scene, one needs an efficient
way to judge whether a specified set of N X N pixel values is a physically
feasible image. Certainly if one wishes to provide an effective prior distri-
bution on the set of feasible LADAR images in order to permit a Bayesian
analysis, then it is almost essential to have some reasonably simple crite-
ria for a realization of N X N pixels to correspond to a real view.

In Section 4, we engage the LADAR problem as squarely as possible,
but, in intermediate sections, we look at more stylized problems. These
new problems may cast some light on the particular problems that need to
be solved in the context of LADAR, but they are of more general applica-
bility.

The most stripped down question we address is ‘‘How can we certify
that a function f: RY — R is smooth?’’ The way we choose to frame a
discrete (and possibly answerable) version of this question uses the verifi-
cation of a Lipschitz condition at a finite set of points in order to gauge
smoothness. Specifically, given a finite set S = {x;, x5, . . . , X, C [0, 1)¢
and f: S — R, we examine the information that is needed to certify truth of
the statement S(a): for all x; and x; contained in S we have If&x)—f x)| =
[43 ‘X,‘ - le.

One model of complexity that is reasonable in many contexts (though
admittedly strained in the context of LADAR imaging) is to suppose there
is an oracle such that for each i and j the oraclé can verify the truth of the
statement S;{e) that | f(x;) — f(x)]| = a/x; — x;|. The natural question that
presents itself in this model is ““How many times must we query the
oracle before we can certify the smoothness of 7 Obviously, S(a) can
be certified by n(n — 1)/2 queries of the form S;(e), but we aim to do
better.

If d = 1 the problem is easy; just order the points x; = x, = . . . =X,
and ask the oracle the n — 1 questions S; ;+(«). If all of these are answered
in the affirmative, we know fis smooth in the sense that S(«) is proved. In
this case we can also be sure that no fewer queries can suffice since each
x; must figure into some query.

After d = 1, the most natural setting to consider is that where n = N?
points on the rectangular lattice of R2. This and other lattice problems are
solved in Section 2. The lattice problems are still easy, but they are worth
considering because they do a good job of isolating the essential features
that underlie the complexity of certifying smoothness. In particular, we
are led to the useful notion of a transit graph, i.e., a spanning graph G =
(V,E)yof V=1{x/,X;,. . . , X, such that for each pair of vertices x; and x;
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there is a path from x; to x; consisting of edges of £ with slope of constant
sign. We will show that the transit graph is an apt tool for studying
Lipschitz smoothness. Somewhat surprisingly, it is also possible to give
an explicit characterization of the transit graph of any V. One further
aspect of the transit graph is that it is often sparse. In particular, we find
the expected number of edges of the transit graph on 7 random points in
[0, 1 is O(n) even though in the worst case it can have Q(n?) edges.

We return to the problem of laser radar images in Section 4 and try to
lay out the basic decision criteria for physical feasibility. Naturally, as-
pects of smoothness are among the criteria, but the characteristic feature
of physically realistic LADAR images is strong limitation on the disconti-
nuities that are present.

2. LatTticE CONSIDERATIONS

The nearest neighbor graph G = (V, E) of the N X N lattice has n = N?
vertices, and, since G has N — 1 horizontal edges in each of N rows and a
similar number of vertical edges, we see that the total number of edges |E|
is exactly 2N(N — 1). Now, suppose we know S (a) foreach (i,j) € E. By
joining any pair of points x, and x; of V with a path consisting of horizon-
tal path Py from x, to x. and a vertical path Py from x, to x,,,-we can derive
essentially the same bound for lattice points in R? that we found for
general points in d = 1; specifically we find by telescoping and a little
geometry that

1fx) = fE) = 2 lel +a 2 el
eEPy e€Py
= alx, — X + alx, — x

220X, — X

We can amplify the logic of the last step and also see how one might
improve the factor of 22 by considering the hexagonal lattice. Consider a
set of n = N(N — 1)/2 points placed at the vertices of that part of a regular
hexagonal lattice of side 1 that is contained in an equilateral triangle of
side N — 1 (see Fig. 1).

Given any x, and x, in S there is again a shortest path that consists of
two straight segments that connect x, and x,. If x, is the lattice point at the
turn, and, if S;(«) is valid for all nearest neighbor pairs (i, j) of S in the
hexagonal lattice, then again by telescoping we have

|f(xa) — f&x)] = alx, — x| + alx. — X.
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FiG. 1. Hexagonal lattice configuration.

This time we need a more explict calculation to bound the sum. By the
law of sines we have

X, — Xpl/sin 6, = |x, — X.//sin 6, = [x. — Xy//sin 05
and, of course §, = 2w/3, so since sin 0; = \V/3/2, we have
I, — X + |x5 — x| = 2[x, — x|(sin 6, + sin 6,)/V3.

Since 0 < 6,, 6; < /3, and 6, + 6; = w/3, we maximize sin 6, + sin 6; by
taking 9, = 6; = w/6, and since sin 7/6 = 1 we find

I, — x| + [xp — x| = Q2/V3)xa — Xy-

We therefore find that for the hexagonal lattice S(B) is verfied with 8 =
2/V3)e.

This value of 8 is a slight improvement over the value 8 = V2« that we
obtained in the rectangular case; but this improvement comes at a price,
and in terms of the number of queries required we do slightly worse with
the hexagonal lattice than with the rectangular lattice. For large n, the
number of tested edges per vertex in the rectangular lattice is approxi-
mately 2 whereas the number of tested edges per vertex in the hexagonal
lattice is approximately 3. These values would be exact if it were not for
the influence of boundary effects.

The main lead we take from the lattice point investigation concerns the
use of special paths, but before we pursue this lead, there are two obser-
vations that should be made concerning d > 2. By the same counting we
applied in d = 2, one also finds for the set § of N9 rectangular lattice
points in R that there are d(N — 1)N“"! edges in the nearest neighbor
graph and that therefore the verification of d(N — )N 4-1 queries of the
form S;(c) is enough to verify S(d"2a). We will not pursue the consider-
ation of d > 2 any further here, but one might expect the investigation of
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the higher-dimensional problems to be particularly interesting because of
the rich increase in the possible lattices.

3. GENERAL PosiTiON

The possibility of verifying S(8) with only O(n) queries in two-dimen-
sional lattices came from using telescoping sums along special paths. In
this respect the lattice computation suggests a generalization that offers
promise in a number of different problems. If a sequence M x; = (x;, ;).
I = j =k, of points in R? that satisfies either x; = x;_ andy, =y,  forallj,
orx; =x; andy, =y, forall 1 =;=kthen we will call M a monotone
sequence. In other words, a path M connecting a sequence of points in R?
is monotone if all of the slopes of the edges of M have the same sign.

We will call G = (V, E) a transit graph of V = {x|, X,, . . . , X,,} provided
that for each pair of points x; and x; of V there is a monotone path M
consisting of edges of E. One can easily check that the arguments we
applied for lattices apply directly to any set of points spanned by a transit
graph. This is recorded more formally in the following proposition.

ProroOSITION L. If G = (V, E) is a transit graph for V= {X;, X2, . . .,
X} and | f(x) — f(y)| = afor all (x,y) € E, then | f(x) — f(y)| = 22 for all
X, y contained in V.

One fact that makes the notion of a transit graph useful is that we can
easily characterize the smallest spanning transit graph of a finite set of
points in R2. Given any two points x and x’ in R?, we can determine a box
B(x, x') in R? by letting B(x, x') denote the smallest closed rectangle
containing x and x’. For example, if x = (x, y) and x’ = (x’, y') with x < x’
and y < y', then we have B(x, x') = [x, x'] X [y, y']. It turns out that boxes
lead to an explicit characterization of the minimal spanning transit graph.

LEMMA 1. Let G = (V, E) be the graph with vertex set V = {x{, X3,

. , X} and edge set E such that (x,x') € E if and only if Bx,x) NV =
{x, x'}. The graph G is then a spanning transit graph for V. Moreover, if
G’ is any other spanning transit graph, then G C G'.

Proof. To see that the G defined by the lemma is a transit graph, we
use induction on n. If x and x’ are given, we need to find a monotone path
in G from x to x'. By symmetry, there is no loss of generality in assuming
that x = (x, y) and x’ = (x’, y') satisfy x < x" and y < y'. If (x, X') is not
already an edge of E there is a point X" € V such that x” € B(x, x') and x”
distinct from x and x’. By the induction hypothesis applied to G ~ {x'}
there is a monotone M, from x to x" and by the induction hypothesis
applied to G — {x} there is a monopath M, from x" to x'. We can take M =
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M, U M, as a monotone path from x to x. If B(x, x") does not contain such
an x7, then by definition of G we have (x, x') € E, and we can simply take
M = {(x, x")} as the desired path.

It would be pleasing if the transit graph G = (V, £) of a set V = {x, %,
., x,} could be guaranteed to be relatively small, say with |E£] = O(n) or
even |E| = o(n®). While we can show that in a sense this is typically the
case, we can also show that |E| = Q(n®) is possible for worst case configu-
rations.

To obtain an example that shows the transit graph can be large, con-
sider the set of 2x points given by V = {(i, =), (n + {,2n — i), | =i = n}.
Foreachl =i=wnand 1 =j = n the boxes B(({i, — i), (n + j, 2n — j)
contain no points of V other than their defining vertices, so the transit
graph of G contains at least the n* edges required by the boxes for the
pairs (i, =) and (n + j, 2n — ) for l =i = nand 1 =j = n. In fact, by
considering the boxes B((i, —=i), (i + 1, =i — 1)) and B(n + j, 2n — j), (n +
j+1,2n — j — 1) we see that the minimal spanning transit graph of V has
exactly n2 + 2(n — 1) edges.

A more optimistic view of the world is provided by considering points
chosen at random from the unit square.

PropoSITION 2. Ifx;, | =<i= n, are independent uniformly distributed
random variables with values in [0, 117, then the expected number of
edges of the minimal spanning transit graph G = (V, E) of V = {x,, x,,

., X} satisfies E(|E]) = O(n).

Proof. If By, denotes the rectangle determined by x; = (x;, y;) and
x> = (x, ¥;) then By, has the random area |x; — x| ly; — y4|. For By to be
empty the other n — 2 points of V must fall outside of B),, so by condition-
ing we have

P(B,; empty) = |

o (1 = b = xof [y1 = y2D)"~?dxidrxadydy; .
By applying 1 — x = ¢ for x = 0 and changing variables, we further find

P(B, empty) = fm,”‘, exp{=|x1 = x| [y1 = yl(n = 2)}
dx,dxzdy,dyz = O(I’l_}).

Finally, since there are n(n — 1)/2 pairs of points that have associated
boxes we have

E(E) = (3‘) P(By, empty) = O(n). ®
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We will not pursue further calculations of this type, but it should be
clear from the preceding propositions that the transit graph is quite tracta-
ble. Also, by Proposition 1, it is clear that possession of the transit graph
is a useful step in Lipschitz verification.

4. Criteria FOR LADAR ReaLISM

We now return to the issue of judging the physical feasibility of LA-
DAR images. This pursuit differs in spirit from the preceding analysis in
several respects, and in particular it no longer seems possible to give
results that can be expressed in tidy propositions. In fact, almost anything
one says about criteria for a LADAR image must rest substantially on
judgments that one makes about the physical world and current tech-
nology. .

The applications that are currently envisioned for LADAR involve
carrying the LADAR device in a helicopter. The elevation of the helicop-
ter and its distance from the scene of interest are typically determined so
that the line of sight makes about a 15° angle with the horizontal. By
examining typical scenes at the resolution that can be assumed, it is
possible to make some assumptions about the sizes of the discontinuities
one can expect in the distances represented in the pixels of the N X N
image array in A.

To avoid the extra layer of complexity associated with the discretized
image, first consider a continuous version of the image. That is, we view
the image as if it were given by a distance function f: [0, 1}*— R. The class
of functions that one is led to consider in this representation is a little
unusual by the standards of traditional analysis. In particular, by consid-
ering the simple image sketched in Figs. 2a and 2b, one finds that it is
essential to consider functions f with discontinuities, and, in order for the
representing function to have discontinuities that are physically realistic,
they must be of a highly confined nature. In fact the discontinuities of f
cannot amount to much more than the two-dimensional analogs of simple
jump discontinuities.

By considering Fig. 2, it also seems appropriate to assume that the set
of discontinuities of f yields a set of curves in [0, 1]* such that as one
traverses one of these curves of discontinuity C; obliguely, one sees only
either an increase in f (a plus jump) or a decrease in f (a minus jump).
Moreover, because of the relationship between the physical scene and the
orientation of the image, there are constraints on the types of jumps that
can occur along specified paths in [0, 1]*. For example, in a world where
we view features like overhanging eaves as too rare to worry about, one
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0 0

FiG. 2. Distance function geometry. (a) Scene. (b) Discontinuities of f.

sees either plus jumps or minus jumps as we move from right to left, and
only plus jumps as one moves from bottom to-top.

The restriction to pure jump discontinuities of these confined types
seems to be about as far as it seems appropriate to go in terms of the
topological constraints one should place on realistic LADAR images.
There are obviously additional metric constraints one should impose, but
at that point one has to dig more deeply into the technology of the mo-
ment, and we will not puruse the abstract modeling of LADAR images
beyond this first cut. In fact, the steps that remain in the engineering
problem are probably best addressed via the Edisonian shotgun approach
of trying the many reasonable variants that present themselves. Still, one
should have confidence that the remaining problems will receive attention
for the good reason that the technology of LADAR offers such promise
that its refinement and development is almost inevitable.

From the point of view of the complexity of approximately solved
problems, there is an interesting distinction between line of applied re-
search suggested by LADAR and the work in remote sensing that pre-
ceded LADAR. The distinction is that, in LADAR, in order to identify the
items of interest in the remotely sensed scene one has a compelling need
for geometry, while in older areas of remote sensing, geometry has not
been nearly so essential. There are two reasons that underlie this shift.
First, in older technologies one simply did not have enough geometric
detail to make serious use of geometry in the identification process. Sec-
ond, there is the lucky fact that in older technologies one often found
characteristic signatures for items of interest in the remotely sensed scene
and useful identification was possible even without geometric detail.

The intention of this section has been to describe the flavor of the
questions that are of interest in the analysis of LADAR images. The
subject is new, yet vast, so the discussion has been narrowed to the
discussion of the topological constraints although we readily admit that a
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technologically useful answer to the criteria for realism needs to engage
many metric issues as well.

Before we leave the question of criteria for realism of LADAR images,
it is useful to record two benefits of a full answer. In the first place, by
knowing the domain of realistic LADAR images we are in a far better
position to specify a family of probability distributions on the set of LA-
DAR images. Naturally, such a step is necessary if one is to use Bayesian
methods in the analysis of LADAR images. A more immediate application
for a criterion of realistic images is that it permits real time feedback to the
LADAR device. This can in some cases provide the mechanism for im-
proving the LADAR device itself, and at a minimum it provides a com-
mand and control tool that can suggest when a LADAR device should be
taken out of use.

5. CONCLUSION

We entered this exploration by considering the distinctive features of
LADAR images, and we have left by the same door. In the middle we
addressed the complexity of certifying the smoothness of a function f:
R4 —» R, and it was there that the most satisfying steps were taken.

Both of these problem areas fall within the scope of the theory of
complexity of approximately solved problems as delineated by Traub
(1985). Also, we should note that even though image understanding is
ultimately connected to the aims of LADAR, the simpler step contem-
plated here of checking for legitimacy must be satisfactorily resolved
before one can address broader issues of image understanding such as
those contemplated by Lee (1985).

The certification of smoothness seems like a natural and interesting
problem. It also seems not to have been treated before, though naturally,
there is work with a related flavor. One example is given by the work on
the realizability of metric spaces in graphs (e.g., Altenhofer, 1988), and a
second is the work on the approximate isometric embedding of finite
subsets of R into R, where k is much smaller than » (e.g., Frankl and
Maehara, 1988). We hope that Sections 2 and 3 illustrate that there are
interesting issues in the complexity of smoothness, and at least that they
should leave little doubt that many issues remain essentially unexplored.

REFERENCES

ALTHENHOFER, L. (1988), On optimal realizations of finite metric spaces by graphs, Discrete
Comput. Geom. 3, 103-122.



276 J. MICHAEL STEELE

FRANKL, P., AND MagHARA, H. (1988). The Johnson-Lindenstrauss lemma and the spheric-
ity of some graphs, J. Combin. Theory Ser. B 44, 355-362.

Lee, D. (1985), Optimal algorithms for image understanding: Current status and future
plans, J. Complexity 1, 138-146.

Traus. J. F. (1985), Complexity of approximately solved problems, J. Complexity 1, 3-10.



