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ABSTRACT

Transformations of the regressor and/or the
response in simple regression are often sought to
increase linear association and to make residuals
appear more nearly normally distributed with
constant variance. The ACE (alternating condi-
tional expectation) algorithm of Breiman and
Friedman (1985) finds the transformations max-
imizing the correlation between the regressor and
response, while the AVAS (additivity and vari-
ance stabilization) algorithm of Tibshirani (1988)
uses a variance-stabilizing transformation of the
response. An exploratory data tool, the bulging
rule of Mosteller and Tukey (1977) is used to find
specific functional forms for the relationships
suggested by the ACE and AVAS algorithms.
Data on the water content of soil are used to illus-
trate the procedure.

1. Introduction

Recently, two powerful methods for estimating
optimal transformations for regression and correlation have
been proposed. For data (x;,y;), 1<i £n, the ACE algo-
rithm of Breiman and Friedman finds transformations f
and g such that the empirical correlation of the transformed
data (f (x,),g(;)), 1Si <n, is approximately maximized.

The term ACE is an acronym for alternating condition
expectation. If (X,Y) is a pair of jointly distributed random
\fariables, one can define f and g as the limits of the func-
tons f, and g, determined by taking f (X) =X, g (¥)=Y

and applying the recursions

fanX)=E(,MIX)
and

gan () =E(f (1Y) Var B, X/ YN

The f and g determined by this process can be shown to
a?axlmizc Corr(f (X),g(¥)) (subject to var(g(¥)=1).
Naturally, if the joint distribution of X and Y is not known,
“ne cannot find f and g precisely by this method, but one
tan 'derive an empirically based algorithm as a natural
Mlﬁcaﬁon of the theoretical algorithm, by replacing the
i»‘cnduional expectations by scatterplot smoothers. In their
’?’plementation, Breiman and Friedman used a refined ver-
$ion of the supersmoother of Friedman and Stuetzle (1982).
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One problem of ACE is that the transformations,
while maximizing linear association, may introduce
heteroscedasticity in the response. The AVAS algorithm of
Tibshirani (1988) is designed to alleviate this problem. Tt
is similar to the ACE algorithm except that instead of using
gnﬂ(y)=E(fﬂ(x)1y)l{var(E(f"(x)ly))]V‘ it uses the
asymptotic variance-stabilizing transformation.  (The
details of the algorithm can be found in Tibshirani (1988)).

The ACE and AVAS algorithms can be useful as
stand-alone tools for descriptive purposes. The result of
each algorithm is two estimated functions f&) and
o), 15isn. However, it is often desirable or even
necessary to obtain specific functional forms for f and g,
that is, to find functions which approximate f and g and
retain the desirable properties of the ACE or AVAS
transformations.

The purpose of this paper is to illustrate the use of the
bulging rule of Mosteller and Tukey (1977) as an aid in
finding an explicit functional form approximating the ACE
and AVAS transformations. Additionally, we compare the
differences in the transformations suggested in these algo-
rithms. Data from an experiment on soil water diffusivity
are used as an example. The parameter of interest, the dif-
fusion coefficient is a product of two functionals (a deriva-
tive and an integral) of X and Y. By finding an explicit
additive functional form F(Y)=a +bG(X) we are able to
calculate the functionals explicitly.

This’ article is organized as follows. The diffusion
problem is more extensively described in Section 2. The
procedure for finding the transformations is outlined in
Section 3. In Section 4 we carry out the procedure on the
experimental data in detail. Section 5 contains discussion
and some concluding remarks.

2. Soil Water Diffusion Problem

The movement of water in a horizontal column of
unsaturated soil is commonly modeled by means of the
one-dimensional diffusion equation

-—-=-—‘[D(6)-] O<x <o, 0<t <o, (2.1)

where 0 is the water content of the soil, ¢ is time, x is the
position in the horizontal column, and D(0) is the
coefficient of soil water diffusivity at the moisture level O.
Any two variable function 0(x,¢) that satisfies (2.1) can be
shown (cf. Jost (1960, p. 31)) tobe a function of the single




variable A=x/t y’, which is often called the Boltzman vari-
able. After writing 6(0) for the new function of one vari-
able, one can check that 8(A) satisfies the ordinary differen-
tial equation:

_hdo_d {D(Q)ﬁ], @.2)
2 dA

di di

From this equation one can then easily obtain the
expression for D(8) which underlies our approach to its
estimation:

8
1 dA
D®)=-——[Mu)du, (2.3)
2 .d0,
where 8, is the initial water content of the soil. The simul-
taneous appearance of both derivative and integral terms in

this expression for D (8) provides one of the most intriguing
features of its estimation.

The process that has been most widely used to esti-
mate D(0) is the transient-flow experiment of Bruce and
Klute (1956). In that experiment, water is held at a
constant head and permitted to infiltrate into a horizontal
column containing air-dry soil. After a fixed time interval,
the column is sectioned, and the water content of the indi-
vidual sections is determined either by weighing, or by
other methods. The data of Clothier and Scotter (1982) on
Manawatu sandy loam plotted in Figure 1 are typical of
those obtained through horizontal infiltration experiments.
They also give an indication of some of the inherent
difficulties in estimating D (8). For instance, many smooth-
ing methods when applied to the data of Figure 1 would
lead to a virtually useless estimate of the derivative of A
with respect to 8. We will return to the problem of estimat-
ing D (@) in Section 4. For further details on the experiment
and historical background the reader is referred to De
Veaux and Steele (1989) and Clothier and Scotter (1982).

3. Estimation Process

The details of the method we propose are possibly
best explained in the context of an example such as the
analysis of D (8) of Manawatu sandy loam. Moreover, one
almost has to have an honest example in hand in order to
detail the role of the tools we have used to assist our
transformation choice: the bulging rule and the ACE and
AVAS algorithms. With that said, it seems useful to have a
top-down view of the method of the proposed method. The
four basic steps are the following:

Step 1. Find estimated transformations £ (8) and
£() from the ACE and AVAS algorithms. (We
use A for the regressor and 9 for the response.)
The transformed data values (f ©,),60.) in
both cases will exhibit a strong linear associa-
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Figure 1. Scatterplot of the volumetric water content, O,
versus the Boltzman variable A.

tion. The R? values from the regressions of
£(®) on g(,) will be used as benchmarks
against which we will compare the R 2 from more
analytically tractable transformations.

Step 2. Use the so-called bulging rule of Mos-
teller and Tukey (1977) to suggest analytically
tractable functions F(0) and G (A) which retain
the desirable properties of the functions found in
Step 1.

Step 3. Perform the regression of F(6) on G(A),
and use diagnostic tools to assess the appropri-
ateness of the linear model:

F®=a+bGA)+e. G.D
Step 4. If functionals of 6 or A need to be
estimated, one can use (3.1) directly to obtain
estimates.

As an example of step 4, consider the case of the dif-
fusion equation (2.1). After performing steps 1-3, one
would use the chain rule to extract from (3.1) an expression

d\ .
for :i—e- in terms of 8. Then either analytic or numerical

integration is used to determine the values of the definite
integrals:
8

1®)= [Mu)du

8,

(3.2)




for all 8,50 = 6,. Finally the diffusion coefficient D (0) is

estimated by the expression

9

1 dA
DO =—-——" d 3
©) Zdeiuuw (3.3)

where the indicated derivative and integral are those deter-
mined previously.

4. An Example: Manawatu Sandy Loam

To understand the extent of the linear association
netween A and 8 that can be achieved by marginal transfor-
mations, we examine the results of applying the ACE and
AVAS algorithm. Even for the best choices of f and g,
the linear association between % and @ is imperfect. Stll,
the ACE transformed variables plotted in Figure 2 and the
AVAS transformed variables plotted in Figure 3 exhibit
substantially greater linear association than the plot of the
 untransformed variables given in Figure 1. (We have used
_ the implementation of the empirical ACE algorithm due to
L. Brieman which is incorporated in The Statistics Store
{J.M. Schilling (1985)), and the implementation of AVAS
obtained from R. Tibshirani (see Tibshirani (1988)). When
we measure the linear association of the transformed vari-
ables in terms of R?, we find respectable values of R%=93
for ACE and R?= 92 for AVAS. These values provide us
with a benchmark, and, in fact, one of the principal benefits
of the ACE and AVAS algorithms is that they provide a
standard against which more analytically appealing
sransformations can be judged. ‘
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Figure 2. Scatterplot of the ACE transformed ©; versus the
ACE transformed ;. This plot is used to assess linearity of
the ACE transformation.
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Figure 3. Scatterplot of the AVAS transformed ©; versus the
AVAS transformed \;. This plot is used to assess linearity of

the AVAS transformation.

To aid the search for such surrogates for f and g, the
ACE and AVAS transformed variables are plotted against
the untransformed variables to see if simpler functional
forms might suffice. Figures 4 and 5 show the plots of
30, 1<i <n and (8;, £(8,). 1<i <n, respectively,
for both ACE and AVAS.
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Figure 4. Scatterplot of the ACE and AVAS tramfarmd'l,-
versus A; that is used to suggest & power transformation

approximating g ). ]
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Figure 5. Scatterplot of the ACE and AVAS transformed 9;
versus 9; that is used to suggest a power transformation
approximating. f (8). Notice that the bulge rule may not be
directly applicable here.

1=ACE 2=AVAS

- = standardized (6°)

The hunt for analytically tractable replacements for f
and g is further guided by the so-called bulging rule of
Mosteller and Tukey (1977). Loosely speaking, the bulg-
ing rule suggests finding an outward normal to a smoothed
plot of the data and using the signs of the normal com-
ponents to guide one’s choice of transfomation. For exam-
ple, Figure 4 exhibits a bulge where both the x and y com-
ponents of the outward normal are positive. The bulging
rule then suggests that both the variables plotted on the
horizontal axis should be transformed by moving up the
scale of powers. In fact, the successive examination of
plots of A%, g(X,)), 1<i <n, for larger values of o contin-
ues to suggest moving up the scale of powers, and we are
thus led to consider the exponential transformation. For
comparison —e * (standardized to have mean 0 and variance
1) is also shown in Figure 4. The exponential appears to be
a compromise between the transformations suggested by
ACE and AVAS. An alternative approach to this explora-
tory search for an appropriate transformation would be to
use the method of Box and Cox (1964).

When we begin a similar examination of the plot of
(e,,,f‘(ei)), 1<i<n given in Figure 5, the bulging rule for
re-expression diverges for ACE and AVAS. For the ACE
transformation, there may be a modest indication that we
might wish to send @ down the scale of powers, but the
indication is not supported when tried. Fortunately, we
have recourse to a second approach that does suggest an
appropriate transformation, and we can consider the plot of
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0, versus ¢ which is shown in Figure 6. After all, since
we have having settled on e* as the surrogate for f (A), the
principal remaining task is to determine a surrogate F for f
such that the scatterplot (F(8,), ea,,) is approximately
linearized. The bulging rule applied to Figure 6 initially
suggests that we consider a transformation F that moves 0
up the ladder of powers, and successive applications of the
bulging rule eventually lead us to the choice of F(§) = ©°.
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Figure 6. Scatterplot of 0; versus ¢ .

suggests going up the ladder for either 6 or A.

The bulge rule

For the AVAS transformation in Figure 4, the bulging
rule is directly applicable and suggests using F(0)=0"
again. (The correlation between the AVAS f (6,) and 6‘-3 is
.999.) Thus, for this data set, we are led to the same
transformation from both algorithms. Notice that G\ =e A
and F(0)=6" preserve the homoscedasticity of the AVAS
transformations and the linearity of both ACE and AVAS.
Strikingly, using F (8) =6 and G(A)=e" achieves an R? of
.93 that meets the level of the optimal R *= 93 achieved by
the ACE transformations. Moreover, when we consider the
plot of 9;3 versus e (both standarized) given in Figure 7,
the visual impact of the linear association exhibited by this
figure seems to compare well with that exhibited by the
ACE transformed variables of Figure 2 and the AVAS
transformed variables of Figure 3. On the basis of the
quantitative evidence provided by comparing R*’s, the sub-
Jective evidence provided by comparison of the scatterplots
of Figures 2, 3, and 7, and the fact that both the ACE and
AVAS algorithms suggested the same transformations, it
seems appropriate to settle on the transformation choices of
Figure 7.
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Figure 7. Scatterplot of o} versus P (standardized).
Approximate linearity is achieved with this transformation
which should be compared with the ACE transformations of
Figure 2.

For the Manawatu sandy loam data our exploratory

analysis has led us to an approximate relationship of the
form

F(®)=a+bG(A),

where F(0) = 0, Gh)= ¢* The coefficients in (4.1) can
now be estimated by ordinary least squares from which we
obtain @ =4.48x107%, and b =-120x 10" with nominal
standard errors of 5.30% 107 and 3.30% 1078, respectively.
In Figure 8, we show a plot of the predicted values, é?
versus the residuals that are obtained from fitting the model
{4.1) by ordinary least squares. The residuals appear
approximately homoscedastic, and we have no reason to be
discontent with the estimates obtained by ordinary least
squares. If the scatterplot of Figure 8 had exhibited a
greater heteroscedasticity, we would have probably elected
to apply iteratively reweighted least squares, or a similarly
directed technique.

As a final check on the reasonability of the fitted
model, one should consider the fit in terms of the
untransformed variables as exhibited in Figure 8. This plot
has no flagrant defects; indeed it suggests that the pro-
cedure has been a reasonable one.

By differentiating (4.1) we find the general relation-
ship

a_FO

= 4.2
de  wG'w “2

=b7'F(0) (G (G (F(®)-a)/ BN},

@n
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Figure 8. Scatterplot of rfsiduals versus predicted values for
the model ©; =a+be " Residuals appear to be
approximately homoscedastic.

and, for the choices that were made by means of the
exploratory analysis of the Manawatu sandy loam data, one
finds a particularly simple net result:

LL 36%@°~a) .
de

4.3)

In order to obtain D (8) it remains only to determine
the integral of A(®) =G ((F (®)~a)/b). For the Manawatu
sandy loam data we find A©)=log ((es—a)/b 3. and the
integral of A(8) can be determined analytically. For more
details including a discussion of interval estimates of D (8),
the reader is referred to De Veaux and Steele (1989).

5, Discussion

Both the ACE and AVAS algorithms were used to
suggest analytic forms for a transformation of a regressor
and response which would exhibit linearity and homos-
cedasticity. To aid the search for such functional forms,
the bulging rule of Mosteller and Tukey (1977) was used
when appropriate. The ACE transformation, while display-
ing a high degree of linearity (R*=93) also showed non-
constant variance in the response. The AVAS transforma-
tions did nearly as well in terms of linearity (R2 = 92) and
the transformed response had nearly constant variances.
For our data set, both the ACE and AVAS algorithms led to
the same function forms G(?L):e’“ and F (6):93 for the
regressor and response respectively. Functionals of the
curves were directly attainable from the linear model
F(®)=a+bGQ) which through residual analysis seemed




plausible. The success of the procedure in this case sug-
gests that both the ACE and AVAS transformations should
be considered as exploratory tools by the data analyst to
suggest appropriate functional forms for transformation.
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