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A linear programming relaxation of the minimal matching problem is studied for graphs with edge
weights determined by the distances between points in a Euclidean space. The relaxed problem has a
simple geometric interpretation that suggests the name minimal semi-matching. The main result is the
determination of the asymptotic behavior of the length of the minimal semi-matching. It is analogous
to the theorem of Beardwood, Halton and Hammersley (1959) on the asymptotic behavior of the traveling
salesman problem. Associated results on the length of non-random Euclidean semi-matchings and large
deviation inequalities for random semi-matchings are also given.
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1. Introduction

Let G=(V, E) be a graph such that for each edge ec E there is an associated
weight w,. We are concerned here with the solutions to the following linear program:

z=min Y, X.W, (1.1a)
X  eckE
subject to Y x,=1 forallveV, (1.1b)
e meets v
x,=0 foralleeE. (1.1¢)

If G is the complete bipartite graph K, ., then (1.1) becomes an assignment
problem, and the well-known Integrality Theorem tells us that (1.1) has a solution
such that each x, is an integer, specifically x, =0 or 1 for all e (see, e.g., Chvital,
1983, p.327; or Lovéasz and Plummer, 1986, p.269).

A less well-known result of Balinski (1965) tells us that if G is the complete graph
K,, then there is a solution of (1.1) in semi-integers, i.e., x, =0, 1, or 1 for each
e e E. For this reason (and additional reasons to be reviewed shortly), the linear
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program (1.1) will be called the semi-matching problem. A proof of Balinski’s
theorem is given in Lovdsz and Plummer (1986, p. 291), and the result is more subtle
than one might guess. It is established with help from the classic result of Petersen
on the decomposition of regular graphs into 2-factors. One can also find a discussion
of the semi-integer nature of the solutions of (1.1), and an indication of proof of
Balinski’s theorem in Yemelichev et al. (1984, p. 175).

The intention of this paper is to investigate the behavior of the solutions to (1.1)
where the vertices of G are points v, vs,..., v, in RY and where the weight w,
associated with edge e= (v, v;) is the Euclidean distance |v,—v]. For the main
results, we further assume that the points v, 1 < i< n, are determined by a probability
model. In particular, we treat the case where the points are modeled as independent
identically distributed random vectors in R®. In that situation, we are especially
concerned with the growth rate of the value of the objective function as n becomes
large.

Two branches of optimization theory motivate this investigation. First, the semi-
matching problem illustrates the interplay between linear programming and com-
binatorial optimization. The classic paper of Edmonds (1965a) provided one of the
earliest applications of linear programming to combinatorial optimization by show-
ing that (1.1) can be supplemented with additional linear constraints to obtain an
LP formulation for the general problem of minimal matching in a weighted graph.
It turns out that an exponential number of additional constraints are required, but
by appropriate sequential generation of the constraints, an optimal solution can be
determined in polynomial time. Intriguingly, Edmonds (1965a) was among the first
works to draw attention to the fundamental distinction between polynomial time
and exponential time algorithms (see also Edmonds, 1965b, 1970).

The second line of development motivating the investigation of semi-matchings
hinges on a geometrical interpretation. Since the value of x,, here called the loading
Jfactor of e, can only be 0, 3, or 1 in a minimal solution to (1.1), one can easily show
that any minimal solution consists of a union of isolated edges with loading 1 and
a collection of odd cycles that has all edge loading equal to 3. This interpretation
of the LP (1.1) shows that the solutions of (1.1) are close to the usual notion of
minimal matching. Still, there are some significant theoretical differences between
semi-matching and ordinary matchings. One modest difference that nevertheless
makes semi-matchings theoretically more attractive than minimum weight perfect
matching is that there is no need to distinguish between odd and even values of n.

The geometric interpretation of semi-matchings also connects them with the theory
of subadditive Euclidean functionals. That theory begins with work on the asymptotic
behavior of the traveling salesman problem by Beardwood et al. (1959), and its
importance for combinatorial optimization is made clear in the work of Karp (1977)
that provides a polynomial time probabilistic algorithm for the TSP.

The main result of this paper is the following asymptotic result for S, that is
analogous to the result obtained for the traveling salesman problem by Beardwood
et al. (1959).
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Theorem 1. Suppose that V,, 1<i<co, are independent random variables with the
uniform distribution on [0, 114 and let S,=S(V,, V, ..., V,)denote the cost of a
minimal semi-matching of {V,, V5, ..., V,}. For any d =2, there is a constant ¢, > 0
such that

lim S,/n“ "=, (1.2)

11 X

with probability one.

For d =2 the analogue of Theorem 1 for minimal matchings was first given in
Papadimitriou (1977). After developing some basic geometry of semi-matchings, an
abstract version of Theorem 1 will be stated in Section 3, and at that point we will
consider how the framework of Papadimitriou (1977) differs from the present
approach.

The minimal semi-matching functional S is also well-behaved enough to permit
the extension of Theorem 1 to more general distributions. In the following result,
the constant ¢, is the same as that given in the limit (1.2).

Theorem 2. If V,, 1< i <o, are independent random variables with distribution u with
compact support and absolutely continuous part dp, = f(x) dx then with probability one,

lim S(V,, V,..., V)/n9 W i=¢, J if(x)(d'”/d dx. (1.3)
i

n-»co

The approximation process by which one goes from the asymptotic theory of the
uniform distribution to the general distributions of Theorem 2 is technical, and
since the required approximation techniques are remote from the potential applica-
tions of the result, the proof of Theorem 2 will only be sketched.

Given the current state of development of the theory of subadditive Euclidean
functionals, Theorems 1 and 2 rest substantially on non-probabilistic insights, and
thus much of the work of this paper is non-probabilistic. In particular, the next
section provides three geometric inequalities that serve to articulate the structural
parallels between semi-matching and the traveling salesman problem (TSP). In fact,
once one makes explicit this underlying structural communality, the techniques of
the proof of Theorem 1 are seen to be as pertinent to the theory of the TSP as to
the theory of semi-matchings. In this respect it is worth noting that the proof given
here contains several twists that contribute to the general theory of subadditive
Euclidean functionals. These features of the proof are pointed out as the details
are given.

2. Geometry of semi-matchings

The two geometric properties that contribute the most to the asymptotic analysis
of the minimal Euclidean semi-matching are the following: (1) the subadditivity
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expressed in Lemma 1, and (2) the smoothness property expressed in Lemma 2 that
says as vertices are added or deleted the cost of a minimal semi-matching changes
only modestly.

We let Q,=[0,1]¢ denote the unit cube in R”, and we divide this cube into m*
congruent subcubes Q;, 1=i= m If v, vy,...., 0, is a fixed set of points in Q,
we write S(Q;) for the cost of the minimal semi-matching of the points in
{v{,0a,..., 0,3 Q,. The first lemma follows from the observation that the union

over 1=i=m? of any feasible semi-matchings of Q,~{v,, va,..., v,} provides a
feasible semi-matching of Qyn{vy, v, ..., V.t
Lemma 1. For any n points {v,, v,, ..., U,} and any integer m, we have
md
S(Qo)= Y S(Q). O (2.1)
=1

The simplicity of this inequality should not hide its power. One can extract
considerable asymptotic information from (2.1) when it is combined with
homogeneity and translation invariance.

To make use of probabilistic information on the distribution of random points it
is also important to know how S changes as points are added or deleted. The next
lemma provides this information and thus provides the required surrogate for the
monotonicity that one has for subadditive functionals like the TSP.

Lemma 2. For any n=2, we have

IS(UI) Dayenns vn)_S(vla Uayevny Un+1)t$d2(vn+l; Vi, U2y.ney Un) (2’2)

where

do(U5 Y1, Y25 oo o5 Vi)

=min{r: [v-y|<rand|v-y|<rforsomel<i<j<n}.

Proof. We first show S(v,,v,,...,0,4,) cannot be much bigger than
S(v(, va, ..., U,). Akey role in the proof is played by the nearest neighbors of v,.,,
and z will denote any such neighbor. A

In a minimum weight semi-matching of {v,, v,, ..., v,}, vertex z can occur on
an edge e =(z, z’) with loading 1, or z can occur on an odd cycle with neighbors
2z’ and z" such that each of the edges (z, z') and (z, z”) each have loading 3. If (z, z')
has loading 1 we build feasible loading of {v,, va,..., U..q} by the following
assignments:

elz(zs vn+1)’ xe‘l:%a
ezz(Z,, vn+l)a xezzJi’

63‘—'(29 Z’), Xe. :%~
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This new loading spans {v,, v,,..., U,.}, and it exceeds the cost of the minimal
loading of {v,, vs,..., v,} by, at most,

Al x%.unﬂ—l _Z]+%’Un+l _Z,! —%[Z_Z’}

. . R ) (2.3)
<3|vg 2l Follves — 2|z = 2 —alz = 2 = v 2.
In the case that z occurs on a triangle (z, z'), (z, z7), (z', ") we change the minimal
loading of {v,, v,, ..., v,} by setting

€1 =(2, V1), X, =1,
e, =(z',2"), X, =1,
e;=(z,2'), X, =0,
es=(z2"), x,, = 0.

This new loading increases the cost of the minimal loading of {v,, ..., v,} by, at most,

Ay =lvpn = 2| +3|2' = 2" =4z = 2| =z — 2" = v, — 2] (2.4)

The third case to consider is that z occurs on an odd cycle containing at least
five vertices. If z" and z” are the neighbors of z on this cycle we change the loading
to the following:

€1 =(2, Ups1), X, =1,
e;=(z,2), X, =0,
e;=(z,2"), Xe, =0,
e,=(z',z"), Xo, =3.

This again provides feasible loading and, even though the presence of an even
cycle marks it as suboptimal, we can check that it is good enough by the following
bound on the incremental cost:

As=|v,,, 7| "%'z" z'| —%]Z - Z”H"%'Z"’ 2| < vy~ 2] (2.5)
Summarizing (2.3), (2.4) and (2.5) we have

S(vy, 05,00, Ups) < S{v,, 0y,..., zJ,,)lerSniisn’1 [0, = Ui, (2.6)
which is a bit sharper than we need to prove the first half of inequality (2.2).

We now need to obtain an upper bound on S{v,,v,,...,v,) in terms of
S(vy, Vs, .. .., Uasy). The simplest case occurs when v,., is on an odd cycle in a
minimal semi-matching of {v,, v,, ..., U,4}. If the neighbors of v,,, are z and z’
and the cycle is a triangle, we just give (z, z') a loading factor of one to get our
feasible matching of {v,, v,, ..., v,}. Furthermore, if v, is on a cycle of cardinality
five or greater, we just give (z, z’) a loading of 1. In either of these cases, we see
there is a feasible semi-matching for {v;, v,,..., v,} that has cost bounded by
S(v, 02, ..., Vpiq)-
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We now confront the trickiest case. Suppose v,.; is on an edge (Upey, z) With
loading factor equal to 1. We let w be a vertex other than z that is within a distance
d, of v,,,. By the definition of d., at least one such w must exist.

We can either have w as a vertex in an odd cycle or as a vertex on an isolated
edge. If w is on a single edge (w, w’) with loading 1, we consider the new loading
factors given as follows:

i
el:(za VV), ML’l:éa
[ (Wa W’,), W’g:-—“%’
€3 = (Z: W’,), W@:é~

From this loading allocation, we have
S0y, 0ay ey )=S0, U2y e vy Ont) = |Uper = 2] F 22 = W]
iz w3 =, 27
and since
lz—w|+|z—w|<2|z—w|+|w-w/| and |z = wl<|vper— 2| Hvae— W,
we have
S(vy, Uy vn, Ua)=S(vy, V2, -+, Vnat) = |Upp1 — 2| +z = w|
< S(vy, Uy e vy Uprt) | Up = Wl (2.8)

Next we consider the case that w is on an odd cycle with neighbors (w', w"). If
the cycle is a triangle we take new loadings

elz(z7 W)’ we :1’
€y~ (W’a W”), W82: 13

and if the cycle is of size five or greater we take the loadings

i

elz(za W)a W, la

1

e=(w,w"),  W,=1.

In either of these two situations we find that S(v,, vz, - . ., Uss1) = S(03, V2, -+ -, v,)
is bounded by

Ay==vprr— 2|+ |z = w| =Hw—w| 3w —w']+2lw = wl.

By the triangle inequality, the sum of the last three terms is bounded by 0 and |z — w|
is bounded by |z~ v,.1|+|v.1— w|. Thus, we find the bound,

A4$[U"+1-—w|$d2(vn+,; Ugy Uay-vns Up) (29)
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From inequalities (2.1), (2.4), (2.8) and (2.9), the proof of Lemma 2 1s com-
plete. I

Lemma 3. For any n=2, we have

S(vy, vay . e, v)=8d 0T (2.10)

Proof. If m? <n/2=<(m+1)", then one of the cubes Q, of the decomposition
of [0,1] into m* cells of side m™' must contain at least three points. Since
m~'d"? is the diameter of Q, we see that there is thus a 1=j=<n such that
do( 0,5 01, Osy e ooy Doty Uny oo Ug) m~'d'?. Hence, by Lemma 2, and the bound
m'=2(m+1)"'=2(n/2)""" we have

S(Ul) vzz""vn)

N 1+1/d y1/2 —1/d
< S(Uy, Vay ooy Uity Ujsts - oo Up) T2 d’"n " (2.11)

Applying the same argument to the n—1 set {Uy, Vayeoos Uty Ujds v« o 5 v,} and
continuing successively, we find

S(vl> Uyyvons vn)

S21+1/dd1/2 i j—l/dSz(d+l)/dd3/2(d_1)—1n(d——1)/d. (212)

n=1

Since 291 4d /(d —1) <8 for d =2, (2.12) is stronger than the required bound. U

3. Underlying structure

As we have already noted, a close connection exists between the probability theory
of semi-matchings and the traveling salesman problem. This connection can be
made most explicit by laying out some of the abstract properties of the semi-matching
functional that connect semi-matchings with the TSP and other subadditive
Euclidean functionals. Very few properties of S are needed to show that the
conclusion of Theorem 1 is valid. Explicitly, Theorem 1 will be proved by appeal
to only the following:

(A1) S(ax,, ax,,...,ax,)=aS(x;,%,,...,%,) for all @>0 and x e R

(A2) S(x,+y1, %4y, ..., X, +y)=5(x;,%5,...,x,) forall y and x; in R

(A3) 1S(xy, X2, v vy Xy Xpwn) = S(X1, X2y oo, X)) S (X5 X1, X2 .., x,) for all
n=3 and x; in R% .

(A4) S{xy, Xa, ., %10 [0, 1] =T, SUxi, X2, oo, X3 0 Q1)

If one could replace (A3) by the stronger monotonicity condition
S(Xy, X2, vy Xus1) = S(xy, X3, . .., X,), then by results of Steele (1981a) conditions
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(A1) through (A4) would be enough to guarantee Theorem 1. Since one can easily
provide examples that show S is not monotone, we are compelied to study semi-
matchings through surrogate inequalities like (A3). In contrast to its deficient
monotonicity, semi-matchings have rather stronger subadditive properties than one
typically finds. In the general theory of subadditive Euclidean functionals, one
relaxes (Ad) to

S({x]’ x:) R x?'l}m[O’ t]d)

ne

= Z S({xl7x2>-'~3xr1}thi>+C[md‘la (31)
i=1

and this relaxation is surely worthwhile since without it the theory would not include
the TSP.

We should also note that in Papadimitriou’s formulation of the limit theory for
the minimal matching M (x,, Xa,..., X, ) of {x{, X5, ..., X} < R”, a key role is played
by a lower bound that complements (A4) or (3.1). Specifically, the proof sketched
in Papadimitriou (1977, p.369) called upon the following property of minimal
matchings in R*:

M{x, X255 X, 30 [0, 1T7)
2’:[ {M({x,, %, ..., %30 Q1) —2[3Qi|}. (32)

Here |9Q;| denotes the length of the boundary of the square Q,. One of the issues
that arises when one considers matchings or semi-matchings in R d>2, is the
determination of a suitable replacement for the |3 Q| terms. Because of this difficulty,
an approach based on (A1)-(A4) lead to a more straightforward theory that is still
well suited for applications. The main drawback of the axiomatization (Al)-(A4)
is that one can no longer appeal directly to the proof of Beardwood et al. (1959),
although, because of the considerable complexity of that proof, perhaps this draw-
back is really a blessing.

The bottom line is that most of the difficulties that arise in the limit theory for
semi-matchings come from its failure to be monotone. Moreover, the general theory
of subadditive Euclidean functionals benefits by seeing how this difficulty can be
overcome.

4. Analysis of the expected value

The proof of Theorem 1 is perhaps most easily explained by dealing separately with
the asymptotic behavior of ES, and the behavior of S, ~ ES,. The first step in the
analysis of ES, is the introduction of a Poissonization device that permits the
expeditious use of (A1), (A2) and (A4). The second step is to extract the asymptotics
of ES, from the asymptotics of the Poissonized sequence. In this step our analysis
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leans heavily on (A3) and the fact that the Poisson distribution concentrates almost
all of its mass in an interval [A —A7, A+ A7 ] if y>1.

If we let N be a Poisson random variable with mean A, and we choose N points
in [0, 1]¢ independently according to the uniform distribution, then each of the m*
subcubes Q; contains N, points, where the N, are independent Poisson random
variables with mean A/m*. If we now set

¢ (A)=ES(X,, Xa.,..., Xy) (4.1)
where the X are independent and uniformly distributed, then from (2.1) we see that
d(M)=m* A/ m?).
After substituting A,,* for A and dividing by m? 'A® with a =(d —1)/d, we have
d(mN /(MmN <d(A)/A®, m=1. (4.2)

Now, given any £ >0 and k> 0 we can choose an interval (a, b) = (a(e, k), b(e, k))
such that for all A € (a, b) we have

d(A)/ A< g+ inf ¢(u)/u”. (4.3)
Applying (4.2) to (4.3), we find
¢ (mN)/ (mA)*<e+inf ¢(u)/u” (4.4)

for all m and A €(aq, b), hence

d(x)/x*=s e+ inf d(u)/u” (4.5)
A=k

for all xelJ, _, (ma, m)=U For m=a"/(b¥?—a'?) the intervals
(m%a, m“b) and ((m+1)%a, (m+1)“b) overlap, so U contains (m§a, ) where m,
is the least integer as great as a'/*/(b"/* —a'?). We can thus conclude from (4.5)
that

limsup ¢(A)/A“<lminf ¢(A)/ A"+ & (4.6)

A0 A0

Since (4.6) holds for all £ >0, the limit of ¢p(A)/A" exists as A >0,
Now, if we let

sa=ES,=ES(X,,X,, ..., X.), (4.7)

the asymptotics we have established for ¢(A) can be used to obtain the asymptotics
of s,. If we expand ¢(A) by conditioning on N, we find

S =Y E(S(X\.X,....X)P(N=n)=e ¥ sA"/nl, (4.8)
n=0 n=0
so we have
S =e T sA"/nl~cA®. (4.9)

n=0
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The extraction of the asymptotics of s, from that of ¢(A) can be achieved by
appeal to classical Tauberian theorems, or by completely elementary means. We
will pursue the latter route, but first we need to verify that s, is reasonably smooth.
We use | Y], =(EY")"" to denote the L” norm of Y.

Lemma 4. There is a constant «y depending only on d such that for
independent, uniformly distributed random variables X, the variables Y, =
do(X,iy X, X, ..., X)) satisfy

[Y.l,=<ap/m)"! (4.10)

for all n=1. Consequently, we also have for —3n<h<3in

2

150 = Spenl = a2V n "4 . (4.11)

Proof. We first bound P(Y, = y) by conditioning on X, and applying geometric
considerations. For any 0< y <1 and for all xe[0, 1]¢ = Q, we have the elementary
geometric bound

P(IX;~x|zy)=1-2"",y", (4.12)

where w, is the volume of the unit sphere in R%. To see why the factor 277 is needed,
just note that (4.12) becomes an equality if x is one of the corners of the cube.

Since {Y, = y} if and only if at most one of the events A, ={| X, —x| <y}, 1=si=sn,
occurs, we have for 0 <<y <1 that

P(Y,Zy)<(1-w, 2" ") + nwp* (1 -2"%,y")" ™' = ¢a( ), (4.13)

and, for 1< y=d'? we have P(Y, = y) bounded by ¢,(1). Naturally, P(Y,=y)=0
if y=d'>

If we multiply these bounds by py”~", apply the bound (1 —x) <e™, and integrate
using [5 y* e  dy=d'B"*“I'(a/d) we can complete the proof of (4.10) by
applying the bound I'(x)=<x™

To prove (4.11), we only have to note by (4.10) and the restrictions on h that

ISy = Spenl=<ay Y 2Y9TVI < @207V ). O

n—|hjsk<n

The preliminaries are out of the way, and we can now establish the main result
of this section.

Lemma 5. There is a constant ¢; > 0, such that as n—» 0,

Sy~ cdn(d_”/d.

(4.14)
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Proof. We first recall a classical bound on the tail of the Poisson distribution (see,
e.g., Hardy, 1949, p. 170); if <y <3 then, as A » <,
Y e AN kl=0(exp(—A")) (4.15)

Kolk—al=a”
for any n <2y — 1. We also note that (4.15) further implies that for each fixed g >0,

Yo kP e AN k1=0(exp(—AT7/2)). (4.16)
kilk—Al=A7
For easy checking, we will apply (4.15) and (4.16) with y =% and n=¢. We let A
be any positive integer and use (4.11) together with the crude bound s, <d '’k to
estimate s, in terms of ¢(A) as follows:

S =5, T (50—s50) e A/K!
k=0

=sA+O( ¥ A(/\+k)e_AAk/k!>

kifk—Afz=A"""

+0( T A A e‘%\’*/k!)

kilk—aj<a®’
=35, +O(exp(—/\'/6/2))+O(/\3/5“IN). (4.17)

Since (M) =A@V 4oy by (49), we thus have s, =crA'¢V
+o(A'7Y4Yy as well. The fact that ¢, >0 follows from the fact that by elementary
geometric probability — such as applied in (4.12) — one has a ¢>0 such that
E min, <, | X, = Xj|>en™V4 O

One finds a familiar pattern in the derivation of the asymptotics of ¢(A) by means
of the subadditivity argument given in equations (4.2) through (4.7). On the other
hand, the use of Hardy’s bound on the Poisson tails has not been used before in
the context of subadditive Euclidean functionals, and the introduction of this bound
provides a simpler and more powerful approach than the Tauberian arguments used
in Karp and Steele (1985) or Steele et al. (1987). From the perspective of the general
theory, where there is some benefit to working only with one-sided bounds, the
Tauberian arguments retain some benefits; but, where one has two-sided control of
S, — Sa+p AS given by Lemma 4, the line of argument given by (4.15)-(4.17) seems
to be preferable.

5. Finishing the proof of Theorem 1
Now that we know ES, ~ ¢;n'¢" "% the asymptotic behavior of the random variable
S, is essentially reduced to obtaining good bounds on the central moments
E(S,—s.)", or the tail probabilities P(|S, —s,|=1).
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By modifying the methods used for the TSP in Steele (1981b), one can show by
means of the inequality of Efron and Stein (1981) that E(S,—s,)>=Var$S, is of
order O(n'"¥9). With such a bound on Var(S,), one can use interpolation and a
Borel-Cantelli argument to prove Theorem 1.

Still, a cleaner proof of a more precise result can be obtained by using a martingale
argument to bound the fourth central moments E(S, —5,)* The latter approach
avoids the interpolation argument, and, more pointedly, it provides for so-called
complete convergence, rather than just almost sure convergence (see, e.g, Stout,
1974, or Steele, 1981b, for a discussion of the benefits of complete convergence in
the context of probabilistic algorithms and of its difference from almost sure
convergence).

We recall that a sequence of random variables d,, 1< i< n, is called a martingale
difference sequence provided there is a sequence of sigma fields F;, 1=<i=n, such
that F,< F...,, where d; is measurable with respect to F,, and E(d,|F,.,)=0. The
martingale differences we use are defined by

di:E(Sn‘F‘i)wE(Sani‘l)a 1$i$n, (51)

where for 1< i=<n we take F, to be the sigma field generated by {X,, X, ..., Xi},
and where F, is the trivial sigma field. Since E(S,|F,)=S, and E(S,|F,) = s,, the
telescoping sum of (5.1) lets us express S, — s, in terms of the d,,

S,—s,= 3 d. (5.2)
i=1

Although it is not particularly easy to compute with the d,, they can be made
more tractable by introducing some new variables. We let S, denote the length of
the minimal semi-matching of the sample with the ith point left out, i.e., S =
S(X,, X5,...,Xi—1, Xix1, ..., X,). One benefit of these variables is that E(S,|F)=
E(S.|F,_,), and thus we have

di=E(S,~S,|F). (5.3)
The critical point is that each expectation in (5.3) is well adapted to analysis by

means of Lemmas 2 and 4. In fact, by (5.3) and Jensen’s inequality, we have for
each p=1 that

|di|” < E(|S, = S.|”|F)),
so taking expectations and using (4.10) gives
ldill, <2aa(p/n)"", (5.4)

where a4, the constant of Lemma 4, depends only on d.
Now, for any martingale difference sequence, Burkholder’s square function
inequality (Burkholder, 1973, or Chow and Teicher, 1978, p. 384) tells us for p>1

that
n 1/2
<18pg"? ( p) d?)
i=1

P

Y d,
i=1

4
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where 1/p+1/qg=1. For p=4, we find

n 4 n 2
(3 ) <es( )
i=1 i=1

where ¢=3°-2'°. By expanding this last sum and applying Holder’s inequality, we
find from (5.4) that

n 4 L
E(Z d,) <cE Y di+2cE Y did;
i=t i

=1 I=i<j=n

<cE Y d}+2c Y (EdH'*(Ed)'”? (5.5)
P=1 1

i= si<j=n

2-4/
= K>

for a constant K, depending only on d. By Markov’s inequality, we then have for
any ¢ >0 that

P(|S, ~ s, = en V< e Kn (5.6)

Thus, the probabilities in (5.6) are summable for each & >0, and since s, ~ ¢,n‘“ ™",
this summability is exactly the condition of complete convergence of 5,'S, to the
constant ¢;. Since the Borel-Cantelli lemma tells us complete convergence implies
almost sure convergence, the proof of Theorem 1 is complete. [

6. Large deviations

In Section 5 we gave the quickest and cleanest route to the completion of the proof
of Theorem 1. More was proved than was needed — complete convergence instead
of almost sure convergence — but the stronger result was obtained largely because
it came for free. The purpose of this section is to show how martingale theory can
be used to obtain much stronger bounds on the tail probabilities of S, —s, than we
found in (5.6).

We continue to exploit the representation (5.2) and, in particular, it will be used
together with a recent martingale inequality to prove the exponential tail bound:

P(|S, — s,/ = t) < A exp(— B >/ p 2=/ - 1< p<oo, 0<t<o0, (6.1)

where A= e and B, is a constant that depends only on the dimension d.

Inequality (6.1) is powerful in any dimension d = 2, but it is especially convenient
for d =2. In that case, (6.1) reduces to an ordinary exponential bound that is
independent of n. Also, on multiplying (6.1) by pt””' and integrating, we find by
standard bounds on I'( p) that when d = 2 all the central moments of S, are bounded
independently of n, i.e.,

”Sn S ”psﬁpa (62)

where B is a universal constant.
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We can also exploit (6.1) in another direction to get a rate result for Theorem 1.
For example, when d =2 and we take t =2 log n/ B,, then (6.1) leads to a summable
bound on the tail probabilities. By the Borel-Cantelli lemma, we then have a
qualitative refinement of Theorem 1:

Sy =s,+0(log n) (6.3)

with probability one. One should note, however, that we cannot replace s, with
¢-n'? in (6.3), since we have no bound on s, —¢,n""? that is sharper than o(n''").

We will now show that for any d =2 inequality (6.1) follows easily from the L”
bound on d, given in (5.4), and a general martingale inequality due to Rhee and
Talagrand (1987). The Rhee-Talagrand inequality states that there is a constant K
such that for any martingale difference sequence {d;, 1 = i=<n}, and any 1 =0 we have

g

provided s =2 and Ks(¥,=, [|d]3,) < t’.
When we apply our L bound (5.4) with p =25 in (6.4), we find

Y i3 <ndai(2s/n)”", (6.5)

i=n

3 d,»‘ = 1) =exp(—1s), (6.4)

l=i=sn

so we have Ks(Y.<, ||d;||3,) = t, provided we take

_ +2) -2 )y —(2d+2 2 - 2) 2 2
§= K4/ 2)&’,1 d/(d+2)5—(2d+2)/(d+2) p (2=d)/(d+2) 2d/(d+2) (6.6)

For s<2 the bound on the right in (6.1) is at least one, so if we take B, =
QIR TENAFD) 724/ e have (6.1) forall d =2, 1sn<ooand 0<t <0,

The intention of this section is to give just a taste of the analytical possibilities
that are opened up by martingale methods. For d =2, inequality (6.1) is natural
and effective, but even then there are many opportunities for additional development.
To see how such analyses have gone forward in the theory of the traveling salesman
problem one should consult Rhee and Talagrand (1988), where a bound is given
that shows for d =2 that the tails of the TSP functional are actually sub-Gaussian.
It is not known if such bounds hold for d > 2, but some heuristic considerations
suggest that in higher dimensions one would no longer have such rapid decrease
of the tail probabilities.

7. Extension to general distributions

The extension of the limit theory of S, from the uniform case of Theorem 1 to the
general case of Theorem 2 rests on the fact that there is a class of probability
measures that is rich enough to approximate any probability measure with support
in [0, 1]% yet constrained enough to permit a localized application of Theorem 1.
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These are probability measures on [0, 1]¢ with the form g(x) dx+dp, where (1)
g(x)=% a1, for m* congruent disjoint cubes Q, with edges parallel to the axes,
and (2) the measure p, is purely singular (i.e., ([0, 11) =, (A) for a measurable
set A of Lebesgue measure zero). These probability measures — the so-called blocked
distributions — were used by Beardwood et al. (1959); and since the beginning of
the subject, they have remained a regular feature of extension arguments for
subadditive Euclidean functionals.

It should be clear that if a functional S is smooth in an appropriate sense then
one can carry asymptotic results for the class of blocked distributions to the class
of probability measures with bounded support. The following result from Steele
(1988) points out a simple continuity condition that suffices.

Theorem. Suppose Z is a measurable real-valued function on the finite subsets of

[0, 119, and suppose that there is a constant K not depending on n such that Z satisfies
the continuity condition

1Z (30, %2, s %) = Z(x, X, x) < K x| (7.1)

Further, suppose that for every sequence of i.i.d. random variables { X}, <, . distributed
with a a blocked distribution . = .+ g(x) dx we have with probability one that

Z(X,, Xy oo, X)) ~cqntd707d J g(x) 4 dx. (7.2)
One then has that with probability one,
Z(X}, XY,y X))~ eqnt T J'f(x)“'“”/" dx (7.3)

whenever { X |} are independent and identically distributed with respect to any probability
measure on [0, 1] with an absolutely continuous part given by f(x)dx. O

It is easy to justify (7.1) for the semi-matching functional. If A=
{x1, X2, %2,...,%,} and B={x}, x%, ..., x)} then by (2.11) we have

IS(A)-S(AnB)|<2""V4q'? ¥ Ve

|AnB|<k=|A|

s21—1/ddl/2 Z k*l/a' (74)
1=<k=j ’

where j=|A|—|An B|. Applying the same considerations to S(B)—S(An B) and

adding that bound to (7.4), we find for j=|A U B|—|An B|=|{i: X; # X}| that
|S(A)~S(B)|<22V/4q'? Y kY4, (7.5)

1sk=sj
Finally, (7.1) follows from (7.5) by standard estimates.

To complete the sketch of Theorem 2 we need to indicate why (7.2) holds for
blocked distributions. We first consider the purely singular case. We let A denote
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the support of p,, and let >0 be given. We then divide [0, 1]* into m¢ cells Q,
such that m ™' is smaller than ¢, and a small percentage of the Q, contain almost
all of the mass of p,. Specifically, since A has Lebesgue measure zero, we can find

an m and a subset J<={1,2. ..., m“} such that
m =g, (7.6a)
< em", (7.6b)
and

e ((L% Q,-) ) <. (7.6¢)

Now, by the usual feasibility considerations we have

S(Q)=s Y S(Q,-HS(U qi>, (7.7)
ield izJ

so we only need bounds on the respective sums. By (2.10) any k points in [0, 1]¢

have a semi-matching bounded by 8d"/?k'“~"/?; 50 by scaling we see that if k; is

the number of points of {X;:1=<j=<n} in Q, then

IS(Q)|<8d"*m ™|k, /<. (7.8)

By Holder’s inequality we find
(d—1)/d

L S(Q,.)s]J]‘/"Sd‘/zm-‘(z k,-) <g'/98d'2ntd e (7.9)

i€ ielJ
and by the direct application of (2.10) we have

(d—~1)/d
S(UJ Q,-) s8d‘/2( zj k,—) ) (7.10)
ig ig

Since p,(Us Qi) <e¢, the strong law of large numbers applied to (7.10) combines
with (7.7) and (7.9) to give us

limsup n "V 98(Q) < £V/98d " +8d 241V, (7.11)
with probability one. Since ¢ > 0 is arbitrary, we have proved Theorem 1 in the case
that w is purely singular, i.e., u,([0,1]?) = 1.

Now we consider the purely absolutely continuous case, i.e., ([0, 1]¢) =0. We
let m be fixed and let Q;, 1<i=<m“, be the usual partition. We consider the set E
of edges e of S(Q) such that e has endpoints in two different subcells, i.e., ec E if
e crosses a boundary dQ; for some i This time, let k; denote the number of points
of Q; that are endpoints of an edge in E. We claim that there is a K, such that

S(mU Q.-) S_mi S(Q,-)SS(U Q,») + Ky mz m A (7.12)



J.M. Steele /| Random semi-matchings 143

The proof of (7.12) in complete detail would require repetition of some of the
considerations of Section 2, but it essentially follows from the idea that one can
build a semi-matching on each Q; by taking the edges of the semi-matching of
S(Uf”;ll ;) that are completely interior to Q; together with a set of at most k; edges
with length at most m ~'d'/"?, i.e., the diameter of Q.

To bound the sum of the k;, we bound the cardinality of E. The key observation
is that for each e€ E we either have |e]> x, or else an endpoint of e is within x of
some 4Q;. Thus, if v,(x) is the number of edges in a minimal semi-matching of
{X;:1=i<n} that have length at least x, and n,(x) is the number of points of
{X;: 1= i< n} that are within x of §Q; for some i, then

gy-

ki<2v,(x)+n,(x). (7.13)

1

[N ag]

Since xv,(x) is bounded by S,,, Lemma 3 and Holder’s inequality tell us that we have

m m (d—13/d
m-‘l k(,'d—l)/ds(Z k,)
i=1 i=1

< (2x7'8dV2p' V4 4 (x)) 414, (7.14)

When we set x=n""%" a standard analysis of the right hand side of (7.14) shows

it is o(n“*""/?) with probability one.
Returning to (7.12), we find

S(mU Q.») =% 5(Q)=o(n 4174

i=1

with probability one. Since the asymptotic behavior of S(Q;) is determined by
Theorem 1, we have completed the proof of Theorem 2 under the assumption of
absolute continuity. The proof for mixed distributions follows from the consideration
of the two pure cases and standard probabilistic arguments, so those details are
safely omitted.

We have thus completed our sketch of the proof of (7.2). By the continuity
theorem, the proof of Theorem 2 is complete. [

8. Concluding remarks

The theory developed here brings together two streams of thought that have their
origin in the theory of the traveling salesman problem. First, it is widely recognized
that one of the most powerful thrusts in contemporary combinatorial optimization
is the algorithmic exploitation of the geometry of special polytopes. This point is
forcefully made in Crowder and Padberg (1980), Grétschel (1981, 1982), and Lovész
and Plummer (1986). Second, for many purposes -— especially probabilistic
algorithms and the probabilistic analysis of heuristics — there seems to be a sustained
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contribution to be made by the theory of subadditive Euclidean functionals that
has grown out of the work of Beardwood et al. (1959), Karp (1977), Papdimitriou
(1977) and Steele (1981a).

The semi-matching problem arises as the simplest part of Edmonds’ early program
to understand the matching polytope, and thus it has a special historical distinction.
Its claim on our attention is further strengthened by the fruitfulness of Edmonds’
conception as developed in the investigations of Padberg and Rao (1982), Grotschel
(1977) and Grotschel and Holland (1985, 1987).

The semi-matching problem is also the first problem to be brought into the theory
of subadditive Euclidean functionals that has its origin within the framework of
linear programming. To be sure, the availability of a second geometrical interpreta-
tion made the development of the probability theory of semi-matching more natural
than one would have otherwise expected. Still, the geometry of semi-matching is
not so simple that its asymptotic theory can be obtained by off-the-shelf tools. The
failure of the semi-matching functional to be monotone lead us toa natural extension
of the theory of subadditive Euclidean functionals and, in fact, the continuity
established in Lemma 4 turned out to be a condition that is in some respects even
more effective than monotonicity.

Of the problems that are left unresolved by the present analysis, the most obvious
ones are the determination of ¢, and the possibility of a central limit theorem. There
is no subadditive Euclidean functional for which these issues have been resolved;
and, despite the fact that semi-matching are in some ways very well behaved, there
is little hope for quick progress on these problems.

A more promising line of development lies in the direction of general weight
functions. The present analysis for w, =|x —y| can be extended to w, =|x —y|°, for
0<a<d, but it does not seem easy to deal with @ =d. In that case, a natural
conjecture is that with probability one we have

lim min ¥ |e|? =¢>0, (8.1)

n=>X0 g eeS

where the minimum is over all semi-matchings of {X;, 1= i<n} and the X, are
independent and uniformly distributed on [0, 1]%. The conjecture (8.1) is analogous
to a conjecture of R. Bland on minimal spanning trees (MSTs). Bland’s conjecture
came about from empirical observation of simulation experiments. Its validity has
been recently established by David Aldous and the author. The limit (8.1) still offers
considerable technical challenge because semi-matchings cannot be obtained via a
greedy algorithm, and it is that feature of the MST that proved to be essential in
the resolution of Bland’s conjecture.

A more conceptual shift is created when one changes to w, = d(x, y) where dis
a non-Euclidean distance. Sharp geometrical facts still abound, and the investigation
offers reasonable hope. Nevertheless, the subtlety of tilings that might serve in the
same role as Q; raises many new issues, and the development of results analogous
to Theorem 1 seems to call for a new approach.
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