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Probability theory is a branch of mathematics that has evolved from the investi-

gation of social, behavioral, and physical phenomena that are influenced by ran-

domness and uncertainty. For much of its early life, probability theory dealt almost

exclusively with gambling games, and, even though there were important contri-

butions made by such distinguished mathematicians as Pierre de Fermat, Blaise

Pascal, and Pierre-Simon de Laplace, the field lacked respectability and failed to

attract sustained attention.

One cause of the slow development of probability theory in its early days was the

lack of a widely accepted foundation. Unlike the geometry of Euclid, or even the

analytical investigations of Newton and Leibnitz, the theory of probability seemed

to be eternally tied to the modelling process. In this respect, probability theory had

greater kinship with the theories of heat or elasticity than with the pristine worlds

of geometry or algebra.
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Over time, foundations for probability were proposed by a number of deep think-

ing individuals including von Mieses, de Finetti, and Keynes, but the approach that

has come to be the most widely accepted is the one that was advanced in 1933

in the brief bookFoundations of Probability Theoryby Andrey Nikolayevich Kol-

mogorov.

Kolmogorov’s approach to the foundations of probability theory developed natu-

rally from the theory of integration that was introduced by Henri Lebesgue and

others during the first two of decades of the twentieth century. By leaning on the

newly developed theory of integration, Kolmogorov demonstrated that probabil-

ity theory could be viewed simply as another branch of mathematics. After Kol-

mogorov’s work, probability theory had the same relationship to its applications

that one finds for the theory of differential equations. As a consequence, the stage

was set for a long and productive mathematical development.

Too be sure, there are some philosophical and behavioral issues that are not well ad-

dressed by Kolmogorov’s bare-bones foundations, but, over the years, Kolmogorov’s

approach has been found to be adequate for most purposes. The Kolmogorov ax-

ioms are remarkably succinct, yet they have all the power that is needed to capture

the physical, social, and behavioral intuition that a practical theory of probability

must address.
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1 Kolmogorov’s Axiomatic Foundations

Central to Kolmogorov’s foundation for probability theory was his introduction of

a triple(Ω,F , P ) that is now called a probability space. The triple’s first element,

thesample spaceΩ, is only required to be a set, and, on the intuitive level, one can

think of Ω as the set of all possible outcomes of an experiment. For example, in

an experiment where one rolls a traditional six-faced die, then one can takeΩ =

{1, 2, 3, 4, 5, 6}.

The second element of Kolmogorov’s probability space is a collectionF of subsets

of Ω that satisfy three basic consistency properties that will be described shortly.

On the intuitive level, one can think of the elements ofF as “events” that may occur

as a consequence of the experiment described by(Ω,F , P ). Thus, to continue with

the example of rolling a die, the setA = {1, 3, 5} ⊂ Ω would correspond to the

event that one rolls an odd number.

Two of the three consistency properties that Kolmogorov imposes on theF are

quite trivial. First,F is required to containΩ. Second,F must be closed under

complementation; so, for example, ifA ∈ F thenAc ∈ F whereAc = {ω : ω ∈

Ω andω /∈ A}. The third condition is only a bit more elaborate; the collectionF

must be closed under countable unions. Thus, ifAk ∈ F for k = 1, 2, ..., then

one requires that the unionA1 ∪ A2 ∪ · · · of all of the events in the countable set

{Ak : 1 ≤ k < ∞} must again be an element ofF .

The most interesting element of Kolmogorov’s triple(Ω,F , P ) is theprobability
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measureP . Formally,P is just a function that assigns a real number to each of the

elements ofF , and, naturally enough, one thinks ofP (A) as the probability of the

eventA. Thus, one can specify a probability model for the outcome of rolling a fair

die, bydefiningP for A ⊂ Ω by P (A) = 1
6
|A|, where|A| denotes the number of

elements of the setA.

For sample spacesΩ that are not finite, more care is required in the specification

of the probability measuresP . To deal with generalΩ, Kolmogorov restricted his

attention to thoseP that satisfy three basic axioms:

Axiom 1. For allA ∈ F , one hasP (A) ≥ 0.

Axiom 2. P (Ω) = 1.

Axiom 3. For any countable collection{Ak ∈ F : 1 ≤ k < ∞} with the property

thatAj ∩ Ak = ∅ for all j 6= k, one has

P

( ∞⋃

i=1

Ai

)
=

∞∑

i=1

P (Ai).

Axioms 1 and 2 just reflect the intuitive view thatP (A) measures the frequency

with which A occurs in an imagined sequence of repetitions of the experiment

(Ω,F , P ). For most mathematicians, Axiom 3 also just reflects the most basic in-

tuition about the way probabilities should behave. Nevertheless, Axiom 3 is more

subtle because it deals with an infinite collection of sets, and, in some ways, such

collections are outside of our direct experience. This has lead some philosophers to

examine the possibility of avoiding Kolmogorov’s third axiom, and, over the years,
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various attempts have been made to replace Kolmogorov’s third axiom with the

simpler assumption offinite additivity.

2 Random Variables

In most applications of probability theory, the triple(Ω,F , P ) that gives life to

probability as a rigorous mathematical subject is almost invisible. In practice, builders

of probability models take advantage of various shortcuts that have the effect of

keeping the probability triple at a respectful distance. The most important of these

shortcuts is the notion of arandom variable.

On the intuitive level, a random variable is just a number that depends on a chance-

driven experiment. More formally, a random variableX is a function fromΩ to the

real numbers with the property that{ω : X(ω) ≤ t} ∈ F for all t. What drives this

definition is that one inevitably wants to talk about the probability thatX is less

than t, and, for such talk to make sense under Kolmogorov’s framework, the set

{ω : X(ω) ≤ t} must be an element ofF . Random variables make the modeler’s

job easier by providing a language that relates directly to the entities that are of

interest in a probability model.

3 The Distribution Function and Related Quantities

There are several ways to specify the basic probabilistic properties of a random

variable, but the most fundamental description is given by thedistribution function
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of X, which is defined byF (t) = P (X ≤ t). Knowledge of the distribution func-

tion tells one everything that there is to know about the probability theory of the

random variable. Sometimes it even tells too much.

The knowledge one has of a random variable is often limited, and in such cases it

may be useful to focus on just part of the information that would be provided by

the distribution function. One common way to specify such partial information is

to use themedianor thequantilesof the random variableX. The median is defined

to be a numberm for which one hasP (X < m) ≤ 1/2 ≤ P (X ≤ m). Roughly

speaking, the medianm splits the set of outcomes ofX into two halves so that the

top half and the bottom half each have probability that is close to one-half.

The quantilexp does a similar job. It splits the the possible values ofX into disjoint

sets, so that one hasP (X < xp) ≤ p ≤ P (X ≤ xp). Whenp = 1/2, the quantile

xp reduces to the median, and, whenp = 1/4 or p = 3/4, thenxp is called the

lower quartile, or theupper quartile, respectively.

4 Mass Functions and Densities

If a random variableX only takes values from a finite or countable setS, thenX

is called adiscreterandom variable. In such cases, one can also give a complete

description of the probabilistic properties ofX by specification of theprobability

mass function, which is defined by settingf(x) = P ({x}) for all x ∈ S. Here,

one should note that the probability mass functionf , permits one to recapture the
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distribution function by the relation

F (t) =
∑

x≤t,x∈S

f(x) for all t.

There are many important random variables whose values are not confined to any

countable set, but, for some of these random variables, there is still a description

of their distribution functions that is roughly analogous that provided for discrete

random variables. A random variableX is said to beabsolutely continuouspro-

vided that there exist a functionf such that the distribution function ofX has a

representation of the form

F (t) =

t∫

0

f(x) dx for all t.

The functionf in this representation is called thedensityof X, and many random

variables of practical importance have densities. The most famous of these are the

standard normal(or, standard Gaussian) random variables that have the density

f(x) =
1√
2π

e−x2/2 for all −∞ < x < ∞,

which has a key role in the Central Limit Theorem that will be discussed shortly.

Much of the theory of probability can be developed with just the notion of discrete

or absolutely continuous random variables, but there are natural random variables

that do not fit into either class. For this reason, the distribution function remains the

fundamental tool for describing the probabilities associated with a random variable;

it alone is universal.
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5 Mathematical Expectation: A Fundamental Concept

If X is a discrete random variable, then itsmathematical expectation(or just ex-

pectation, for short) is defined by

E(X) =
∑

x∈S

xf(x),

wheref is the probability mass function ofX. To illustrate the this definition, one

can takeX to be the outcome of rolling a fair die, so thatf(x) = 1/6 for all

x ∈ S = {1, 2, ..., 6} and

E(X) = 1 · 1

6
+ 2 · 1

6
+ · · ·+ 6 · 1

6
=

7

2
.

In a way that is parallel — yet not perfectly so — the expectation of an absolutely

continuous random variableX is defined by the integral

E(X) =

∞∫

−∞
xf(x) dx.

Here one needs to work a bit harder to illustrate the definition. Consider, for ex-

ample, an experiment where one chooses a number at random out of the unit in-

terval [0, 1]. From the intuitive meaning of the experiment, one hasP (A) = a for

A = [0, a], and, from this relationship, one can calculate that the density function

for X is given byf(x) = 1 for x ∈ [0, 1] and byf(x) = 0 otherwise. For the

densityf , one therefore finds that

E(X) =

∞∫

−∞
xf(x) dx =

1∫

0

x · 1 dx =
1

2
.
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From this formula, one sees that the expected value of a number chosen at random

from the unit interval is equal to one-half, and for many people this assertion is

perfectly reasonable. Still, one should note that the probability thatX equals one-

half is in fact equal to zero, so the probabilistic use of the word “expected value”

differs modestly from the day-to-day usage.

The probability distribution function and the expectation operation provide almost

all of the language that is needed to describe the probability theory of an individual

random variables. To be sure, there are several further notions of importance, but

these may all be expressed in terms of the distribution or the expectation. For exam-

ple, the most basic measure of dispersion for the random variableX is itsvariance,

which is defined in terms of the expectation by the formula

Var(X) = E(X− µ)2 whereµ = E(X).

Finally, the standard deviationof X, which is defined to be the square root of

Var(X), provides a useful measure of scale for problems involvingX.

6 Introducing Independence

The world of probability theory does not stop with the description of a single ran-

dom variable. In fact, it becomes rich and useful only when one considers collec-

tions of random variables — especially collections ofindependentrandom vari-

ables.

Two eventsA andB in F are said to be independent provided that they satisfy the
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identity,

P (A ∩B) = P (A)P (B).

What one hopes to capture with this definition is the notion that the occurrence ofA

has no influence on the occurrence ofB — and vice versa. Nevertheless, the quan-

tities that appear in the defining formula of independence are purely mathematical

constructs, and any proof of independence ultimately boils down to the proof of the

defining identity in a concrete model(Ω,F , P ).

Consider, for example, the experiment of rolling two fair dice, one red and one blue.

The sample spaceΩ for this experiment may be taken to be the 36 pairs(j, k) with

1 ≤ j ≤ 6 and1 ≤ k ≤ 6, where one thinks ofj andk as the number rolled on the

red and blue die, respectively. Here, for anyA ⊂ Ω one can setP (A) = |A|/|Ω| in

order to obtain a model for a pair of fair dice. Under this probability model, there

many pairs of events that one can prove to be independent. In particular, one can

prove that the event of rolling an even number on the blue die is independent of

rolling an odd number on the red die. More instructively, one can also prove that

the event of rolling an even number on the blue die is independent of the parity of

the sum of the two dice.

7 Extending Independence

The concept of independence can be extended to random variables by definingX

and Y to be independent provided that the events{X ≤ s} and {Y ≤ t} are

independent for all reals andt. One easy consequence of this definition is that for
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any pair of monotone functionsφ andψ the random variablesφ(X) andψ(Y ) are

independent wheneverX andY independent. This mapping property reconciles

nicely with the intuitive assertion: ifX andY have no influence on each other, then

neither shouldφ(X) andψ(Y ) have any influence on each other.

The importance of independence for probability theory will be underscored by the

theorems of the next section, but first the notion of independence must be extended

to cover more than just pairs of random variables. For a finite collection ofn random

variablesX1, X2, ..., Xn, the condition forindependenceis simply that

P (X1 ≤ t1, X2 ≤ t2, ..., Xn ≤ tn) = P (X1 ≤ t1)P (X2 ≤ t2) · · ·P (Xn ≤ tn)

for all real valuest1, t2, ..., tn. Finally, an infinite collection of random variables

{Xs : s ∈ S} is said to be independent provided that every finite subset of the

collection is independent.

8 The Law of Large Numbers

Any mathematical theory that hopes to reflect real-world random phenomena must

provide some rigorous interpretation of the intuitive “law of averages.” Kolmogorov’s

theory provides many such results, the most important of which is given in the fol-

lowing theorem.

Theorem 1 (Law of Large Numbers). Suppose that{Xi : 1 ≤ i < ∞} is a

sequence of independent random variables with a common distribution function

F (·), soP (Xi ≤ t) = F (t) for all 1 ≤ i < ∞ and all realt. If the expectation
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µ = E(X1) is well-defined and finite, then the random variables

1

n
{X1 + X2 + . . . + Xn}

converge to their common meanµ with probability one. More precisely, if one lets

A =
{
ω : lim

n→∞
1

n
{X1(ω) + X2(ω) + . . . + Xn(ω)} = µ

}
,

then the eventA satisfiesP (A) = 1.

9 The Central Limit Theorem

The second great theorem of probability theory is the famous Central Limit Theo-

rem. Although it is not tied as tightly to the meaning of probability as the Law of

Large Numbers, the Central Limit Theorem is key to many of the practical applica-

tions of probability theory. In particular, it often provides a theoretical interpretation

for thebell curvethat emerges in countless empirical investigations.

Theorem 2 (Central Limit Theorem). Suppose that{Xi : 1 ≤ i < ∞} is a sequence

of independent random variables with a common distribution functionF . If these

random variables have a finite variance Var(Xi) = σ2, then

lim
n→∞P

(
1

σ
√

n
{X1 + X2 + . . . + Xn − nµ} ≤ x

)
=

1√
2π

x∫

−∞
e−u2/2

du.

10 Stochastic Processes

The most fundamental results of probability theory address the behavior of sums

of independent random variables, but many applications of probability theory lead
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to sequences of random variables{Xn : 1 ≤ n < ∞} that may not be indepen-

dent. Such sequences are calledstochastic processes, and they are of many different

types.

The simplest nontrivial stochastic process is theMarkov chainwhich is used to

model random phenomena whereXn+1 depends onXn, but, givenXn, the value of

Xn+1 does not depend on the rest of the pastXn−1, Xn−2, ..., X1. To construct such

a process, one most often begins with ann× n matrixT = {pij} with entries that

satisfy0 ≤ pij ≤ 1 and with row sums that satisfypi1 + pi2 + . . . + pin = 1. One

then generates the Markov chain by making sequential selections from the setS =

{1, 2, . . . , n} in accordance with the rows of thetransition matrixT . Specifically,

if Xn = i, thenXn+1 is obtained by choosing an element ofS in accordance with

the probabilities(pij) given by theith row ofT .

A second group of stochastic processes that is of considerable practical importance

is the set ofmartingales. Roughly speaking, these are stochastic process that have

the property that the expectation ofXn+1 given the values ofXn, Xn−1, ..., X1 is

just equal toXn. One reason that martingales are important is that they provide

a model for the fortune of an individual who gambles on a fair game. Such gam-

bling games are relatively unimportant in themselves, but many economic and fi-

nancial questions can be reframed as such games. As a consequence, the theory of

martingales has become an essential tool in the pricing of stock options and other

derivative securities.
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The theory of stochastic processes is not confined to just those sequences{Xn :

1 ≤ n < ∞} with the discrete index set{1 ≤ n < ∞}, and, in fact, almost any

setS can serve as the index set. When one takesS to be the set of nonnegative

real numbers, the index is often interpreted as time, and in this case one speaks of

continuous time stochastic processes. The most important of these are thePoisson

processand Brownian motion. Brownian motion is arguably the most important

stochastic process.

11 Directions for Further Reading

For a generation, Feller (1968) has served as an inspiring introduction to probability

theory. The text assumes only a modest background in calculus and linear algebra,

yet it goes quite far. The text of Dudley (1989) is addressed to more mathematically

sophisticated readers, but it contains much material that is accessible to readers at

all levels. In particular, Dudley (1989) contains many informative historical notes

with careful references to the original sources.

For an introduction to the theory of stochastic processes, the text by Çinlar (1975)

is recommended, and, for an easy introduction to Brownian motion, martingales,

and their applications in finance one can consult Steele (2000).

For background on the early development of probability theory, the books of David

(1962) and Stigler (1986) are useful, and the article by Doob (1994) helps make the

link to the present. Finally, for direct contact with the master, anyone does well to



15

read Kolmogorov (1933).
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